Convex Integration and Legendrian Approximation of Curves

2 Proof of the Theorem

We start by first treating the case where the contact manifold is \(\mathbb R^3\) equipped with the standard contact structure, that is, we aim to prove the following:

Proposition 2.1

Let \(\upsilon\in C^0([0,2\pi],\mathbb R^3)\). For every \(\varepsilon>0\) there exists a Legendrian curve \(\eta\in C^\infty([0,2\pi],\mathbb R^3)\) such that \(\|\upsilon-\eta\|_{C^0([0,2\pi])}\leqslant\varepsilon\).

Remark 2.2

Here, as usual, \(\|\gamma\|_{C^0(I)}\coloneqq \sup_{t\in I}|\gamma(t)|\) and \(\|\gamma\|_{C^1(I)}\coloneqq \|\gamma\|_{C^0(I)}+\|\mathrm{d}\gamma\|_{C^0(I)}\).

Let the curve we wish to approximate be given by \((x,y,z)\in C^\infty([0,2\pi],\mathbb R^3)\). The regularity is no restriction due to a standard approximation argument using convolution. Let \(\eta=(a,b,c) \in C^\infty([0,2\pi],\mathbb R^3)\) denote the approximating Legendrian curve. For every choice of smooth functions \((a,c) \in C^\infty([0,2\pi],\mathbb R^2)\) satisfying \(\dot{a}\neq 0\), we obtain a Legendrian curve by defining \(b=\dot{c}/\dot{a}\). Therefore, if \((\dot{a}(t),\dot{c}(t))\) lies in the set \[\mathcal R_{t,\varepsilon}\coloneqq\left\{(u,v)\in\mathbb R^2,|v-y(t)u|\leqslant \varepsilon \min\{|u|,|u|^2\}\right\},\] for every \(t \in [0,2\pi]\), then \(\|b-y\|_{C^{0}([0,2\pi])}\leqslant \varepsilon\). This condition can be achieved by defining \[(a(t),c(t)):=(x(0),z(0))+\int_0^t \gamma(u,nu)\,\mathrm du,\] with \(\gamma\in C^\infty([0,2\pi]\times S^1,\mathbb R^2)\) and \(n \in \mathbb{N}\), provided that \(\gamma(t,\cdot)\in \mathcal R_{t,\varepsilon}\). Furthermore, if \(\gamma\) additionally satisfies \[\frac{1}{2\pi}\oint_{S^1}\gamma(t,s)\,\mathrm ds = (\dot x(t), \dot z(t)),\] for all \(t \in [0,2\pi]\), then – as we will show below – \((a(t),c(t))\) approaches \((x(t),z(t))\) as \(n\) gets sufficiently large.

The set \(\mathcal R_{t,\varepsilon}\) is ample, i.e., the interior of its convex hull is all of \(\mathbb R^2\). For any given point \((\dot x(t), \dot z(t))\in\mathbb R^2\) we will thus be able to find a loop in \(\mathcal R_{t,\varepsilon}\) having \((\dot x(t), \dot z(t))\) as its barycenter. This fact is sometimes referred to as the fundamental lemma of convex integration (see for instance [5]). In the particular case studied here we obtain an explicit formula for \(\gamma\):

Lemma 2.3

There exists a family of loops \(\gamma\in C^\infty([0,2\pi]\times S^1,\mathbb R^2)\) satisfying \(\gamma(t,\cdot)\in \mathcal R_{t,\varepsilon}\) and such that \[\tag{2.1} \frac{1}{2\pi}\oint_{S^1}\gamma(t,s)\,\mathrm ds = (\dot x(t), \dot z(t)),\] for all \(t \in [0,2\pi]\).

Proof. The map \(\gamma\coloneqq(\gamma_1,\gamma_2)\), where \[\gamma_1(t,s)\coloneqq r \cos s + \dot x(t)\] and \[\gamma_2(t,s):= \gamma_1(t,s)\left(y(t)+\frac{2(\dot z(t)-y(t)\dot x(t))}{r^2+2\dot x(t)^2}\gamma_1(t,s)\right)\] satisfies (2.1) for every \(r>0\). If \(r\) is large enough one obtains \(\gamma(t,\cdot)\in \mathcal R_{t,\varepsilon}\), where \(r\) can be chosen independently of \(t\) by compactness of \([0,2\pi]\).

We now have:

Proof of Proposition 2.1. With the definitions above we obtain \[b(t):=\frac{\dot{c}(t)}{\dot{a}(t)}=y(t)+\frac{2(\dot z(t)-y(t)\dot x(t))}{r^2+2\dot x(t)^2}\gamma_1(t,nt).\] We are left to show that \(\left|(a, c)-(x,z)\right|\leqslant \varepsilon\) provided \(n\) is large enough. This follows from the following estimate \[\tag{2.2} \left\|(a, c)-(x,z)\right\|_{C^0([0,2\pi])}\leqslant \frac{4\pi^2}{n}\|\gamma\|_{C^1([0,2\pi]\times S^1)}.\] The estimate is in fact a geometric property of the derivative and can be interpreted as follows: Since \((\dot{a},\dot{c})\) and \((\dot x, \dot z)\) coincide “in average” on shorter and shorter intervals when \(n\) gets bigger and bigger, \((a,c)\) and \((x,z)\) tend to become close: Let \[I_k:=\left[\frac{2\pi k}{n},\frac{2\pi(k+1)}{n}\right]\text{ for }k=0,\ldots, \left\lfloor \frac{nt}{2\pi}\right\rfloor-1\text{ and }J\coloneqq\left[\left\lfloor \frac{nt}{2\pi}\right\rfloor\frac{2\pi}{n},t\right].\] Then we can estimate \(D=\left|(a(t), c(t))-(x(t),z(t))\right|\): \[\begin{aligned} D = &\left|\int_0^t\gamma(u,nu)\,\mathrm du-\int_0^t (\dot x,\dot z)(u)\,\mathrm du\right|\\ \leqslant &\sum_{k=0}^{\left\lfloor \frac{nt}{2\pi}\right\rfloor-1}\left|\int_{I_k}\gamma(u,nu)\,\mathrm du - \int_{I_k}\frac{1}{2\pi}\int_0^{2\pi}\gamma(u,v)\,\mathrm dv\,\mathrm du\right|+\\ &+\int_{J}\left(\left|\gamma(u,nu)\right|+\|\gamma\|_{C^0([0,2\pi]\times S^1)}\right)\,\mathrm du \\ \leqslant &\sum_{k=0}^{\left\lfloor \frac{nt}{2\pi}\right\rfloor-1}\left|\frac{1}{n}\int_0^{2\pi}\gamma\left(\frac{v+2k\pi}{n},v\right)\,\mathrm dv - \int_{I_k}\frac{1}{2\pi}\int_0^{2\pi}\gamma(u,v)\,\mathrm dv\,\mathrm du\right|+\\ &+\frac{4\pi}{n}\|\gamma\|_{C^0([0,2\pi]\times S^1)}\\ \leqslant &\sum_{k=0}^{\left\lfloor \frac{nt}{2\pi}\right\rfloor-1}\left|\frac{1}{2\pi} \int_{I_k}\int_0^{2\pi}\left(\gamma\left(\frac{v+2k\pi}{n},v\right)-\gamma(u,v)\right)\,\mathrm dv\,\mathrm du\right|\\ \phantom{\leqslant} &+\frac{4\pi}{n}\|\gamma\|_{C^0([0,2\pi]\times S^1)}\\ \leqslant &\left\lfloor \frac{nt}{2\pi}\right\rfloor\frac{4\pi^2}{n^2}\|\partial_t\gamma\|_{C^0([0,2\pi]\times S^1)}+\frac{4\pi}{n}\|\gamma\|_{C^0([0,2\pi]\times S^1)}\\ \leqslant &\frac{4\pi}{n}\left(\pi\|\partial_t\gamma\|_{C^0([0,2\pi]\times S^1)}+\|\gamma\|_{C^0([0,2\pi]\times S^1)}\right). \end{aligned}\] By construction, the curve \((a,b,c)\) is Legendrian and an approximation of \((x,y,z)\), provided \(n\) is large enough.

Next we show that we can approximate closed curves by closed Legendrian curves.

Proposition 2.4

Let \(\upsilon\in C^0(S^1,\mathbb R^3)\). For every \(\varepsilon>0\) there exists a Legendrian curve \(\eta\in C^\infty(S^1,\mathbb R^3)\) such that \(\|\upsilon-\eta\|_{C^0(S^1)}\leqslant\varepsilon\).

Proof. Using standard regularization, let the curve we wish to approximate be given by \((x,y,z)\in C^\infty([0,2\pi],\mathbb R^3)\), where the values of \((x,y,z)\) in \(0\) and \(2\pi\) agree to all orders. Define \(g(t)\coloneqq \gamma_1^2(t,nt)\). Since \(\|g\|_{L^1([0,2\pi])}=O(r^2)\) as \(r\to\infty\), we can choose \(r>0\) large enough such that \(f\coloneqq g/\|g\|_{L^1([0,2\pi])}\) is well-defined. With the notation \[\mathrm I_2\coloneqq \int_0^{2\pi}\gamma_2(u,nu)\,\mathrm du,\] we define \(\eta=(a,b,c)\) as follows: \[\tag{2.3} (a(t),c(t)) \coloneqq (x(0),z(0)) + \int_0^t \bigg[\gamma(u,nu)-(0,\mathrm I_2f(u))\bigg]\,\mathrm du,\] and \[\tag{2.4} b(t) \coloneqq \frac{\dot c(t)}{\dot a(t)} = y(t) + \gamma_1(t,nt)\left(\frac{2(\dot z(t)-y(t)\dot x(t))}{r^2+2\dot x(t)^2}-\frac{\mathrm I_2}{\|g\|_{L^1([0,2\pi])}}\right).\] A straightforward computation shows that the values of \((a,b,c)\) in \(0\) and \(2\pi\) agree to all orders, hence \(\eta\in C^\infty(S^1,\mathbb R^3)\) and it is Legendre by construction. Using (2.2) we obtain \(|\mathrm I_2|\leqslant \frac{4\pi^2}{n}\|\gamma_2\|_{C^1([0,2\pi]\times S^1)}\), hence we find using (2.4) as \(r\to\infty\): \[\begin{aligned} \|b-y\|_{C^0([0,2\pi])} & \leqslant \|\gamma_1\|_{C^0([0,2\pi]\times S^1)}\left(1+\frac{1}{n}\|\gamma\|_{C^1([0,2\pi]\times S^1)}\right)O(r^{-2}). \end{aligned}\] For the remaining components we find find using (2.2) and (2.3) the uniform bound \[\begin{aligned} |(a(t),c(t))-(x(t),z(t))| & \leqslant \frac{4\pi^2}{n}\|\gamma\|_{C^1([0,2\pi]\times S^1)} + \frac{\left|\mathrm I_2\right|}{\|g\|_{L^1([0,2\pi])}}\int_0^t g(u)\,\mathrm du \\&\leqslant \frac{8\pi^2}{n}\|\gamma\|_{C^1([0,2\pi]\times S^1)}.\end{aligned}\] Choosing \(r\) large enough and \(n\sim r^2\) concludes the proof.

We show now how to glue together two local approximations of a curve \(\Gamma\) in \(M\) on two intersecting coordinate neighborhoods. Let therefore \(U_\sigma\) and \(U_\tau\) in \(M\) be coordinate patches such that \(U=U_\sigma\cap U_\tau\ne\emptyset\). Let \(I_\sigma\) and \(I_\tau\) be compact intervals such that \(I=I_\sigma\cap I_\tau\) contains an open neighborhood of \(t=0\) (after shifting the variable \(t\) if necessary) and such that \(\Gamma(I_\sigma)\subset U_\sigma\), \(\Gamma(I_\tau)\subset U_\tau\). Assume without restriction that \(\Gamma\) is smooth and let \((x,y,z)\) represent \(\Gamma\) on \(U\). Suppose that \((x,y,z)\) is approximated by Legendrian curves \(\sigma:I_\sigma\to\mathbb R^3\) and \(\tau:I_\tau\to \mathbb R^3\) such that \[\tag{2.5} \|\sigma-(x,y,z)\|_{C^0(I)}<\varepsilon^2,\quad \|\tau-(x,y,z)\|_{C^0(I)}<\varepsilon^2\] for some fixed \(0<\varepsilon<\frac{1}{2}\). For \(r>0\), define \(R(r)\) to be the smallest number such that \(\bar B_r(0)\subset\operatorname{conv}\left(\mathcal R_{0,\varepsilon}\cap \bar B_{R}(0)\right)\). Note that \(R\) depends continuously on \(r\) and if \(r>r_0\coloneqq\frac{\varepsilon}{\sqrt{1+y(0)^2}}\), then \[\tag{2.6} R(r) = \frac{r}{\varepsilon}\sqrt{(1+y(0)^2)\left(1+(|y(0)|+\varepsilon)^2\right)}\eqqcolon\frac{r}{\varepsilon}w(y(0),\varepsilon).\] Choose \(0<\delta<\varepsilon^2\) such that \([-\delta,\delta]\subset I\) and such that \(\delta\|(x,y,z)\|_{C^1(I)}\leqslant \varepsilon^2\) and define \[\begin{aligned} p_1&\coloneqq(\sigma_1(-\delta),\sigma_3(-\delta)),\\ \dot p_1&\coloneqq(\dot\sigma_1(-\delta),\dot\sigma_3(-\delta)),\\ p_2&\coloneqq(\tau_1(\delta),\tau_3(\delta)),\\ \dot p_2&\coloneqq(\dot\tau_1(\delta),\dot\tau_3(\delta)). \end{aligned}\] From (2.5) and the choice of \(\delta\) we obtain \(\dot p_1,\dot p_2\in \mathcal C_{\varepsilon}\coloneqq\big\{(u,v)\in\mathbb R^2,|v-y(0)u|\leqslant\varepsilon|u|\big\}\) and \[\frac{p_2-p_1}{2\delta}\eqqcolon p\in B_{\bar r}(0),\text{where }\bar r=\frac{2\varepsilon^2}{\delta}.\] Since \(3\bar r>r_0\), we can express \(R(3\bar r)\) by means of formula (2.6). This will be used in computation (2.9). We construct a path \(\gamma=(\gamma_1,\gamma_2):[-\delta,\delta]\to \mathcal C_{\varepsilon}\) as follows: For \(\rho<\delta/2\), let \(\gamma|_{[-\delta,-\delta+\rho]}\) be a continuous path from \(\dot p_1\) to \(0\) and let \(\gamma|_{[\delta-\rho,\delta]}\) be a continuous path from \(0\) to \(\dot p_2\). We construct \(\gamma\) such that the quotient \(\gamma_2/\gamma_1\) is well-defined on \([-\delta,-\delta+\rho]\cup [\delta-\rho,\delta]\) and equals \(y(0)\) in \(t=-\delta+\rho\) and \(t=\delta-\rho\). Moreover, we require that \[\tag{2.7} \int_{-\delta}^{-\delta+\rho}|\gamma(t)|\,\mathrm dt < \frac{\delta\varepsilon}{2}\text{ and }\int_{\delta-\rho}^{\delta}|\gamma(t)|\,\mathrm dt < \frac{\delta\varepsilon}{2}.\] On \([-\delta,-\delta+\rho],\) such a path is for example given by \[t\mapsto \left(1-\frac{\delta + t}{\rho}\right)^k\begin{pmatrix}\dot\sigma_1(-\delta) \\ y(0)\dot\sigma_1(-\delta) + (\dot\sigma_3(-\delta) - y(0)\dot\sigma_1(-\delta))\left(1-\frac{\delta + t}{\rho}\right)^{k}\end{pmatrix}\] provided \(k\in \mathbb N\) is sufficiently large. We obtain \[\frac{1}{2(\delta-\rho)}\left(2\delta p-\int_{-\delta}^{-\delta+\rho}\gamma(t)\,\mathrm dt-\int_{\delta-\rho}^{\delta}\gamma(t)\,\mathrm dt\right)\eqqcolon \bar p\in B_{3\bar r}(0)\] and hence \(\bar p\in \operatorname{int}\operatorname{conv}(B_{R(3\bar r)}(0)\cap\mathcal R_{0,\varepsilon})\). Using the fundamental lemma of convex integration we let \(\gamma|_{[-\delta+\rho,\delta-\rho]}\) be a continuous closed loop in \(B_{R(3\bar r)}(0)\cap\mathcal R_{0,\varepsilon}\) based at \(0\) such that \[\frac{1}{2(\delta-\rho)}\int_{-\delta+\rho}^{\delta-\rho}\gamma(t)\,\mathrm dt = \bar p.\] With these definitions we obtain \[\frac{1}{2\delta}\int_{-\delta}^{\delta}\gamma(t) = p.\] Now we define \(\eta=(a,b,c):[-\delta,\delta]\to\mathbb R^3\) by letting \(b(t)\coloneqq \dot c(t)/\dot a(t)\), where \[\begin{aligned} (a,c)(t) & \coloneqq p_1+\int_{-\delta}^t \gamma(u)\mathrm du. \end{aligned}\] The curve \(\eta\) is well-defined and Legendrian by construction. It satisfies \(\eta(-\delta)=\sigma(-\delta)\) and \(\eta(\delta)=\tau(\delta)\). Moreover, \((a,c)\) and \((\sigma_1,\sigma_3)\) agree to first order in \(t=-\delta\) and so do \((a,c)\) and \((\tau_1,\tau_3)\) in \(t=\delta\). From \(\gamma([-\delta,\delta])\in \mathcal C_\varepsilon\) and the choice of \(\delta\) we find \[\tag{2.8} |b(t)-y(t)|\leqslant|b(t)-y(0)|+|y(t)-y(0)|\leqslant \varepsilon + \delta\|y\|_{C^1(I)}<2\varepsilon.\] Using (2.5), (2.6), (2.7) and the choice of \(\delta\) we obtain for the remaining components the uniform bound \[\tag{2.9} \begin{aligned} |(a,c)(t)-(x,z)(t)| & \leqslant |p_1-(x,z)(-\delta)|+\int_{-\delta}^t \left(|\gamma(u)|+|(\dot x,\dot z)(u)|\right)\,\mathrm du\\ & \leqslant \varepsilon^2 + \delta\varepsilon +\int_{-\delta+\rho}^{\delta-\rho}|\gamma(u)|\,\mathrm du + 2\delta\|(x,z)\|_{C^1(I)}\\ & \leqslant 2\varepsilon + 2\delta R(3\bar r) \\ & \leqslant \varepsilon \left(14+12\left(|y(0)|+\frac{1}{2}\right)^2\right). \end{aligned}\] Finally, suppose \(\upsilon\) is a continuous curve from a compact \(1\)-manifold \(N\) (that is, \(N\) is a compact interval or \(S^1\)) into a contact \(3\)-manifold \((M,\xi)\). We fix some Riemannian metric \(g\) on \(M\). Then it follows with the bounds (2.8),(2.9) and the compactness of the domain of \(\upsilon\) that for every \(\varepsilon>0\) there exists a \(\xi\)-Legendrian curve \(\eta\) such that \[\sup_{t \in N} d_{g}(\upsilon(t),\eta(t))<\varepsilon,\] where \(d_{g}\) denotes the metric on \(M\) induced by the Riemannian metric \(g\). In particular, every open neighborhood of \(\upsilon \in C^0(N,M)\) – equipped with the uniform topology – contains a Legendrian curve \(N \to M\). Since \(N\) is assumed to be compact the uniform topology is the same as the Whitney \(C^{0}\)-topology, thus proving Theorem 1.1.