One-dimensional Projective Structures, Convex Curves and the Ovals of Benguria and Loss

3 Symmetries of the functionals

Consider the group homomorphism \(\Gamma: \mathrm{SL}(2,\mathbb R)\to \mathrm{ Diff}^\infty_+(\mathbb{S}^1)\) given by \[\Gamma(L) = \mathbf{x}\mapsto \frac{L\cdot \mathbf{x}}{|L\cdot \mathbf{x}|}\] where \(\mathbf{x}\in \mathbb{S}^1\) and \(L\in \mathrm{SL}(2,\mathbb R)\). Denote the image of \(\Gamma\) by \(\mathrm{ M\ddot{o}b}(\mathbb{S}^1)\) which we refer to as the Möbius group of \(\mathbb{S}^1\). One computes that \[\mathbf{T}_0\circ \Gamma(L)=\frac{ L \cdot \mathbf{T}_0}{|L \cdot \mathbf{T}_0|}.\] These are precisely the unit tangent maps of the ovals of [1]. That is, \[\mathcal{O}=\left\{\sigma\in \mathcal{D}_+^\infty: \phi_\sigma\in \mathrm{ M\ddot{o}b}(\mathbb{S}^1)\right\}.\]

3.1 The Schwarzian derivative

For \(\phi\in \mathrm{ Diff}_+^3(\mathbb{S}^1)\) the Schwarzian derivative of \(\phi\) is defined as \[S_{\theta}(\phi)=\frac{\phi^{\prime\prime\prime}}{\phi^{\prime}}-\frac{3}{2}\left(\frac{\phi^{\prime\prime}}{\phi^{\prime}}\right)^2,\] where primes denote derivatives with respect to \(\theta\). A fundamental feature of the Schwarzian derivative is that it satisfies the following co-cycle property \[\tag{3.1} S_\theta(\phi\circ \psi)=\left(S_\theta(\phi)\circ \psi\right)\cdot (\psi^{\prime})^2+S_{\theta}(\psi),\] where \(\phi,\psi\in \mathrm{ Diff}_+^3(\mathbb{S}^1)\). After some computation, one verifies that the Schwarzian derivative gives the following intrinsic characterization of \(\mathrm{ M\ddot{o}b}(\mathbb{S}^1)\) \[\tag{3.2} \phi \in \mathrm{ M\ddot{o}b}(\mathbb{S}^1) \iff S_\theta(\phi)+2(\phi')^2-2 =0.\]

The Schwarzian derivative arises most naturally in the context of projective differential geometry. This perspective also gives a conceptual proof of (3.2). For this proof as well as the necessary background the reader may consult the Appendix B as well as the references cited there.

3.2 Projective Symmetries

We now describe the natural symmetries of (1.2), (1.3) and (1.4). We also introduce a notion of duality for strictly convex degree-one curves – this duality will streamline some of the arguments. For \(\sigma\in \mathcal{D}^{k+1,\alpha}\), define the dual curve, \(\sigma^*\in \mathcal{D}^{k+1,\alpha}\) to be the unique curve with \[\begin{array}{cccc} \phi_{\sigma^*}=\phi_{\sigma}^{-1}, & \mathbf{x}_{\sigma^*}= \mathbf{x}_{\sigma} & \mbox{and} & L(\sigma^*)={L(\sigma)}.\end{array}\] That is, \(\sigma^*\) is the curve whose induced diffeomorphism is the inverse to the induced diffeomorphism of \(\sigma\). Clearly, \((\sigma^*)^*=\sigma\). To proceed further, we note that the functionals (1.3) and (1.4) can, by integrating by parts, be made to naturally involve the Schwarzian derivative. To see this fix \(\sigma \in \mathcal{D}_+^{4}\) with \(L(\sigma)=2\pi\). As \(\kappa_\sigma=\phi_\sigma'\), \[\tag{3.3} \begin{aligned} \mathcal{E}_G[\sigma] &=\int_{\mathbb{S}^1} \frac{(\phi_\sigma'')^2}{4(\phi_\sigma')^3} -\frac{1}{\phi_\sigma'}+\phi_\sigma' \; \mathrm{d}\theta \\ &=\int_{\mathbb{S}^1} \left( \frac{\phi_\sigma''}{2(\phi_\sigma')^3}\right)' \phi_\sigma'+\frac{3(\phi_\sigma'')^2}{4(\phi_\sigma')^3} -\frac{1}{\phi_\sigma'}+\phi_\sigma' \; \mathrm{d}\theta \\ &=\frac{1}{2} \int_{\mathbb{S}^1} \frac{S_{\theta}(\phi_\sigma) +2(\phi_\sigma')^2-2}{\phi_\sigma'} \; \mathrm{d}\theta, \end{aligned}\] where the second equality follows by integrating by parts. Likewise, \[\tag{3.4} \mathcal{E}_G^*[\sigma] =-\frac{1}{2} \int_{\mathbb{S}^1} S_{\theta}(\phi_\sigma) +2(\phi_\sigma')^2-2 \; \mathrm{d}\theta.\] An immediate consequence of this is the following useful fact,

Proposition 3.1

For \(\sigma \in \mathcal{D}_+^{4}\), we have \(\mathcal{E}_G[\sigma]=\frac{L(\sigma)}{2\pi}\mathcal{E}_G^*[\sigma^*]\).

Proof. By scaling we may assume that \(L(\sigma)=2\pi\). Write \(\psi_\sigma=\phi_\sigma^{-1}\). The co-cycle property for the Schwarzian derivative implies that \[S_\theta(\psi_\sigma)=-\frac{S_\theta(\phi_\sigma)\circ \phi_\sigma^{-1}}{(\phi'_\sigma\circ \phi^{-1}_\sigma)^2},\] where we have used that \[\phi_\sigma'=\frac{1}{\psi_\sigma'\circ \phi_\sigma}.\] Hence, by (3.3) and (3.4) \[\begin{aligned} \mathcal{E}_G[\sigma]&=\frac{1}{2} \int_{\mathbb{S}^1} \frac{S_{\theta}(\phi_\sigma) +2(\phi_\sigma')^2-2}{\phi_\sigma'} \; \mathrm{d}\theta\\ &= -\frac{1}{2}\int_{\mathbb{S}^1}( S_\theta(\psi_\sigma) \circ \phi_\sigma) \phi'_\sigma+2 (\psi'_\sigma\circ \phi_\sigma)^2\phi'_\sigma-2 \phi'_\sigma \;\mathrm{d}\theta\\ &=-\frac{1}{2} \int_{\mathbb{S}^1} S_{\theta}(\psi_\sigma) +2(\psi_\sigma')^2-2 \; \mathrm{d}\theta\\ &=\mathcal{E}_G^*[\sigma^*].\end{aligned}\]

We now may define the desired actions. Consider first the right action of \(\mathrm{ M\ddot{o}b}(\mathbb{S}^1)\) on \(\mathcal{D}^{k+1,\alpha}\), \(\sigma\cdot \varphi = \sigma'\) where \(\sigma'\in \mathcal{D}^{k+1,\alpha}\) is the unique element with \[\begin{array}{cccc} \mathbf{T}_{\sigma'}=\mathbf{T}_{\sigma}\circ \varphi, & \mathbf{x}_{\sigma'}= \mathbf{x}_{\sigma} & \mbox{and} & L(\sigma')=L(\sigma).\end{array}\] Notice, that if \(\sigma\in \mathcal{D}^{k+1,\alpha}_+\) is strictly convex, then so is \(\sigma'\) and in this case we have that \(\phi_{\sigma'}=\phi_{\sigma}\circ \varphi\). With this in mind, we also consider a left action of \(\mathrm{ M\ddot{o}b}(\mathbb{S}^1)\) on \(\mathcal{D}^{k+1,\alpha}_+\), \(\varphi\cdot \sigma =\sigma'\), where \(\sigma'\in \mathcal{D}^{k+1,\alpha}\) is the unique element with \[\begin{array}{cccc} \phi_{\sigma'}=\varphi \circ \phi_{\sigma}, & \mathbf{x}_{\sigma'}= \mathbf{x}_{\sigma} & \mbox{and} & L(\sigma')=L(\sigma).\end{array}\] We observe that for \(\sigma \in \mathcal{D}^{k+1}_+\) and \(\varphi\in \mathrm{ M\ddot{o}b}(\mathbb{S}^1)\), \[\varphi \cdot \sigma^*= (\sigma \cdot \varphi^{-1})^*.\] Finally, we define a right action of \(\mathrm{ M\ddot{o}b}(\mathbb{S}^1)\) on \(C^{k,\alpha}(\mathbb{S}^1)\) by \[f\cdot \varphi=\left(\varphi'\right)^{-1/2} f\circ\varphi .\] If we use \(\mathrm{d}\theta\) to identify \(C^\infty(\mathbb{S}^1)\) with \(\Omega^{-1/2}(\mathbb{S}^1)\), then this is the natural pull-back action on \(\Omega^{-1/2}(\mathbb{S}^1)\) – the space of weight \(-1/2\) densities (see Appendix B).

Proposition 3.2

For any \(\varphi\in \mathrm{ M\ddot{o}b}(\mathbb{S}^1)\), \(\sigma\in \mathcal{D}^\infty\) and \(f\in C^\infty(\mathbb{S}^1)\), \[\mathcal{E}_S[\sigma, f]=\mathcal{E}_S[ \sigma\cdot \varphi, f\cdot \varphi].\] Likewise, for any \(\varphi\in \mathrm{ M\ddot{o}b}(\mathbb{S}^1)\) and \(\sigma \in \mathcal{D}^\infty_+\), \[\begin{array}{ccc} \mathcal{E}_G[\sigma]=\mathcal{E}_G[ \sigma\cdot \varphi] & \mbox{and} & \mathcal{E}_G^*[\sigma]=\mathcal{E}_G^*[\varphi\cdot \sigma]. \end{array}\]

Proof. By scaling, it suffices to take \(L(\sigma)=2\pi\) so \(\mathrm{d}s=\mathrm{d}\theta\). Set \[f_{\varphi}'=(\varphi')^{1/2} f'\circ \varphi -\frac{1}{2} \frac{\varphi''}{(\varphi')^{3/2}} f\circ\varphi.\] We show the first symmetry by computing, \[\begin{aligned} (f_{\varphi}')^2 &=(f'\circ\varphi)^2 \varphi'- \frac{\varphi''}{\varphi'} (f'\circ\varphi)( f\circ\varphi) +\frac{1}{4} \frac{(\varphi'')^2}{(\varphi')^{3}}(f\circ\varphi )^2\\ &=(f'\circ\varphi)^2 \varphi'- \frac{1}{2} \frac{\varphi''}{(\varphi')^{2}}\partial_\theta \left( f\circ\varphi \right)^2 + \frac{1}{4} \frac{(\varphi'')^2}{(\varphi')^{2}}f_{\varphi}^2\\ &=(f'\circ\varphi)^2 \varphi'- \partial_\theta \left( \frac{\varphi'' (f\circ\varphi)^2 }{2 (\varphi')^{2}} \right)+ \left( \frac{\varphi''}{2(\varphi')^{2}}\right)' (f\circ\varphi)^2+ \frac{1}{4} \frac{(\varphi'')^2}{(\varphi')^{2}}f_{\varphi}^2\\ &=(f'\circ\varphi)^2 \varphi'- \partial_\theta \left( \frac{\varphi'' (f\circ\varphi)^2 }{2 (\varphi')^{2}} \right) + \frac{1}{2} S_\theta(\varphi) f_{\varphi}^2 \\ &=(f'\circ\varphi)^2 \varphi'- \partial_\theta \left( \frac{\varphi'' (f\circ\varphi)^2 }{2 (\varphi')^{2}} \right) + \left( 1-(\varphi')^2\right)f_{\varphi}^2 \\ &\phantom{=}+\frac{1}{2} (S_\theta(\varphi)+2(\varphi')^2-2)f_{\varphi}^2 \\ &=(f'\circ\varphi)^2 \varphi'- \partial_\theta \left( \frac{\varphi'' (f\circ\varphi)^2 }{2 (\varphi')^{2}} \right) + \left( 1-(\varphi')^2\right)f_{\varphi}^2. \end{aligned}\] The last equality used \(\varphi\in \mathrm{ M\ddot{o}b}(\mathbb{S}^1)\) and (3.2). Integrating by parts gives, \[\begin{aligned} \int_{\mathbb{S}^1}(f_{\varphi}')^2 -f_{\varphi}^2\; \mathrm{d}\theta =\int_{\mathbb{S}^1}(f'\circ \varphi)^2 \varphi' -(f\circ\varphi )^2\varphi' \; \mathrm{d}\theta.\end{aligned}\] Hence, after a change of variables \[\begin{aligned} \int_{\mathbb{S}^1}(f_{\varphi}')^2 -f_{\varphi}^2 \;\mathrm{d}\theta =\int_{\mathbb{S}^1}(f')^2 -f^2 \;\mathrm{d}\theta.\end{aligned}\] Finally, \[(\kappa_{\varphi} f_{\varphi})^2= \kappa_{\varphi}(\varphi(\theta))^2 f\circ\varphi ^2 \varphi'\] and so a change of variables gives, \[\int_{\mathbb{S}^1} (\kappa_{\varphi} f_{\varphi})^2 \;\mathrm{d}\theta = \int_{\mathbb{S}^1} \kappa^2 f^2 \;\mathrm{d}\theta.\] That is, \(\mathcal{E}_S[\sigma, f]=\mathcal{E}_S[ \sigma\cdot \varphi, f\cdot \varphi]\).

The co-cycle property of the Schwarzian and (3.4) immediately implies \[\begin{aligned} \mathcal{E}_G^*[\varphi \cdot \sigma]&=-\frac{1}{2}\int_{\mathbb{S}^1} S_\theta(\varphi\circ \phi_\sigma)+2 ((\varphi\circ\phi_\sigma)' )^2-2 \; \mathrm{d}\theta\\ &=-\frac{1}{2}\int_{\mathbb{S}^1} S_\theta( \phi_\sigma)-2 (\phi_\sigma')^2 (\varphi'\circ \phi_\sigma)^2+2(\phi_\sigma')^2+2 (\phi_\sigma')^2(\varphi'\circ\phi_\sigma )^2\\ &\phantom{=}-2 \; \mathrm{d}\theta\\ &=\mathcal{E}_G^*[\sigma]\end{aligned}\] Finally, using Proposition 3.1 \[\begin{aligned} \mathcal{E}_G[\sigma\cdot \varphi] &=\mathcal{E}_G^*[(\sigma\cdot \varphi)^*]= \mathcal{E}_G^*[\varphi^{-1} \cdot \sigma^*]=\mathcal{E}_G^*[\sigma^*]=\mathcal{E}_G[\sigma].\end{aligned}\]

Theorem 1.2 is an immediate consequence of Proposition 3.1 and Proposition 3.2 and the fact that \(\mathrm{ M\ddot{o}b}(\mathbb{S}^1)\) is isomorphic to \(\mathrm{SL}(2,\mathbb R)\).

As a final remark, we observe that we may extend the duality operator to \(\mathcal{D}_+^{\infty} \times C^\infty(\mathbb{S}^1)\) and define a natural dual functional to \(\mathcal{E}_S\). Namely, set \[\begin{array}{ccc}(\sigma, f)^*=(\sigma^*, f\circ \phi_\sigma^{-1}) & \mbox{and} & \mathcal{E}_S^*[\sigma, f]=\int_{\sigma} \frac{|\nabla_\sigma f|^2}{\kappa_\sigma} -\kappa_\sigma f^2 +\frac{(2\pi)^2}{L(\sigma)^2} \frac{f^2}{ \kappa_\sigma} \; \mathrm{d}s. \end{array}\] We then have,

Proposition 3.3

If \(\sigma\in \mathcal{D}_+^{\infty}\) and \(f\in C^\infty(\mathbb{S}^1)\), then \[\mathcal{E}_S[(\sigma, f)^*]=\frac{L(\sigma)}{2\pi}\mathcal{E}_S^*[\sigma,f].\]

Proof. By scaling, we may assume that \(L(\sigma)=2\pi\). Writing \(\psi_\sigma=\phi_\sigma^{-1}\), we compute \[\begin{aligned} \mathcal{E}_S[(\sigma, f)^*] &=\int_{\mathbb{S}^1} ((f\circ \psi_\sigma)')^2 +(\psi_\sigma')^2 (f\circ \psi_\sigma)^2-(f\circ \psi_\sigma)^2 \; \mathrm{d}\theta \\ &=\int_{\mathbb{S}^1} (\psi_\sigma')^2 (f'\circ \psi_\sigma)^2 +(\psi_\sigma')^2 (f\circ \psi_\sigma)^2-\frac{(f\circ \psi_\sigma)^2}{\psi_\sigma'} \psi_\sigma' \; \mathrm{d}\theta\\ &=\int_{\mathbb{S}^1} (\psi_\sigma'\circ \psi_\sigma^{-1}) (f')^2 +(\psi_\sigma'\circ \psi_\sigma^{-1}) f^2-\frac{f^2}{\psi_\sigma'\circ \psi_\sigma^{-1}} \; \mathrm{d}\theta\\ &=\int_{\mathbb{S}^1} \frac{(f')^2}{\phi_\sigma'} + \frac{f^2}{\phi_\sigma'}-\phi_\sigma' f^2 \; \mathrm{d}\theta \\ =\mathcal{E}_S^*[\sigma,f].\end{aligned}\]