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Flat extensions of principal connections
and the Chern–Simons 3-form

andreas čap, keegan j. flood,
and thomas mettler

Abstract. We introduce the notion of a flat extension of a connection
θ on a principal bundle. Roughly speaking, θ admits a flat extension if
it arises as the pull-back of a component of a Maurer–Cartan form. For
trivial bundles over closed oriented 3-manifolds, we relate the existence
of certain flat extensions to the vanishing of the Chern–Simons invariant
associated with θ. As an application, we recover the obstruction of Chern–
Simons for the existence of a conformal immersion of a Riemannian
3-manifold into Euclidean 4-space. In addition, we obtain corresponding
statements for a Lorentzian 3-manifold, as well as a global obstruction
for the existence of an equiaffine immersion into R4 of a 3-manifold that
is equipped with a torsion-free connection preserving a volume form.

1. Introduction

Chern–Simons forms and invariants derived from them are prominent ex-
amples of secondary invariants of certain types of connections [4]. Apart
from their interest in geometry and topology, Chern–Simons forms also play a
fundamental role in theoretical physics. In contrast to standard characteristic
classes and characteristic numbers which are defined on even-dimensional
manifolds, Chern–Simons invariants are defined for manifolds of odd di-
mension. Among Chern–Simons forms, much interest is devoted to the
Chern–Simons 3-form which is defined for a 1-form θ with values in the Lie
algebra g of a Lie group G via

CS(θ) = ⟨θ, dθ⟩+ 1
3⟨θ, [θ, θ]⟩,

where ⟨ · , · ⟩ denotes a symmetric bilinear form on g which is invariant under
the adjoint action Ad of G and [ · , · ] denotes the Lie bracket of g. In the case
where θ is a principal connection on a trivial principal G-bundle π : P →M
over a closed oriented 3-manifold M , the Chern–Simons 3-form can be used
to assign a real number

cσ =
∫
M
σ∗CS(θ)

to every global smooth section σ :M → P . Depending on the topology of
G, it may happen that cσ is independent of σ or that one can choose ⟨ · , · ⟩
so that cσ is independent of σ up to addition of an integer. In the former
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case, one obtains a real valued Chern–Simons invariant associated to θ, in
the latter – more frequent – case, an invariant with values in R/Z.

The prototypical example of an R/Z-valued Chern–Simons invariant arises
from considering the SO(3)-bundle π : SOM →M of orientation compatible
orthonormal frames of a closed oriented Riemannian 3-manifold (M, g),
equipped with its Levi-Civita connection form θ and where ⟨ · , · ⟩ is a suitable
scalar multiple of the Killing form of so(3). In [4], Chern–Simons show
that the Riemannian 3-manifold (M, g) can be isometrically immersed into
Euclidean 4-space E4 only if cσ is an integer. Moreover, they observe that
the associated R/Z-valued invariant is actually conformally invariant, so
that the integrality of cσ is an obstruction to the existence of a conformal
immersion into E4. The Chern–Simons invariant of a Riemannian 3-manifold
has since played an important role in hyperbolic geometry due to its relation
to the η-invariant [11]. See also [9] and [8] for more recent related work.

In 3-dimensional CR-geometry, the Chern–Simons 3-form gives rise to
an R-valued Chern–Simons invariant as discovered by Burns–Epstein [1].
To include such examples, we discuss Chern–Simons invariants in the more
general setting of a g-connection on an H-principal bundle, where H is a
subgroup of G.

For differential geometric structures not related to Riemannian – or CR-
geometry, the meaning of the Chern–Simons invariant seems to have received
less attention in the literature. In this article, we relate vanishing statements
for the Chern–Simons invariant to the notion of a flat extension of a principal
connection. To this end, suppose that G is a Lie subgroup of a Lie group
G̃ which is equipped with an Ad-G̃ invariant bilinear form ⟨ · , · ⟩ on its Lie
algebra g̃. We assume that the restriction of ⟨ · , · ⟩ to g× g is non-degenerate
so that g̃ = g⊕ g⊥, where g⊥ denotes the orthogonal complement of g with
respect to ⟨ · , · ⟩. Writing a g̃-valued 1-form ψ as ψ = ψ⊤ + ψ⊥ with ψ⊤

taking values in g and ψ⊥ taking values in g⊥, we define:
Definition 1.1. Let P → M be a principal G-bundle and θ ∈ Ω1(P, g) a
connection. A flat extension of θ of type (G̃,G) is a bundle homomorphism
F : P → G̃ into the total space of the principal G-bundle G̃→ G̃/G so that

θ = F ∗(µ⊤
G̃
),

where µG̃ denotes the Maurer–Cartan form of G̃.
Let CS(µG̃) denote the Chern–Simons form of the Maurer–Cartan form

µG̃ of G̃, computed with respect to ⟨ · , · ⟩. Moreover, we compute the Chern–
Simons 3-form of a g-valued 1-form with respect to the bilinear form on g
obtained by restricting the bilinear form ⟨ · , · ⟩ on g̃ to g × g. In the case
where the pair (g̃, g) of Lie algebras is a symmetric pair (see Section 5 for
details), we obtain:
Corollary 1.2. Suppose P → M is a trivial principal G-bundle over a
closed oriented 3-manifold M and θ ∈ Ω1(P, g) a connection admitting a
flat extension of type (G̃,G) with (g̃, g) being a symmetric pair. If CS(µG̃)
is exact, then

∫
M σ∗CS(θ) = 0 and if CS(µG̃) represents an element of

H3(G̃,Z), then
∫
M σ∗CS(θ) ∈ Z for every global smooth section σ :M → P .
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Theorem 1.2 follows from of our slightly more general main Theorem 6.2.
The proof of this theorem strongly depends on a certain algebraic identity –
see Theorem 5.1 – which expresses CS(ψ) as the sum of CS(ψ⊤) and a term
involving the curvature of ψ. In particular, if ψ satisfies the Maurer–Cartan
equation 0 = dψ+ 1

2 [ψ,ψ], then CS(ψ) = CS(ψ⊤), so that the Chern–Simons
3-form only detects the g-valued part of ψ.

The obstruction of Chern–Simons is obtained from our main result by
observing that the Gauss map of an isometric immersion (M, g) → E4 is
covered by a map F : SOM → SO(4) which is a flat extension of the
Levi-Civita connection θ of type (SO(4), SO(3)). Since (so(4), so(3)) is a
symmetric pair, it remains to argue that for a suitable choice of ⟨ · , · ⟩ on
so(4), the 3-form CS(µSO(4)) represents an element of H3(SO(4),Z). This
requires a good understanding of the third integral homology group of SO(4).
The relevant calculations are carried out in Section A.

As a further application – see Theorem 6.6 – we discuss the case of space –
and time-oriented Lorentzian 3-manifolds that admit a global orthonormal
frame. Here the Chern–Simons invariant is R-valued and for appropriate
choices of g̃ a flat extension is equivalent to an isometric immersion into
the Lorentzian vector space R3,1 and the split-signature vector space R2,2,
respectively. Existence of such an immersion then leads to integrality, re-
spectively, vanishing of the Chern–Simons invariant.

The group SO(3) ⊂ SL(3,R) is a strong deformation retract by Iwasawa
decomposition. As a consequence of this, one also obtains an R/Z-valued
Chern–Simons invariant for an oriented 3-manifold M equipped with a
torsion-free connection ∇ on its tangent bundle that preserves some volume
form ν. In Theorem 6.9 we show that the vanishing of this invariant obstructs
the existence of an equiaffine immersion of (M,∇, ν) into R4, where R4 is
equipped with its standard flat connection and volume form.

In Section B we discuss two examples. In particular, applying Theorem 6.9,
we show that forRP3 equipped with the Levi-Civita connection∇ and volume
form ν arising from its standard metric, there exists no global equiaffine
immersion into R4.

Acknowledgments

T.M. is grateful to Lukas Lewark for helpful communications.

2. Basics on the Chern–Simons 3-form

We start by collecting some basic facts about Chern–Simons 3-forms. We
refer to [6] for additional context. We consider a Lie algebra g and study
g-valued differential forms. In addition, we assume that g is endowed with
a non-degenerate g-invariant, symmetric bilinear form, which we denote by
⟨ · , · ⟩. Recall that for a simple Lie algebra g any such form has to be a
multiple of the Killing form, so there is a unique such form up to scale in
this case. The normalization of the form will be important in what follows
however. For a manifold N , we will denote by Ωk(N, g) the space of g-valued
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k-forms on N . The main case we are interested in is that N is the total space
of a principal fibre bundle and we aim at invariants defined on the base M of
that bundle. For any N , we have two basic operations on g-valued forms, as

⟨ · , · ⟩ : Ωp(N, g)× Ωq(N, g) → Ωp+q(N)
[ , ] : Ωp(N, g)× Ωq(N, g) → Ωp+q(N, g).

These are characterized by the fact that for α ∈ Ωp(N), β ∈ Ωq(N) and
X,Y ∈ g, we have

(2.1) ⟨α⊗X,β ⊗ Y ⟩ := ⟨X,Y ⟩α ∧ β, [α⊗X,β ⊗ Y ] := α ∧ β ⊗ [X,Y ].

The definitions immediately imply that for ω ∈ Ωp(N, g) and θ ∈ Ωq(N, g)
one obtains

⟨ω, θ⟩ = (−1)pq⟨θ, ω⟩, [ω, θ] = (−1)pq+1[θ, ω],

as well as

d⟨ω, θ⟩ = ⟨dω, θ⟩+ (−1)p⟨ω,dθ⟩,(2.2)
d[ω, θ] = [dω, θ] + (−1)p[ω,dθ].(2.3)

The fact that ⟨ · , · ⟩ is g-invariant respectively the Jacobi identity for [ , ]
implies that for an additional form τ ∈ Ωr(N, g), we obtain

⟨ω, [τ, θ]⟩ = ⟨[ω, τ ], θ⟩,(2.4)
[ω, [τ, θ]] = [[ω, τ ], θ] + (−1)pr[τ, [ω, θ]].(2.5)

Definition 2.1. For θ ∈ Ω1(N, g), the Chern–Simons 3-form CS(θ) ∈ Ω3(N)
is defined as

CS(θ) := ⟨θ, dθ⟩+ 1
3⟨θ, [θ, θ]⟩.

Notice that when we write Θ = dθ + 1
2 [θ, θ] we have

CS(θ) = ⟨θ,Θ⟩ − 1
6⟨θ, [θ, θ]⟩.

The following well-known property is one of the main motivations for the
definition of the Chern–Simons 3-form:

(2.6) dCS(θ) = ⟨Θ,Θ⟩.

The construction is natural in the sense that if M is a smooth manifold and
σ :M → N a smooth map, then

(2.7) σ∗CS(θ) = CS(σ∗θ).

Note that (2.6) in particular implies that if θ satisfies the Maurer–Cartan
equation dθ + 1

2 [θ, θ] = 0, then dCS(θ) = 0 and hence CS(θ) determines a
well-defined cohomology class in H3(N,R).
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3. Chern–Simons invariants

The standard setting for Chern–Simons invariants associated to (g, ⟨ , ⟩) uses
principal connection forms on principal fibre bundles with structure group
a Lie group G with Lie algebra g. For the construction of Chern–Simons
invariants it is advantageous to use a more general setting, namely to start
from principal bundles whose structure group H is a Lie subgroup of a Lie
group G with Lie algebra g. Then the Lie algebra h of H naturally is a
subalgebra of g and we can then restrict the adjoint representation of G
to H. This provides an extension of the adjoint representation of H to a
representation on g that we also denote by Ad if there is no risk of confusion.

In this situation, there is a natural notion of g-connections on principal fibre
bundles with structure group H. To formulate this, assume that π : P →M
is a principal H-bundle. Let R : P × H → P denote the principal right
action and define for all h ∈ H the map Rh = R(·, h) : P → P and for all
u ∈ P the map ιu = R(u, ·) : H → P .

Definition 3.1. Let G be a Lie group with Lie algebra g and H ⊂ G a
Lie subgroup. A g-valued 1-form θ ∈ Ω1(N, g) on some principal H-bundle
π : P →M is called a g-connection if for all u ∈ G and all h ∈ H we have

(3.1) ι∗uθ = µH and R∗
hθ = Ad(h−1) ◦ θ,

where µH denotes the Maurer–Cartan form of H.

Remark 3.2.
(i) Notice that if H = G, then the definition of g-connection agrees with

the standard notion of a principal connection.
(ii) The first condition in the definition is equivalent to the fact that

θ reproduces the generators of fundamental vector fields, i.e. that
θ(ζA) = A for any A ∈ h. Here ζA(u) = d

dt |t=0R(u, exp(tA)).
(iii) Let π : P → M be a principal H-bundle and θ ∈ Ω1(P, g) a g-

connection. Then we can extend the structure group to G by forming
P̂ := P ×HG→M and there is a canonical inclusion i : P → P̂ . One
easily shows that there is a unique principal connection θ̂ ∈ Ω1(P̂ , g)
such that i∗θ̂ = θ.

(iv) Conversely, suppose π̂ : P̂ → M is a principal G-bundle and θ̂ ∈
Ω1(P̂ , g) is a principal connection. If π : P → M is a reduction of
π̂ : P̂ →M to the structure group H, then restricting θ̂ to P yields
a g-connection on π : P →M .

(v) An important source of g-connections with H ≠ G is provided by
canonical Cartan connections associated to geometric structures. We
will discuss examples of this in Section 4 and study Chern–Simons
invariants in the context of Cartan connections in more detail in a
forthcoming article.

Fixing (g, ⟨ · , · ⟩) and H ⊂ G, we can consider the Maurer–Cartan form
µH ∈ Ω1(H, h) and we can of course also view µH as an element of Ω1(H, g).
Hence we can form the associated Chern–Simons form CS(µH) ∈ Ω3(H,R),
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which we will also denote by CSg(µH) to emphasize the role of g. Since µH
satisfies the Maurer–Cartan equation, this form is closed by (2.6) and hence
determines a cohomology class [CSg(µH)] ∈ H3(H,R).

Explicitly, CS(µH) is the left-invariant 3-form on H, which is induced by
the trilinear map

h3 → R, (X,Y, Z) 7→ −1
6⟨X, [Y, Z]⟩

which is complete alternating by invariance of ⟨ · , · ⟩. If h is simple, then the
restriction of ⟨ · , · ⟩ to h has to be a multiple of the Killing form, and hence
CSg(µH) is a multiple of the so-called Cartan 3-form on H. It is well-known
that for a compact simple Lie group H, the cohomology class of the Cartan
3-forms spans H3(H,R) ∼= R. We now have:

Proposition 3.3. Let M be a closed oriented 3-manifold, π : P →M be a
principal H-bundle that admits a global smooth section and let θ ∈ Ω1(N, g)
be a g-connection. For a smooth section σ :M → P consider

cσ :=
∫
M
σ∗CS(θ) ∈ R.

(i) If CSg(µH) is exact, then cσ is independent of σ and hence defines
an invariant of the form θ.

(ii) Suppose that ⟨ · , · ⟩ is chosen in such a way that CSg(µH) represents
an element of H3(H,Z). Then cσ + Z ∈ R/Z is independent of σ,
and hence we obtain an invariant of θ with values in R/Z.

The proof of Theorem 3.3 relies on the identity (3.2) below which is
standard in the case of principal connections (see for instance [6]). The case
of g-valued connection forms is quite similar. For the convenience of the
reader we include a proof in our more general setting:

Lemma 3.4. Fix (g, ⟨ · , · ⟩) and H ⊂ G as above. Then for a g-connection
θ ∈ Ω1(P, g) on a principal H-bundle π : P →M we have

(3.2) R∗CS(θ) = CS(θ) + CS(µH) + d⟨Ad−1 ◦ θ, µH⟩,

where Ad−1 := Ad ◦IH denotes the composition of the inversion IH : H → H,
h 7→ h−1 and the adjoint representation of H, thought of as acting on g.

Proof. Throughout this proof, we do not explicitly indicate pullbacks of
differential forms to a product along the projections. In this language, (3.1)
is equivalent to R∗θ = µH +Ad−1 ◦ θ. Putting α := Ad−1 ◦ θ, we first claim
that

(3.3) dα = Ad−1 ◦ dθ − [µH , α].

This can be proved by a direct computation. Alternatively, writing Θ =
dθ+ 1

2 [θ, θ], the equations (3.1) imply that i∗uΘ = 0 and R∗
hΘ = Ad(h−1) ◦Θ,

which reads as

(3.4) R∗Θ = Ad−1 ◦Θ.
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On the other hand, we can compute directly

R∗Θ = R∗
(
dθ + 1

2 [θ, θ]
)
= d(R∗θ) + 1

2 [R
∗θ,R∗θ]

= d(µH + α) + 1
2 [µH + α, µH + α]

= dα+ [µH , α] + 1
2 Ad

−1 ◦[θ, θ],

where the fourth equality uses dµH + 1
2 [µH , µH ] = 0. Comparing this to (3.4)

proves (3.3). Now we compute

⟨R∗θ,d(R∗θ)⟩ = ⟨α, dα⟩+ ⟨α,dµH⟩+ ⟨µH , dα⟩+ ⟨µH , dµH⟩
= ⟨α, dα⟩+ ⟨µH , dµH⟩+ d⟨α, µH⟩+ 2⟨α, dµH⟩
= ⟨α, dα⟩+ ⟨µH , dµH⟩+ d⟨α, µH⟩ − ⟨α, [µH , µH ]⟩,

where the second equality uses (2.2) and the fourth that dµH+ 1
2 [µH , µH ] = 0.

Using (2.4) we also obtain

⟨R∗θ, [R∗θ,R∗θ]⟩ = ⟨α, [α, α]⟩+ ⟨µH , [µH , µH ]⟩
+ 3⟨α, [µH , µH ]⟩+ 3⟨µH , [α, α]⟩.

In summary, we thus have
R∗CS(θ) = CS(R∗θ)

= ⟨α, dα⟩+ 1
3⟨α, [α, α]⟩+ ⟨µH , [α, α]⟩+CS(µH) + d⟨α, µH⟩.

Since the last term already shows up in (3.2), it remains to show that

CS(θ) = ⟨α, dα⟩+ 1
3⟨α, [α, α]⟩+ ⟨µH , [α, α]⟩.

Using (3.3) and the Ad-invariance of ⟨ · , · ⟩ gives

⟨α,dα⟩ = −⟨α, [µH , α]⟩+ ⟨Ad−1 ◦ θ,Ad−1 ◦ dθ⟩ = −⟨α, [µH , α]⟩+ ⟨θ,dθ⟩.

With [Ad(h)(x),Ad(h)(y)] = Ad(h)([x, y]) it follows that

⟨α, [α, α]⟩ = ⟨Ad−1 ◦ θ,Ad−1 ◦ [θ, θ]⟩ = ⟨θ, [θ, θ]⟩

and we conclude that

⟨α,dα⟩+ 1
3⟨α, [α, α]⟩+ ⟨µH , [α, α]⟩ = ⟨θ, dθ⟩+ 1

3⟨θ, [θ, θ]⟩ = CS(θ),

which finishes the proof. □

Proof of Theorem 3.3. Given one global smooth section σ : M → N , any
other global smooth section is of the form σ̂ = R ◦ (σ, h) :M → N for some
smooth map h :M → H. Using (2.7) and (3.2) we thus obtain

σ̂∗CS(θ) = (σ, h)∗ (R∗CS(θ))
= CS(σ∗θ) + h∗CS(µH) + d⟨Ad(h−1) ◦ (σ∗θ), h∗µH⟩,

so that integration yields

(3.5) cσ̂ = cσ +
∫
M
h∗CS(µH)

by Stokes’ theorem. The claims follow immediately from (3.5). □
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Remark 3.5. Observe that this result does not depend on the any conditions
on the restriction of ⟨ · , · ⟩ to h, so no assumptions in that direction are
needed in order to get well-defined Chern–Simons invariants. Indeed, for
several of the examples discussed below, the restriction is degenerate.

4. Examples of Chern–Simons invariants

Recall that any orientable 3-manifold is parallelizable and hence admits a
global smooth frame for the tangent bundle.

(1) Taking H = G = SO(3), this recovers the original definition of
Chern–Simons by using the Levi-Civita connection on oriented Riemannian
3-manifolds. Starting from a global frame of the tangent bundle TM , we
can apply Gram-Schmidt to obtain a global orthonormal frame, which shows
that the orthonormal frame bundle admits global smooth sections. Since
H3(G,R) ∼= R we immediately conclude from Theorem 3.3 that we obtain an
invariant with values in R/Z provided that we normalize ⟨ · , · ⟩ in such a way
that

∫
SO(3) µSO(3) ∈ Z and the best choice is to ensure that

∫
SO(3) µSO(3) = ±1.

Such a normalization is computed explicitly in Section A.

(2) Take H = G = SO0(2, 1) and the Levi-Civita connection on a space-
and time-oriented Lorentzian 3-manifold. In this case, we have to assume in
addition that there is a global orthonormal frame for the given Lorentzian
metric, i.e. that the orthonormal frame bundle admits a global smooth section.
Since the maximal compact subgroup of G is contained in S(O(2)×O(1)),
we get H3(G,R) = {0} in this case. Hence regardless of the normalization
of ⟨ · , · ⟩, we get an R-valued invariant (assuming existence of a global
orthonormal frame). As we shall see below, the normalization of ⟨ · , · ⟩ still
can be relevant here, since there are integrality results for the invariant on
manifolds that admit certain immersions, see Theorem 6.6 below.

(3) Take H = G = SL(3,R) and consider oriented 3-manifolds M endowed
with a fixed volume form ν and a linear connection ∇ on TM preserving
ν. Then we can apply our construction to the principal connection induced
by ∇ on the SL(3,R)-frame bundle of M defined by ν. The inclusion
SO(3) → SL(3,R) induces an isomorphism in cohomology, so H3(H,R) ∼= Z.
Choosing ⟨ · , · ⟩ appropriately, we obtain an R/Z-valued invariant for such
connections.

(4) An example with H ≠ G is provided by the Burns-Epstein invariant
introduced in [1]. Here the setting is thatM is a compact oriented 3-manifold
endowed with a CR-structure, i.e. a contract distribution C ⊂ TM with is
endowed with an almost complex structure. It is a classical result due to E.
Cartan, see [3], that M admits a canonical g-connection with g = su(2, 1)
on a principal fibre bundle constructed from the CR structure. Indeed, this
is a Cartan connection in modern terminology.

The structure group H of the canonical principal bundle is a (parabolic)
subgroup of G = PSU(2, 1). The details on H are not very important here, it
comes from the stabilizer in SU(2, 1) of a null line in C3. It turns out that H
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is isomorphic to a semi-direct product of U(1) and the complex Heisenberg
group of real-dimension 3, which in particular implies that H3(H,R) = {0}.

To obtain an invariant, one has to assume the the H-principal bundle
associated to the CR structure admits a global section, which by orientability
of M turns out to be equivalent to triviality of the CR subbundle C ⊂ TM .
Equivalently, this can be expressed as existence of a global CR vector field
on M . Since g is simple, the form ⟨ · , · ⟩ has to be a non-zero multiple of the
Killing form, and for each choice of such a form, our construction leads to a
real-valued CR invariant. Notice that in this case the restriction of ⟨ · , · ⟩ to
h is degenerate with null-space the nilradical of h.

(5) The construction of canonical principal bundles and (Cartan) connec-
tions from (4) is a special case of the general constructions for parabolic
geometries, see [2]. In particular, there are two more cases of structures
on 3-manifolds that have an underlying contact structure. One of those
are Legendrian contact structures for which the additional ingredient to a
contact distribution C ⊂ TM is a decomposition C = E ⊕ F as the direct
sum of two line subbundles (which are automatically Legendrian). Here
g = sl(3,R) and H comes from the subgroup of upper triangular matrices
in SL(3,R), so H3(H,R) = {0}. To obtain an invariant, one again has to
assume that M is compact and oriented and that the Legendrian subbundles
E and F are trivial, and then one obtains an R-valued invariant.

The other example are so-called contact projective structures, see also [5].
Here the additional structure is given by a family of curves tangent to the
contact distribution C ⊂ TM with one curve through each point in each
direction (in C), which can be realized as geodesics of a linear connection.
For this example, g = sp(4,R) and H comes from a subgroup of Sp(4,R)
which is a semi-direct product of Sp(2,R) ∼= SL(2,R) with a 3-dimensional
real Heisenberg group. Hence H3(H,R) = {0} and assuming triviality of
the canonical principal bundle over a compact oriented 3-manifold, one thus
obtains a real-valued invariant for any choice of ⟨ · , · ⟩.

5. Partial blindness for flat Lie algebra valued forms

It is natural to try to find conditions on the pair (π : P →M, θ) which imply
vanishing of the associated Chern–Simons invariant. We will achieve this in
Section 6 below. Our result crucially relies on a certain algebraic feature of
the Chern–Simons 3-form that we will refer to as partial blindness for flat
Lie algebra valued forms.

Here our basic setup is that we study Chern–Simons invariants associated
to (g, ⟨ · , · ⟩) via a realization of g as a Lie subalgebra of a bigger Lie algebra
g̃ in such a way that ⟨ · , · ⟩ is the restriction of an invariant form on g̃
which we denote by the same symbol. In particular we do assume that the
restriction to g is non-degenerate here. (Note that this is automatically
satisfied if g is simple and the restriction is non-zero.) Then we can form the
orthogonal space g⊥ ⊂ g̃ which by our assumption is complementary to g,
so g̃ = g⊕ g⊥ as a vector space. But since ⟨ · , · ⟩ is clearly g-invariant, also
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g⊥ ⊂ g̃ is a g-invariant subspace, so g̃ = g⊕ g⊥ as a representation of g. In
particular, this implies that [g, g⊥] ⊂ g⊥. An important special case is that
the complement g⊥ makes (g̃, g) into a symmetric pair, i.e., that in addition
we have [g⊥, g⊥] ⊂ g.

Now any g̃-valued form ω ∈ Ωk(N, g̃) on a manifold N decomposes accord-
ingly as

ω = ω⊤ + ω⊥

with ω⊤ ∈ Ωk(N, g) and ω⊥ ∈ Ωk(N, g⊥).
We can now state a crucial technical lemma:

Lemma 5.1. In the setting of g ⊂ g̃ as above, let θ ∈ Ω1(N, g̃) be such that
for the decomposition θ = θ⊤ + θ⊥, we have [θ⊥, θ⊥] ∈ Ω2(N, g). Then for
Θ = dθ + 1

2 [θ, θ] with associated decomposition Θ = Θ⊤ +Θ⊥, we obtain

(5.1) CS(θ) = CS(θ⊤) + ⟨θ⊥,Θ⊥⟩.

Proof. We can decompose the equation dθ = Θ − 1
2 [θ, θ] into components,

and by our assumption on [θ⊥, θ⊥], this reads as

(5.2)
(dθ)⊤ = Θ⊤ − 1

2([θ
⊤, θ⊤] + [θ⊥, θ⊥]),

(dθ)⊥ = Θ⊥ − [θ⊤, θ⊥].
From this we compute
⟨θ,dθ⟩ = ⟨θ⊤ + θ⊥, (dθ)⊤ + (dθ)⊥⟩ = ⟨θ⊤, dθ⊤⟩ − ⟨θ⊥, [θ⊤, θ⊥]⟩+ ⟨θ⊥,Θ⊥⟩
and

⟨θ, [θ, θ]⟩ = ⟨θ⊤ + θ⊥, [θ⊤ + θ⊥, θ⊤ + θ⊥]⟩

= ⟨θ⊤ + θ⊥, [θ⊤, θ⊤] + [θ⊥, θ⊥] + 2[θ⊤, θ⊥]⟩

= ⟨θ⊤, [θ⊤, θ⊤]⟩+ ⟨θ⊤, [θ⊥, θ⊥]⟩+ 2⟨θ⊥, [θ⊤, θ⊥]⟩.
In total we thus have

CS(θ) = ⟨θ, dθ⟩+ 1
3⟨θ, [θ, θ]⟩

= CS(θ⊤) + ⟨θ⊥,Θ⊥⟩+ 1
3⟨θ

⊤, [θ⊥, θ⊥]⟩ − 1
3⟨θ

⊥, [θ⊤, θ⊥]⟩

= CS(θ⊤) + ⟨θ⊥,Θ⊥⟩,
where the last equality uses (2.4). □

Remark 5.2. In the applications of Theorem 5.1 that we are interested in,
we consider the case where the Lie algebra valued form θ is flat, that is,
satisfies the Maurer–Cartan equation Θ = dθ + 1

2 [θ, θ] = 0. In this case (5.1)
simplifies to CS(θ) = CS(θ⊤), that is, the Chern–Simons 3-form is blind to
the θ⊥ component of θ.

As a first application of Theorem 5.1 we assume that we have an inclusion
i : G→ G̃ of groups corresponding to g ⊂ g̃ and get a result of integrality of
the Chern–Simons forms associated to the Maurer–Cartan forms.

Lemma 5.3. Let i : G→ G̃ be an inclusion of a Lie subgroup and consider
the corresponding subalgebra g ⊂ g̃. Assume that ⟨ · , · ⟩ is an invariant
bilinear form on g̃ such that ⟨ · , · ⟩|g×g is non-degenerate and use these forms
to define Chern–Simons forms for differential forms in g and g̃.
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If ⟨ · , · ⟩ is normalized in such a way that [CS(µG̃)] ∈ H3(G̃,Z), then
[CSg(µG)] ∈ H3(G,Z).

Proof. Decomposing µG̃ = µ⊤
G̃
+ µ⊥

G̃
, the definition of the Maurer–Cartan

form readily implies that i∗µ⊤
G̃
= µG. Since µG̃ satisfies the Maurer–Cartan

equation, Theorem 5.1 gives that CS(µG̃) = CS(µ⊤
G̃
) and using (2.7) we

conclude that i∗CS(µ⊤
G̃
) = CSg̃(i∗µ⊤

G̃
). Since we use the restriction of ⟨ · , · ⟩

on g, this coincides with CSg(µG). Thus the result follows from the fact the
pullback preserve integral cohomology classes. □

There is a conceptual way to obtain compatible invariant bilinear forms as
we need them here. Assume that g̃ is realized as a subalgebra of gl(n,R) for
some n. Then it is well-known that the trace form ⟨X,Y ⟩ := tr(XY ) defines
a GL(n,R)-invariant bilinear form on gl(n,R). Of course, the restriction of
⟨ · , · ⟩ to g̃ is the G̃-invariant for the subgroup G̃ ⊂ GL(n,R) corresponding
to the Lie subalgebra g̃. If g̃ is simple and the restriction is non-zero, then
it has to be a multiple of the Killing form and hence is non-degenerate. Of
course, we can restrict further to g ⊂ g̃ and apply the same argument if g is
also simple.

Even better, for m > n, we can decompose Rm = Rm−n ⊕Rn and then
include GL(n,R) ⊂ GL(m,R) as the maps that send Rn to itself and are
the identity on the complementary subspace Rm−n. For the infinitesimal
inclusion gl(n,R) → gl(m,R) the trace form on gl(m,R) evidently restricts
to the trace form on gl(n,R). This allows us to also compare algebras of
matrices of different sizes.

It is easy to write an explicit formula for Chern–Simons forms on subal-
gebras of gl(n,R) computed with respect to the trace form. One realizes
a 1-form θ on N with values in such a subalgebra as a matrix (θij)ni,j=1 of
real-valued 1-forms θij ∈ Ω1(N). Then of course, we get dθ = (dθij)ni,j=1, and
employing the summation convention, we can write [θ, θ] = (2θik ∧ θkj )ni,j=1.
By definition of the Chern–Simons form, this implies that we get (still using
the summation convention)

CS(θ) = θij ∧ dθji +
2
3θ

i
j ∧ θ

j
k ∧ θ

k
i .

It is usual in Chern–Simons theory to write this as tr(θ ∧ dθ + 2
3θ ∧ θ ∧ θ).

Using this, we can prove a result on the Lie algebras we will need in the
further developments:

Proposition 5.4. For n ⩾ 3, consider the subgroups Gn := SO(n,R) ⊂ G̃ :=
SL(n,R) ⊂ GL(n,R) and denote the Maurer–Cartan forms by µn = µGn

and µ̃n = µG̃n
. Then for Cn ∈ R the statements

Cn tr
(
µn ∧ dµn + 2

3µn ∧ µn ∧ µn
)
∈ H3(Gn,Z)(5.3)

Cn tr
(
µ̃n ∧ dµ̃n + 2

3 µ̃n ∧ µ̃n ∧ µ̃n
)
∈ H3(G̃n,Z).(5.4)

are equivalent and for any N ⩾ 5, there exists a constant C such that they
hold with Cn = C for all n ⩽ N .
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Proof. It is well-known that for both gn = so(n) and g̃ = sl(n,R) the trace-
form is a non-zero multiple of the Killing form, see e.g. [7], so it is always
non-degenerate. It is also well known that for n ⩾ 2, Gn ⊂ G̃n is a strong
deformation retract by Iwasawa decomposition, so the inclusion induces an
isomorphism in cohomology with both real and integer coefficients. Finally,
for n ≠ 4, H3(G̃n,R) is 1-dimensional, so we one can choose Cn in such a
way that (5.4) holds for n. But then the full result immediately follows from
Theorem 5.3. □

The explicit normalizations we will use are computed in Section A below.

6. Flat extensions of principal connections

We continue to work in the setting of an inclusion i : G → G̃ of a Lie
subgroup and an invariant bilinear form ⟨ · , · ⟩ on g̃ whose restriction to g is
non-degenerate. All Chern–Simons forms will be formed with respect to this
bilinear form from now on. In this setting recall from Theorem 1.1 our key
concept of a flat extension:

Definition. Let π : P → M be a principal G-bundle and θ ∈ Ω1(P, g) a
connection. A flat extension of θ of type (G̃,G) is a bundle homomorphism
F : P → G̃ into the total space of the principal G-bundle G̃→ G̃/G so that
θ = F ∗(µ⊤

G̃
).

Remark 6.1. The concept of flat extensions as defined here makes sense also
in the case of a g-connection on an H-principal bundle with H ⊂ G as in
Section 3. We restrict to the case G = H here, however, since for H ≠ G,
integrality of the cohomology class [CS(µG̃)] does not imply integrality of
[CSg(µH)], so additional assumptions are needed to obtain a general result
on integrality or vanishing of Chern–Simons invariants in that setting.

Theorem 6.2. Consider a pair G ⊂ G̃ and a bilinear form ⟨ · , · ⟩ on g̃ which
is normalized in such a way that [CS(µG̃)] ∈ H3(G̃,Z). Let π : P →M be a
principal G-bundle and θ ∈ Ω1(P, g) a G-equivariant form.

Suppose that θ admits admits a flat extension of type (G̃,G) such that for
the corresponding map F : P → G̃, we get
(6.1) [F ∗(µ⊥

G̃
), F ∗(µ⊥

G̃
)] ∈ Ω2(P, g).

Then for any global smooth section σ of P , we have
∫
M σ∗CS(θ) ∈ Z. If

CS(µ
G̃
) is exact, then we even have

∫
M σ∗CS(θ) = 0.

Remark 6.3. Since the condition (6.1) is automatically satisfied if (g̃, g) is a
symmetric pair, Theorem 6.2 implies Theorem 1.2.

Proof. Observe that by Theorem 5.3, our assumptions imply that [CS(µG)] ∈
H3(G,Z), so our construction of invariants from Section 3 can be applied. For
a flat extension F : P → G̃, consider F ∗µG̃ ∈ Ω1(N, g̃) which by definition
satisfies θ = F ∗(µ⊤

G̃
) = (F ∗µG̃)⊤. Since [F ∗(µ⊥

G̃
), F ∗(µ⊥

G̃
)] ∈ Ω2(P, g), we can

apply Theorem 5.1 to F ∗µG̃ to conclude that CS(θ) = CS(F ∗µG̃) which in
turn equals F ∗(CS(µG̃)) by (2.7). Hence σ∗(CS(θ)) = (F ◦ σ)∗(CS(µ

G̃
)) and,
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as a pullback of an integral class, this represents a class in H3(M,Z), so the
result follows. □

Thus we see that in the cases where we obtain R/Z-valued invariants,
existence of a flat extension implies vanishing of the invariant. In the case
of R-valued invariants, the consequence of flat extensions depends on the
topology of G̃. In case that H3(G̃,R) = {0} (or more generally [µ

G̃
] = 0),

we again get vanishing of the invariant. However, if 0 ̸= [µ
G̃
] ∈ H3(G̃,Z),

then we can only conclude that the invariant is an integer.

6.1. Geometric interpretation of Riemannian flat extensions

The basic example of a flat extension comes from the original article of
Chern–Simons. Suppose that (M, g) is an oriented Riemannian 3-manifold,
so G = H = SO(3). Then we choose G̃ = SO(4), which contains G as a
subgroup in the obvious way, i.e. as matrices of the form(

1 0
0 A

)
.

One immediately verifies that for the Lie algebras this implies that (g̃, g) is
a symmetric pair.

Now G̃ acts transitively on the space of oriented 3-planes in the inner
product space R4 and for this action, G is the stabilizer of the oriented
subspace R3 ⊂ R4. Hence we can identify the symmetric space SO(4)/SO(3)
as the space of all oriented 3-planes in R4. An oriented 3-plane in R4 is of
course uniquely determined by its positive unit normal, which leads to the
more common identification SO(4)/SO(3) ∼= S3.

As the SO(4)-invariant inner product on g̃, we use 1
16π2 times the trace

form. Theorem A.1 in Section A below shows that this is a minimal choice for
which we get [CS(µSO(4))] ∈ H3(SO(4),Z). By Theorem 5.3, the restriction
of this form to so(3) has the property that [CS(µSO(3))] ∈ H3(SO(3),Z).
More precisely, Theorem A.1 actually shows that

∫
SO(3)CS(µSO(3)) = 1, so

this is an optimal choice of normalization for obtaining an invariant with
values in R/Z.

Proposition 6.4. Suppose that (M, g) is a closed oriented Riemannian 3-
manifold and let θ ∈ Ω1(SOM, g) be the Levi-Civita connection form of g on
the oriented orthonormal frame bundle of M . Then an isometric immersion
i : M → R4 gives rise to a flat extension of θ of type (SO(4), SO(3)) and
hence the Chern–Simons invariant of (M, g) vanishes.

Proof. Let f be the Gauss map of i, which sends a point x ∈M to the 3-plane
Txi(TxM) with the orientation induced from the one of TxM (or alternatively
to the positive unit normal), viewed as a smooth map M → SO(4)/SO(3).
Since we start from an isometric immersion the map Txi is orthogonal for
gx and the restriction of the standard inner product to Txi(TxM). A point
in SOM over x ∈ M can be viewed as an orientation preserving linear
isomorphism u : R3 → TxM which is orthogonal with respect to the standard
inner product on R3 and gx. Hence Txi◦u is an orthogonal isomorphism from
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R3 to Txi(TxM) and using the positively oriented unit normal we can extend
this to an orientation preserving orthogonal isomorphism from R4 to itself,
i.e. to an element of SO(4). This defines a smooth map F : SOM → SO(4)
which lifts the Gauss map f and by construction is SO(3)-equivariant and
hence a homomorphism of principal bundles. Hence F ∗µ⊤SO(4) ∈ Ω1(SOM, g)
is a principal connection form on SOM , so we only have to prove that it
coincides with the Levi-Civita connection.

The orthonormal frame bundle of R4 is the trivial bundle R4 × SO(4)
and viewed as a 1-form on this bundle µSO(4) is the Levi-Civita connection
form for the flat metric on R4. Now consider a vector field ξ̃ on R4 and
the corresponding SO(4)-equivariant function R4 × SO(4) → R4. Splitting
this into a R3-component and an R-component and composing with F , we
obtain maps SOM → R3 and SOM → R, which are SO(3)-equivariant and
SO(3)-invariant, respectively. So the first component defines a vector field
ξ on M while the second descends to a smooth function a : M → R. By
construction, these have the property that ξ̃(i(x)) = Txi(ξ(x)) + a(x)n(x),
where n(x) is the positively oriented unit normal to Txi(TxM). But this
implies that the covariant derivative induced by F ∗µ⊤SO(4) coincides with the
tangential part of the covariant derivative in R4 and since i is isometric, this
coincides with the Levi-Civita connection of M . □

Remark 6.5. Consider a flat extension F : SOM → SO(4) as in Theorem 6.4.
Since F maps the fundamental vector field generated by X ∈ g = so(3)
to left-invariant vector field LX on SO(4), it follows that F ∗(µ⊥SO(4)) is not
only SO(3)-equivariant but also horizontal. Since g⊥ ∼= R3 ∼= R3∗ as a
representation of SO(3), we can identify F ∗(µ⊥SO(4)) as a 1-form on M with
values in TM ∼= T ∗M . From the description in the proof of Theorem 6.4, one
readily concludes that in the first interpretation, this produces the classical
shape operator, which maps ξ ∈ X(M) to the tangential component of the
derivative of the unit normal in direction ξ. In the second interpretation,
one obtains the second fundamental form, which maps ξ, η ∈ X(M) to the
normal component of the derivative of η in direction ξ. The fact that the
shape operator and the second fundamental form are essentially the same
object in this case is a consequence of the unit normal being orthogonal to
the tangent spaces.

6.2. Lorentzian flat extensions

The line of argument of Section 6.1 carries over directly to the Lorentzian
case, but things become more interesting here. On the one hand, so far no
normalization of the invariant bilinear form was needed in this case, but this
becomes important now. On the other hand, we have now two possibilities
for isometric immersions, namely either into R3,1 (with positive normal)
or into R2,2 (with negative normal). As we shall see, these have different
consequences for the invariant. The corresponding choices for G̃ are SO0(3, 1)
and SO0(2, 2) respectively, with the obvious inclusion of G = SO0(2, 1)
in both cases. In both cases, one obtains a symmetric pair (g̃, g). The
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homogeneous space SO0(3, 1)/SO0(2, 1) can be interpreted as the space of
all space- and time-oriented Lorentzian linear subspaces V ⊂ R3,1. For any
such subspace there is a unique oriented (positive) unit normal. Similarly,
SO0(2, 2)/SO0(2, 1) is the space of all space- and time-oriented Lorentzian
linear subspaces V ⊂ R2,2 and such a space determines a unique (negative)
oriented unit normal.

The difference between the two cases comes from the structure of H3(G̃,R).
For SO0(3, 1), the maximal compact subgroup is isomorphic to SO(3), so the
third cohomology is non-trivial here. For SO0(2, 2), the maximal compact
subgroup is two dimensional and hence the third cohomology vanishes identic-
ally. Thus the appropriate normalization for our purposes is to start with an
invariant non-degenerate symmetric bilinear form on so(3, 1) normalized in
such a way that [CS(µSO0(3,1))] ∈ H3(SO0(3, 1),Z) for the resulting normal-
ization. As we have seen in Section 6.1 above, 1

16π2 times the trace form leads
to an optimal normalization for SO(3). By the Iwasawa decomposition, SO(3)
is a deformation retract of SO0(3, 1), so we can use the same normalization
here. Now the proof of Theorem 6.4 generalizes in a straightforward way to
show

Proposition 6.6. Suppose that (M, g) is a closed space – and time oriented
Lorentzian 3-manifold which admits a global orthonormal frame and let
θ ∈ Ω1(SO0M, g) be the Levi-Civita connection form of g on the space – and
time oriented orthonormal frame bundle of M .

(1) An isometric immersion i : M → R2,2 gives rise to a flat extension
of θ of type (SO0(2, 2), SO0(2, 1)) and hence the (R-valued) Chern–Simons
invariant of (M, g) vanishes.

(2) An isometric immersion i : M → R3,1 gives rise to a flat extension
of θ of type (SO0(3, 1), SO0(2, 1)) and hence the (R-valued) Chern–Simons
invariant of (M, g) has to be an integer.

The interpretation of F ∗(µ⊥
G̃
) for a flat extension F is completely parallel

to the Riemannian case discussed in Theorem 6.5.

6.3. Equiaffine immersions and flat extensions

We next discuss the case of volume preserving affine connections on 3-
manifolds, so G = H = SL(3,R). Similarly to the pseudo-Riemannian case,
we consider G̃ := SL(4,R) and the obvious inclusion of SL(3,R) here and
the flat extension will be obtained from a Gauss map. The details will
be quite a bit more involved, though, in particular G̃/G has dimension 7
and is not a symmetric space. Indeed, on the level of Lie algebras, the
inclusion g := sl(3,R) ↪→ sl(4,R) =: g̃ corresponds to a block decomposition
of elements of g̃ of the form (

a Z
X A− a

3I

)
with A ∈ g, a ∈ R, X ∈ R3 and Z ∈ R3∗. Hence we conclude that
g⊥ = R⊕R3⊕R3∗ as a representation of g, and the component g⊥×g⊥ → g⊥
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of the Lie bracket of g̃ is (in obvious notation) given by

(6.2) [(a1, X1, Z1), (a2, X2, Z2)]

= (Z1X2 − Z2X1,
4
3(−a1X2 + a2X1),

4
3(a1Z2 − a2Z1)).

Let us first give an appropriate interpretation of the homogeneous space
G̃/G. Consider the set of all pairs (V, ℓ), where V ⊂ R4 is an oriented linear
subspaces of dimension 3 endowed with a volume element and ℓ ⊂ R4 is
a 1-dimensional linear subspace complementary to V . Then SL(4,R) acts
on this space by A · (V, ℓ) := (A(V ), A(ℓ)). Starting from the natural base
point given by V = R3 with the orientation and volume element induced by
the standard basis {e1, e2, e3} and, ℓ = R · e4, linear algebra shows that the
action of SL(4,R) is transitive and that the stabilizer of the base point is
SL(3,R). Hence we may identify G̃/G with the space of all such pairs.

Now let us assume that we have given an oriented 3-manifold M . Suppose
that i :M → R4 is an immersion and that in addition we choose a transversal,
i.e. for each x ∈ M , we choose a line ℓ(x) ⊂ R4, which is complementary
to the 3-dimensional subspace Txi(TxM) ⊂ R4 = Ti(x)R

4. We assume this
choice to be smooth in the obvious sense, i.e. locally around each point the
lines can be spanned by a smooth vector field along i. This shows that i and
ℓ determine a smooth Gauss map f :M → G̃/G, which sends each x ∈M
to the pair (Txi(TxM), ℓ(x)).

Via i and ℓ, any tangent vector at a point i(x) decomposes uniquely into
a component in ℓ(x) and a component in Txi(TxM). Via this decomposition,
the flat connection on R4 induces a linear connection ∇⊤ on TM as well as
a connection ∇⊥ on the trivial line bundle M ×R. It is easy to understand
when ∇⊤ preserves a volume form.

Lemma 6.7. Given an immersion i :M → R4 and a choice ℓ of transversal,
the induced connection ∇⊤ preserves a volume form if and only if there is a
global non-zero section of M ×R which is parallel for ∇⊥.

Proof. The standard volume form on R4 defines an isomorphism Λ4R4 →
R. The decomposition R4 = Txi(TxM) ⊕ ℓ(x) induces an isomorphism
Λ4R4 ∼= Λ3(Txi(TxM)) ⊗ ℓ(x) for each x ∈ M . Over M , this gives rise to
a trivialization of the bundle Λ3TM ⊗ L, where L = M ×R and hence to
an isomorphism Λ3T ∗M ∼= L. Since the trivialization of Λ4R4 is compatible
with the flat connection on R4 this isomorphism pulls back the connection
∇⊥ on L to the connection on Λ3T ∗M induced by ∇⊤. By definition, ∇⊤

preserves a volume form if and only if the latter connection admits a non-zero
global parallel section. □

Now we introduce the classical concept of an equiaffine immersion, as in
[10, Defintion 1.4].

Definition 6.8. Let M be a smooth manifold of dimension 3 endowed with
a fixed volume form ν ∈ Ω3(M) and a torsion-free linear connection ∇ on
TM which preserves ν. An equiaffine immersion of M into R4 is given by
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a smooth immersion i :M → R4 and a choice ℓ :M → RP 3 of transversal
such that the induced connection ∇⊤ on TM coincides with ∇.

As the invariant bilinear form on g̃ = sl(4,R), we again use 1
16π2 times the

trace form. In view of Theorem 5.4 the considerations in Section 6.1 show that
this leads to [CS(µSL(4,R))] ∈ H3(µSL(4,R),Z) as well as

∫
SL(3,R)CS(µSL(3,R)) =

1.

Theorem 6.9. Let M be a closed oriented 3-manifold endowed with a
volume form ν ∈ Ω3(M) and a torsion-free linear connection ∇ on TM
which preserves ν. Let SLM be the volume preserving frame bundle of M
with respect to ν and let θ ∈ Ω1(SLM, sl(3,R)) be the connection form of
∇.

Then an equiaffine immersion of M into R4 defines a flat extension of θ of
type (SL(4,R), SL(3,R)) and hence implies vanishing of the Chern–Simons
invariant associated to ∇.

Proof. We follow the same route as in the Riemannian case with appropriate
modifications. A point u ∈ SLM over x ∈M is a linear isomorphism R3 →
TxM which maps the standard basis {e2, e3, e4} to a positively oriented basis
of unit volume. Composing this with Txi : TxM → R4, there exists a unique
vector 0 ̸= t(x)ℓ(x) ⊂ R4 which completes Txi(u(e1)), Txi(u(e2)), Txi(u(e3))
to a positively oriented basis of R4 of unit volume. Choosing F (u)(e1) = t(x)
extends u to a linear isomorphism F (u) : R4 → R4 which is orientation-
preserving and volume-preserving and hence an element of G̃ = SL(4,R).
Clearly, this defines a smooth map F : SLM → G̃ which is G-equivariant,
where G = SL(3,R). Thus it defines a morphism of principal fibre bundles
to G→ G/G̃.

As we have noted above, the flat connection on R4 induces linear connec-
tions ∇⊤ on TM and ∇⊥ on M × R. Since we started with an equiaffine
immersion, ∇⊤ = ∇ and since this is volume preserving ∇⊥ is flat by
Lemma 6.7. Now as in the proof of Theorem 6.4, the first property implies
that θ = F ∗(µ⊤

G̃
) ∈ Ω1(SLM, g). The second property implies that the

1-form F ∗(µ⊥
G̃
) has vanishing R-component. From formula (6.2) we conclude

that this implies that the g⊥-component of [F ∗(µ⊥
G̃
), F ∗(µ⊥

G̃
)] has values

in the R-component of g⊥ only. But on the other hand, we can take the
g⊥-component of the Maurer–Cartan equation for µ

G̃
and pull back by F to

conclude that the latter component can be written as

−2dF ∗(µ⊥
G̃
)− 2[F ∗(µ⊤

G̃
), F ∗(µ⊥

G̃
)],

which by construction has vanishing R-component. Thus we have found
the claimed flat extension and the vanishing of the Chern–Simons invariant
follows from Theorem 6.2 and the comparison of normalization conditions
on ⟨ · , · ⟩ above. □

Remark 6.10. (1) As before, the two non-vanishing components of F ∗(µ⊥
G̃
)

are horizontal, G-equivariant 1-forms with values in R3 respectively in R3∗.
From the description of the induced connection in the proof of Theorem 6.9
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we see that these are again the shape operator in Ω1(M,TM) and the second
fundamental form in Ω1(M,T ∗M) of the equiaffine immersion. In contrast
to the (pseudo-)Riemannian case, these two objects are independent now,
their only relation is that wedge-contraction of the two forms (which is an
element of Ω2(M)) vanishes, which follows immediately from the volume
compatibility of the immersion.

(2) If (M, g) is an oriented Riemannian 3-manifold and i :M → R4 is an
isometric immersion, then using the normal as a transversal makes i into an
equiaffine immersion. Since both results use the same multiple of the trace
form, this shows that Theorem 6.4 actually is a special case of Theorem 6.9.

Appendix A. Normalization

We can apply the construction of the Riemannian Gauss map from Section 6.1
(in general dimensions) to the inclusion i : Sn → Rn+1 of the standard sphere.
Lifting this to the oriented orthonormal frame bundle SOSn one obtains
an isomorphism F : SOSn → SO(n+ 1) covering the diffeomorphism Sn →
SO(n+ 1)/SO(n) discussed in Section 6.1. This is most easily interpreted as
taking the map p : SO(n+ 1) → Sn defined by mapping A ∈ SO(n+ 1) to
A(e1), i.e. the first column vector of A. This is the projection of the oriented
orthonormal frame bundle, since the remaining columns of A are a positively
oriented orthonormal basis for A(e1)⊥ = TA(e1)S

n. The considerations in
Section 6.1 also show that for the Maurer-Cartan form µn+1 of SO(n+ 1),
µ⊤n+1 is the connection form of the Levi-Civita connection of the round metric
on Sn, while µ⊥n+1 represents the second fundamental form.

Proposition A.1. Let µ4 denote the Maurer–Cartan form of SO(4). Then

(A.1) ζ := 1
16π2 tr

(
µ4 ∧ dµ4 + 2

3µ4 ∧ µ4 ∧ µ4
)

represents an element of H3(SO(4),Z). Moreover, for the inclusion ι :
SO(3) → SO(4), we have

∫
SO(3) ι

∗ζ = 1.

Proof. We will show that the 3-form defined in (A.1) evaluated on a set
of generators of H3(SO(4),Z) is 1. The principal right SO(3)-bundle π :
SO(4) → S3 is trivial so that SO(4) is diffeomorphic to S3×SO(3). Standard
results about the homology of S3 and SO(3) ≃ RP

3 together with Künneth’s
theorem imply that

H3(SO(4),Z) ≃ H3(S3 × SO(3),Z) ≃ Z⊕Z.

Moreover, H3(SO(4),Z) is generated by the pushforward of the fundamental
class of SO(3) under the inclusion ι : SO(3) → SO(4) and the pushforward
of the fundamental class of S3 under a section σ : S3 → SO(4). It is thus
sufficient to show that we have

(A.2)
∫
SO(3)

ι∗ζ = 1 and
∫
S3
σ∗ζ = 1

with respect to suitable orientations of S3 and SO(3). We first treat the
left integral. We know from the proof of Theorem 5.3 that ι∗µ⊤4 = µ3, the
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Maurer–Cartan form of SO(3). Furthermore, (g̃, g) is a symmetric pair so
that Theorem 5.1 implies∫

SO(3)
ι∗ζ = 1

16π2
∫
SO(3)

tr
(
µ3 ∧ dµ3 + 2

3µ3 ∧ µ3 ∧ µ3
)
.

Writing

µ3 =

 0 −ω1 −ω2
ω1 0 −ψ
ω2 ψ 0


for left-invariant 1-forms ω1, ω2, ψ ∈ Ω1(SO(3)), an elementary computation
gives

tr
(
µ3 ∧ dµ3 + 2

3µ3 ∧ µ3 ∧ µ3
)
= 2ω1 ∧ ω2 ∧ ψ.

Under the identification SO(3) ∼= SOS2 observed above, the integral∫
SO(3)

ω1 ∧ ω2 ∧ ψ

equals the product of the length of the typical fibre of SO(2) → SOS2 → S2

with the surface area of S2. The former is given by 2π and the latter by 4π.
In summary we thus have∫

SO(3)
ι∗ζ = 2

16π2
∫
SO(3)

ω1 ∧ ω2 ∧ ψ = 1
8π2

∫
SO(3)

ω1 ∧ ω2 ∧ ψ = 1.

In order to compute the right integral of (A.2) we consider the smooth
π-section σ : S3 → SO(4) given by the rule

x =


x1
x2
x3
x4

 7→


x1 −x2 −x3 −x4
x2 x1 x4 −x3
x3 −x4 x1 x2
x4 x3 −x2 x1


for all x ∈ S3. A tedious but straightforward calculation shows that

σ∗µ4 =


0 κ −ξ −ρ
−κ 0 ρ −ξ
ξ −ρ 0 −κ
ρ ξ κ 0


where ξ, ρ, κ ∈ Ω1(S3) are given by

(A.3)
ξ = −x3dx1 + x4dx2 + x1dx3 − x2dx4,
ρ = −x4dx1 − x3dx2 + x2dx3 + x1dx4,
κ = x2dx1 − x1dx2 + x4dx3 − x3dx4.

From this one computes

σ∗ζ = 8
16π2 ξ ∧ ρ ∧ κ = 1

2π2 ξ ∧ ρ ∧ κ

and

(A.4) ξ ∧ ρ ∧ κ = x4dx1 ∧ dx2 ∧ dx3 − x3dx1 ∧ dx2 ∧ dx4
+ x2dx1 ∧ dx3 ∧ dx4 − x1dx2 ∧ dx3 ∧ dx4,
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where we use that |x|2 = 1. The right hand side of (A.4) equals the restriction
to S3 of the interior product of the inwards pointing radial vector field
−
∑

i xi∂i and the standard volume form dx1 ∧ dx2 ∧ dx3 ∧ dx4 of R4. This
is the standard volume form of S3 with respect to the inwards orientation.
We thus have

(A.5)
∫
S3
ξ ∧ ρ ∧ κ = 2π2

and the claim follows. □

Appendix B. Examples

B.1. Lorentzian metrics

We compute the Chern–Simons invariant for a 1-parameter family of left-
invariant Lorentzian metrics on SU(2). Under the identification SU(2) ≃
S3 ⊂ R4 given by

(
x1 + ix2 −x3 + ix4
x3 + ix4 x1 − ix2

)
7→


x1
x2
x3
x4

 = x

for all x ∈ R4 with |x| = 1, the Maurer–Cartan form of SU(2) can be written
as

µ := µSU(2) =
(

−iκ −ξ + iρ
ξ + iρ iκ

)
,

where ξ, ρ, κ are given by (A.3). The Maurer–Cartan equation dµ+ 1
2 [µ, µ] = 0

is equivalent to the structure equations

dξ = −2ρ ∧ κ, dρ = −2κ ∧ ξ, dκ = −2ξ ∧ ρ.

For λ ∈ R\{0} consider the Lorentzian metric gλ = ξ2+ρ2−λ2κ2. This can
be viewed as a natural Lorentzian analog of a Berger sphere or of a pseudo-
Hermitian structure on the CR-manifold SU(2) induced by a left-invariant
contact form. The Levi-Civita connection form θλ of gλ – when pulled
back with respect to the section σλ : SU(2) → SO0SU(2) corresponding to
(ξ, ρ, λκ) – becomes

σ∗λθλ =

 0 −(λ2 + 2)κ −λρ
(λ2 + 2)κ 0 λξ

−λρ λξ 0

 .
Using the normalisation of Section A, we compute for the Chern–Simons
3-form

σ∗λCS(θλ) =
( 8
16π2

)
(λ4 + 2λ2 + 2) ξ ∧ ρ ∧ κ.

Consequently, (A.5) gives∫
SU(2)

σ∗λCS(θλ) = λ4 + 2λ2 + 2 > 0,
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so that Theorem 6.6 implies that there is no isometric immersion of gλ into
R2,2 for all λ ∈ R \ {0} and that there is no isometric immersion of gλ into
R3,1 for all λ ∈ R \ {0} such that λ4 + 2λ2 + 2 /∈ Z.

B.2. Equiaffine immersion

Real projective 3-spaceRP3 equipped with its standard metric gSt is isometric
to SO(3) equipped with the metric g = 1

4
(
(ω1)2 + (ω2)2 + ψ2). The Levi-

Civita connection form θ of g – when pulled back with respect to the section
σ : SO(3) → SOSO(3) corresponding to 1

2(ω1, ω2, ψ) – becomes

σ∗θ = 1
2

 0 −ψ ω2
ψ 0 −ω1

−ω2 ω1 0

 .
Using the normalisation of Section A, we compute for the Chern–Simons
3-form σ∗CS(θ) = 1

16π2 ω1 ∧ ω2 ∧ ψ so that

cσ =
∫
SO(3)

σ∗CS(θ) = 1
2 /∈ Z.

Theorem 6.4 implies that there is no isometric immersion of (RP3, gSt) into
E4, as previously observed by Chern–Simons [4]. We can however say a bit
more. Let ∇ denote the Levi-Civita connection of gSt on TRP3 and ν the
∇-parallel volume form on RP3 corresponding to ω1 ∧ ω2 ∧ ψ. Since the
normalisation of ⟨ · , · ⟩ for SL(3,R) is the same as for SO(3), our Theorem 6.9
implies:

Proposition B.1. There exists no global equiaffine immersion of (RP3,∇, ν)
into R4.
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