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Flat extensions of principal connections and the
Chern–Simons 3-form

ANDREAS ČAP, KEEGAN J. FLOOD, AND THOMAS METTLER

ABSTRACT. We introduce the notion of a flat extension of a connection � on
a principal bundle. Roughly speaking, � admits a flat extension if it arises as
the pull-back of a component of a Maurer–Cartan form. For trivial bundles over
closed oriented 3-manifolds, we relate the existence of certain flat extensions to
the vanishing of the Chern–Simons invariant associated with � . As an application,
we recover the obstruction of Chern–Simons for the existence of a conformal
immersion of a Riemannian 3-manifold into Euclidean 4-space. In addition, we
obtain corresponding statements for a Lorentzian 3-manifold, as well as a global
obstruction for the existence of an equiaffine immersion into R4 of a 3-manifold
that is equipped with a torsion-free connection preserving a volume form.

1. Introduction

Chern–Simons forms and invariants derived from them are prominent examples of
secondary invariants of certain types of connections [4]. Apart from their interest
in geometry and topology, Chern–Simons forms also play a fundamental role in
theoretical physics. In contrast to standard characteristic classes and characteristic
numbers which are defined on even-dimensional manifolds, Chern–Simons invari-
ants are defined for manifolds of odd dimension. Among Chern–Simons forms,
much interest is devoted to the Chern–Simons 3-form which is defined for a 1-form
� with values in the Lie algebra g of a Lie group G via

CS.�/ D h�; d�i C 1
3
h�; Œ�; ��i;

where h � ; � i denotes a symmetric bilinear form on g which is invariant under the
adjoint action Ad of G and Œ � ; � � denotes the Lie bracket of g. In the case where
� is a principal connection on a trivial principal G-bundle � W P ! M over a
closed oriented 3-manifold M , the Chern–Simons 3-form can be used to assign a
real number

c� D

Z
M

�� CS.�/

to every global smooth section � W M ! P . Depending on the topology of G, it
may happen that c� is independent of � or that one can choose h � ; � i so that c� is
independent of � up to addition of an integer. In the former case, one obtains a real
valued Chern–Simons invariant associated to � , in the latter – more frequent – case,
an invariant with values in R=Z.

The prototypical example of an R=Z-valued Chern–Simons invariant arises
from considering the SO.3/-bundle � W SOM ! M of orientation compatible
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2 A. ČAP, K. J. FLOOD, AND T. METTLER

orthonormal frames of a closed oriented Riemannian 3-manifold .M; g/, equipped
with its Levi-Civita connection form � and where h � ; � i is a suitable scalar multiple
of the Killing form of so.3/. In [4], Chern–Simons show that the Riemannian
3-manifold .M; g/ can be isometrically immersed into Euclidean 4-space E4 only
if c� is an integer. Moreover, they observe that the associated R=Z-valued invariant
is actually conformally invariant, so that the integrality of c� is an obstruction to
the existence of a conformal immersion into E4. The Chern–Simons invariant of a
Riemannian 3-manifold has since played an important role in hyperbolic geometry
due to its relation to the �-invariant [11]. See also [9] and [8] for more recent related
work.

In 3-dimensional CR-geometry, the Chern–Simons 3-form gives rise to an R-
valued Chern–Simons invariant as discovered by Burns–Epstein [1]. To include
such examples, we discuss Chern–Simons invariants in the more general setting of
a g-connection on an H -principal bundle, where H is a subgroup of G.

For differential geometric structures not related to Riemannian – or CR-geometry,
the meaning of the Chern–Simons invariant seems to have received less attention in
the literature. In this article, we relate vanishing statements for the Chern–Simons
invariant to the notion of a flat extension of a principal connection. To this end,
suppose that G is a Lie subgroup of a Lie group QG which is equipped with an Ad- QG
invariant bilinear form h � ; � i on its Lie algebra Qg. We assume that the restriction
of h � ; � i to g � g is non-degenerate so that Qg D g ˚ g?, where g? denotes the
orthogonal complement of g with respect to h � ; � i. Writing a Qg-valued 1-form  as
 D  > C ? with  > taking values in g and  ? taking values in g?, we define:

Definition 1.1. Let P !M be a principal G-bundle and � 2 �1.P; g/ a connec-
tion. A flat extension of � of type . QG;G/ is a bundle homomorphism F W P ! QG

into the total space of the principal G-bundle QG ! QG=G so that

� D F �.�>
QG
/;

where � QG denotes the Maurer–Cartan form of QG.

Let CS.� QG/ denote the Chern–Simons form of the Maurer–Cartan form � QG
of QG, computed with respect to h � ; � i. Moreover, we compute the Chern–Simons
3-form of a g-valued 1-form with respect to the bilinear form on g obtained by
restricting the bilinear form h � ; � i on Qg to g � g. In the case where the pair .Qg; g/ of
Lie algebras is a symmetric pair (see Section 5 for details), we obtain:

Corollary 1.2. Suppose P ! M is a trivial principal G-bundle over a closed
oriented 3-manifold M and � 2 �1.P; g/ a connection admitting a flat exten-
sion of type . QG;G/ with .Qg; g/ being a symmetric pair. If CS.� QG/ is exact, thenR
M �� CS.�/ D 0 and if CS.� QG/ represents an element ofH 3. QG;Z/, then

R
M �� CS.�/ 2

Z for every global smooth section � WM ! P .

Theorem 1.2 follows from of our slightly more general main Theorem 6.2.
The proof of this theorem strongly depends on a certain algebraic identity – see
Theorem 5.1 – which expresses CS. / as the sum of CS. >/ and a term involving
the curvature of  . In particular, if  satisfies the Maurer–Cartan equation 0 D
d C 1

2
Œ ;  �, then CS. / D CS. >/, so that the Chern–Simons 3-form only

detects the g-valued part of  .
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The obstruction of Chern–Simons is obtained from our main result by observing
that the Gauss map of an isometric immersion .M; g/! E4 is covered by a map
F W SOM ! SO.4/ which is a flat extension of the Levi-Civita connection � of
type .SO.4/; SO.3//. Since .so.4/; so.3// is a symmetric pair, it remains to argue
that for a suitable choice of h � ; � i on so.4/, the 3-form CS.�SO.4// represents an
element of H 3.SO.4/;Z/. This requires a good understanding of the third integral
homology group of SO.4/. The relevant calculations are carried out in Section A.

As a further application – see Theorem 6.6 – we discuss the case of space – and
time-oriented Lorentzian 3-manifolds that admit a global orthonormal frame. Here
the Chern–Simons invariant is R-valued and for appropriate choices ofeg a flat
extension is equivalent to an isometric immersion into the Lorentzian vector space
R3;1 and the split-signature vector space R2;2, respectively. Existence of such an
immersion then leads to integrality, respectively, vanishing of the Chern–Simons
invariant.

The group SO.3/ � SL.3;R/ is a strong deformation retract by Iwasawa decom-
position. As a consequence of this, one also obtains an R=Z-valued Chern–Simons
invariant for an oriented 3-manifold M equipped with a torsion-free connection r
on its tangent bundle that preserves some volume form �. In Theorem 6.9 we show
that the vanishing of this invariant obstructs the existence of an equiaffine immersion
of .M;r; �/ into R4, where R4 is equipped with its standard flat connection and
volume form.

In Section B we discuss two examples. In particular, applying Theorem 6.9, we
show that for RP3 equipped with the Levi-Civita connection r and volume form �

arising from its standard metric, there exists no global equiaffine immersion into
R4.
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2. Basics on the Chern–Simons 3-form

We start by collecting some basic facts about Chern–Simons 3-forms. We refer to [6]
for additional context. We consider a Lie algebra g and study g-valued differential
forms. In addition, we assume that g is endowed with a non-degenerate g-invariant,
symmetric bilinear form, which we denote by h � ; � i. Recall that for a simple Lie
algebra g any such form has to be a multiple of the Killing form, so there is a unique
such form up to scale in this case. The normalization of the form will be important
in what follows however. For a manifold N , we will denote by �k.N; g/ the space
of g-valued k-forms on N . The main case we are interested in is that N is the total
space of a principal fibre bundle and we aim at invariants defined on the base M of
that bundle. For any N , we have two basic operations on g-valued forms, as

h � ; � i W �p.N; g/ ��q.N; g/! �pCq.N /

Œ ; � W �p.N; g/ ��q.N; g/! �pCq.N; g/:
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These are characterized by the fact that for ˛ 2 �p.N /, ˇ 2 �q.N / and X; Y 2 g,
we have

(2.1) h˛˝X;ˇ˝ Y i WD hX; Y i˛ ^ ˇ; Œ˛˝X;ˇ˝ Y � WD ˛ ^ ˇ˝ ŒX; Y �:

The definitions immediately imply that for ! 2 �p.N; g/ and � 2 �q.N; g/ one
obtains

h!; �i D .�1/pqh�; !i; Œ!; �� D .�1/pqC1Œ�; !�;

as well as

dh!; �i D hd!; �i C .�1/ph!; d�i;(2.2)

dŒ!; �� D Œd!; ��C .�1/pŒ!; d��:(2.3)

The fact that h � ; � i is g-invariant respectively the Jacobi identity for Œ ; � implies
that for an additional form � 2 �r.N; g/, we obtain

h!; Œ�; ��i D hŒ!; ��; �i;(2.4)

Œ!; Œ�; ��� D ŒŒ!; ��; ��C .�1/pr Œ�; Œ!; ���:(2.5)

Definition 2.1. For � 2 �1.N; g/, the Chern–Simons 3-form CS.�/ 2 �3.N / is
defined as

CS.�/ WD h�; d�i C 1
3
h�; Œ�; ��i:

Notice that when we write ‚ D d� C 1
2
Œ�; �� we have

CS.�/ D h�;‚i � 1
6
h�; Œ�; ��i:

The following well-known property is one of the main motivations for the definition
of the Chern–Simons 3-form:

(2.6) d CS.�/ D h‚;‚i:

The construction is natural in the sense that if M is a smooth manifold and � W
M ! N a smooth map, then

(2.7) �� CS.�/ D CS.���/:

Note that (2.6) in particular implies that if � satisfies the Maurer–Cartan equation
d� C 1

2
Œ�; �� D 0, then d CS.�/ D 0 and hence CS.�/ determines a well-defined

cohomology class in H 3.N;R/.

3. Chern–Simons invariants

The standard setting for Chern–Simons invariants associated to .g; h ; i/ uses prin-
cipal connection forms on principal fibre bundles with structure group a Lie group
G with Lie algebra g. For the construction of Chern–Simons invariants it is ad-
vantageous to use a more general setting, namely to start from principal bundles
whose structure group H is a Lie subgroup of a Lie group G with Lie algebra g.
Then the Lie algebra h of H naturally is a subalgebra of g and we can then restrict
the adjoint representation of G to H . This provides an extension of the adjoint
representation of H to a representation on g that we also denote by Ad if there is no
risk of confusion.

In this situation, there is a natural notion of g-connections on principal fibre
bundles with structure group H . To formulate this, assume that � W P ! M is a
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principal H -bundle. Let R W P �H ! P denote the principal right action and
define for all h 2 H the map Rh D R.�; h/ W P ! P and for all u 2 P the map
�u D R.u; �/ W H ! P .

Definition 3.1. LetG be a Lie group with Lie algebra g andH � G a Lie subgroup.
A g-valued 1-form � 2 �1.N; g/ on some principal H -bundle � W P ! M is
called a g-connection if for all u 2 G and all h 2 H we have

(3.1) ��u� D �H and R�h� D Ad.h�1/ ı �;

where �H denotes the Maurer–Cartan form of H .

Remark 3.2.

(i) Notice that if H D G, then the definition of g-connection agrees with the
standard notion of a principal connection.

(ii) The first condition in the definition is equivalent to the fact that � reproduces
the generators of fundamental vector fields, i.e. that �.�A/ D A for any
A 2 h. Here �A.u/ D d

dt jtD0R.u; exp.tA//.
(iii) Let � W P !M be a principalH -bundle and � 2 �1.P; g/ a g-connection.

Then we can extend the structure group to G by forming OP WD P �H G !
M and there is a canonical inclusion i W P ! OP . One easily shows that
there is a unique principal connection O� 2 �1. OP ; g/ such that i� O� D � .

(iv) Conversely, suppose O� W OP ! M is a principal G-bundle and O� 2
�1. OP ; g/ is a principal connection. If � W P ! M is a reduction of
O� W OP ! M to the structure group H , then restricting O� to P yields a
g-connection on � W P !M .

(v) An important source of g-connections withH ¤ G is provided by canonical
Cartan connections associated to geometric structures. We will discuss
examples of this in Section 4 and study Chern–Simons invariants in the
context of Cartan connections in more detail in a forthcoming article.

Fixing .g; h � ; � i/ and H � G, we can consider the Maurer–Cartan form �H 2

�1.H; h/ and we can of course also view �H as an element of �1.H; g/. Hence
we can form the associated Chern–Simons form CS.�H / 2 �3.H;R/, which
we will also denote by CSg.�H / to emphasize the role of g. Since �H satisfies
the Maurer–Cartan equation, this form is closed by (2.6) and hence determines a
cohomology class ŒCSg.�H /� 2 H

3.H;R/.
Explicitly, CS.�H / is the left-invariant 3-form on H , which is induced by the

trilinear map

h3 ! R; .X; Y;Z/ 7! �
1

6
hX; ŒY;Z�i

which is complete alternating by invariance of h � ; � i. If h is simple, then the
restriction of h � ; � i to h has to be a multiple of the Killing form, and hence CSg.�H /

is a multiple of the so-called Cartan 3-form on H . It is well-known that for a
compact simple Lie group H , the cohomology class of the Cartan 3-forms spans
H 3.H;R/ Š R. We now have:

Proposition 3.3. Let M be a closed oriented 3-manifold, � W P ! M be a
principal H -bundle that admits a global smooth section and let � 2 �1.N; g/ be a
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g-connection. For a smooth section � WM ! P consider

c� WD

Z
M

�� CS.�/ 2 R:

(i) If CSg.�H / is exact, then c� is independent of � and hence defines an
invariant of the form � .

(ii) Suppose that h � ; � i is chosen in such a way that CSg.�H / represents an
element ofH 3.H;Z/. Then c� CZ 2 R=Z is independent of � , and hence
we obtain an invariant of � with values in R=Z.

The proof of Theorem 3.3 relies on the identity (3.2) below which is standard
in the case of principal connections (see for instance [6]). The case of g-valued
connection forms is quite similar. For the convenience of the reader we include a
proof in our more general setting:

Lemma 3.4. Fix .g; h � ; � i/ and H � G as above. Then for a g-connection � 2
�1.P; g/ on a principal H -bundle � W P !M we have

(3.2) R� CS.�/ D CS.�/C CS.�H /C dhAd�1 ı �; �H i;

where Ad�1 WD Ad ıIH denotes the composition of the inversion IH W H ! H ,
h 7! h�1 and the adjoint representation of H , thought of as acting on g.

Proof. Throughout this proof, we do not explicitly indicate pullbacks of differential
forms to a product along the projections. In this language, (3.1) is equivalent to
R�� D �H C Ad�1 ı � . Putting ˛ WD Ad�1 ı � , we first claim that

(3.3) d˛ D Ad�1 ı d� � Œ�H ; ˛�:

This can be proved by a direct computation. Alternatively, writing‚ D d�C 1
2
Œ�; ��,

the equations (3.1) imply that i�u‚ D 0 and R�
h
‚ D Ad.h�1/ ı‚, which reads as

(3.4) R�‚ D Ad�1 ı‚:

On the other hand, we can compute directly

R�‚ D R�
�
d� C 1

2
Œ�; ��

�
D d.R��/C 1

2
ŒR��;R���

D d.�H C ˛/C 1
2
Œ�H C ˛;�H C ˛�

D d˛ C Œ�H ; ˛�C 1
2

Ad�1 ıŒ�; ��;

where the fourth equality uses d�H C 1
2
Œ�H ; �H � D 0. Comparing this to (3.4)

proves (3.3). Now we compute

hR��; d.R��/i D h˛; d˛i C h˛; d�H i C h�H ; d˛i C h�H ; d�H i

D h˛; d˛i C h�H ; d�H i C dh˛;�H i C 2h˛; d�H i

D h˛; d˛i C h�H ; d�H i C dh˛;�H i � h˛; Œ�H ; �H �i;

where the second equality uses (2.2) and the fourth that d�H C 1
2
Œ�H ; �H � D 0.

Using (2.4) we also obtain

hR��; ŒR��;R���i D h˛; Œ˛; ˛�i C h�H ; Œ�H ; �H �i

C 3h˛; Œ�H ; �H �i C 3h�H ; Œ˛; ˛�i:
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In summary, we thus have

R� CS.�/ D CS.R��/

D h˛; d˛i C 1
3
h˛; Œ˛; ˛�i C h�H ; Œ˛; ˛�i C CS.�H /C dh˛;�H i:

Since the last term already shows up in (3.2), it remains to show that

CS.�/ D h˛; d˛i C 1
3
h˛; Œ˛; ˛�i C h�H ; Œ˛; ˛�i:

Using (3.3) and the Ad-invariance of h � ; � i gives

h˛; d˛i D �h˛; Œ�H ; ˛�i C hAd�1 ı �;Ad�1 ı d�i D �h˛; Œ�H ; ˛�i C h�; d�i:

With ŒAd.h/.x/;Ad.h/.y/� D Ad.h/.Œx; y�/ it follows that

h˛; Œ˛; ˛�i D hAd�1 ı �;Ad�1 ı Œ�; ��i D h�; Œ�; ��i

and we conclude that

h˛; d˛i C 1
3
h˛; Œ˛; ˛�i C h�H ; Œ˛; ˛�i D h�; d�i C 1

3
h�; Œ�; ��i D CS.�/;

which finishes the proof. □

Proof of Theorem 3.3. Given one global smooth section � W M ! N , any other
global smooth section is of the form O� D R ı .�; h/ W M ! N for some smooth
map h WM ! H . Using (2.7) and (3.2) we thus obtain

O�� CS.�/ D .�; h/�
�
R� CS.�/

�
D CS.���/C h� CS.�H /C dhAd.h�1/ ı .���/; h��H i;

so that integration yields

(3.5) c O� D c� C

Z
M

h� CS.�H /

by Stokes’ theorem. The claims follow immediately from (3.5). □

Remark 3.5. Observe that this result does not depend on the any conditions on the
restriction of h � ; � i to h, so no assumptions in that direction are needed in order
to get well-defined Chern–Simons invariants. Indeed, for several of the examples
discussed below, the restriction is degenerate.

4. Examples of Chern–Simons invariants

Recall that any orientable 3-manifold is parallelizable and hence admits a global
smooth frame for the tangent bundle.

(1) Taking H D G D SO.3/, this recovers the original definition of Chern–
Simons by using the Levi-Civita connection on oriented Riemannian 3-manifolds.
Starting from a global frame of the tangent bundle TM , we can apply Gram-
Schmidt to obtain a global orthonormal frame, which shows that the orthonormal
frame bundle admits global smooth sections. SinceH 3.G;R/ Š R we immediately
conclude from Theorem 3.3 that we obtain an invariant with values in R=Z provided
that we normalize h � ; � i in such a way that

R
SO.3/ �SO.3/ 2 Z and the best choice is

to ensure that
R

SO.3/ �SO.3/ D ˙1. Such a normalization is computed explicitly in
Section A.
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(2) Take H D G D SO0.2; 1/ and the Levi-Civita connection on a space- and
time-oriented Lorentzian 3-manifold. In this case, we have to assume in addition
that there is a global orthonormal frame for the given Lorentzian metric, i.e. that
the orthonormal frame bundle admits a global smooth section. Since the maximal
compact subgroup of G is contained in S.O.2/ � O.1//, we get H 3.G;R/ D f0g

in this case. Hence regardless of the normalization of h � ; � i, we get an R-valued
invariant (assuming existence of a global orthonormal frame). As we shall see below,
the normalization of h � ; � i still can be relevant here, since there are integrality results
for the invariant on manifolds that admit certain immersions, see Theorem 6.6 below.

(3) Take H D G D SL.3;R/ and consider oriented 3-manifolds M endowed
with a fixed volume form � and a linear connection r on TM preserving �. Then
we can apply our construction to the principal connection induced by r on the
SL.3;R/-frame bundle of M defined by �. The inclusion SO.3/ ! SL.3;R/
induces an isomorphism in cohomology, so H 3.H;R/ Š Z. Choosing h � ; � i
appropriately, we obtain an R=Z-valued invariant for such connections.

(4) An example with H ¤ G is provided by the Burns-Epstein invariant intro-
duced in [1]. Here the setting is that M is a compact oriented 3-manifold endowed
with a CR-structure, i.e. a contract distribution C � TM with is endowed with
an almost complex structure. It is a classical result due to E. Cartan, see [3], that
M admits a canonical g-connection with g D su.2; 1/ on a principal fibre bundle
constructed from the CR structure. Indeed, this is a Cartan connection in modern
terminology.

The structure groupH of the canonical principal bundle is a (parabolic) subgroup
of G D PSU.2; 1/. The details on H are not very important here, it comes from
the stabilizer in SU.2; 1/ of a null line in C3. It turns out that H is isomorphic to a
semi-direct product of U.1/ and the complex Heisenberg group of real-dimension 3,
which in particular implies that H 3.H;R/ D f0g.

To obtain an invariant, one has to assume the the H -principal bundle associated
to the CR structure admits a global section, which by orientability of M turns out
to be equivalent to triviality of the CR subbundle C � TM . Equivalently, this can
be expressed as existence of a global CR vector field on M . Since g is simple, the
form h � ; � i has to be a non-zero multiple of the Killing form, and for each choice of
such a form, our construction leads to a real-valued CR invariant. Notice that in this
case the restriction of h � ; � i to h is degenerate with null-space the nilradical of h.

(5) The construction of canonical principal bundles and (Cartan) connections
from (4) is a special case of the general constructions for parabolic geometries, see
[2]. In particular, there are two more cases of structures on 3-manifolds that have
an underlying contact structure. One of those are Legendrian contact structures for
which the additional ingredient to a contact distributionC � TM is a decomposition
C D E ˚ F as the direct sum of two line subbundles (which are automatically
Legendrian). Here g D sl.3;R/ andH comes from the subgroup of upper triangular
matrices in SL.3;R/, so H 3.H;R/ D f0g. To obtain an invariant, one again has to
assume that M is compact and oriented and that the Legendrian subbundles E and
F are trivial, and then one obtains an R-valued invariant.
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The other example are so-called contact projective structures, see also [5]. Here
the additional structure is given by a family of curves tangent to the contact distri-
bution C � TM with one curve through each point in each direction (in C ),
which can be realized as geodesics of a linear connection. For this example,
g D sp.4;R/ and H comes from a subgroup of Sp.4;R/ which is a semi-direct
product of Sp.2;R/ Š SL.2;R/ with a 3-dimensional real Heisenberg group.
Hence H 3.H;R/ D f0g and assuming triviality of the canonical principal bundle
over a compact oriented 3-manifold, one thus obtains a real-valued invariant for any
choice of h � ; � i.

5. Partial blindness for flat Lie algebra valued forms

It is natural to try to find conditions on the pair .� W P !M; �/ which imply van-
ishing of the associated Chern–Simons invariant. We will achieve this in Section 6
below. Our result crucially relies on a certain algebraic feature of the Chern–Simons
3-form that we will refer to as partial blindness for flat Lie algebra valued forms.

Here our basic setup is that we study Chern–Simons invariants associated to
.g; h � ; � i/ via a realization of g as a Lie subalgebra of a bigger Lie algebra Qg in such
a way that h � ; � i is the restriction of an invariant form on Qg which we denote by the
same symbol. In particular we do assume that the restriction to g is non-degenerate
here. (Note that this is automatically satisfied if g is simple and the restriction is
non-zero.) Then we can form the orthogonal space g? � Qg which by our assumption
is complementary to g, so Qg D g˚ g? as a vector space. But since h � ; � i is clearly
g-invariant, also g? � Qg is a g-invariant subspace, so Qg D g˚g? as a representation
of g. In particular, this implies that Œg; g?� � g?. An important special case is that
the complement g? makes .Qg; g/ into a symmetric pair, i.e., that in addition we have
Œg?; g?� � g.

Now any Qg-valued form ! 2 �k.N; Qg/ on a manifoldN decomposes accordingly
as

! D !> C !?

with !> 2 �k.N; g/ and !? 2 �k.N; g?/.
We can now state a crucial technical lemma:

Lemma 5.1. In the setting of g � Qg as above, let � 2 �1.N; Qg/ be such that
for the decomposition � D �> C �?, we have Œ�?; �?� 2 �2.N; g/. Then for
‚ D d� C 1

2
Œ�; �� with associated decomposition ‚ D ‚> C‚?, we obtain

(5.1) CS.�/ D CS.�>/C h�?; ‚?i:

Proof. We can decompose the equation d� D ‚ � 1
2
Œ�; �� into components, and by

our assumption on Œ�?; �?�, this reads as

(5.2)
.d�/> D ‚> � 1

2
.Œ�>; �>�C Œ�?; �?�/;

.d�/? D ‚? � Œ�>; �?�:

From this we compute

h�; d�i D h�>C �?; .d�/>C .d�/?i D h�>; d�>i� h�?; Œ�>; �?�iC h�?; ‚?i
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and
h�; Œ�; ��i D h�> C �?; Œ�> C �?; �> C �?�i

D h�> C �?; Œ�>; �>�C Œ�?; �?�C 2Œ�>; �?�i

D h�>; Œ�>; �>�i C h�>; Œ�?; �?�i C 2h�?; Œ�>; �?�i:

In total we thus have
CS.�/ D h�; d�i C 1

3
h�; Œ�; ��i

D CS.�>/C h�?; ‚?i C 1
3
h�>; Œ�?; �?�i � 1

3
h�?; Œ�>; �?�i

D CS.�>/C h�?; ‚?i;

where the last equality uses (2.4). □

Remark 5.2. In the applications of Theorem 5.1 that we are interested in, we
consider the case where the Lie algebra valued form � is flat, that is, satisfies the
Maurer–Cartan equation ‚ D d� C 1

2
Œ�; �� D 0. In this case (5.1) simplifies to

CS.�/ D CS.�>/, that is, the Chern–Simons 3-form is blind to the �? component
of � .

As a first application of Theorem 5.1 we assume that we have an inclusion
i W G ! QG of groups corresponding to g � Qg and get a result of integrality of the
Chern–Simons forms associated to the Maurer–Cartan forms.

Lemma 5.3. Let i W G ! QG be an inclusion of a Lie subgroup and consider the
corresponding subalgebra g � Qg. Assume that h � ; � i is an invariant bilinear form on
Qg such that h � ; � ijg�g is non-degenerate and use these forms to define Chern–Simons
forms for differential forms in g and Qg.

If h � ; � i is normalized in such a way that ŒCS.� QG/� 2 H
3. QG;Z/, then ŒCSg.�G/� 2

H 3.G;Z/.

Proof. Decomposing � QG D �
>
QG
C �?

QG
, the definition of the Maurer–Cartan form

readily implies that i��>
QG
D �G . Since � QG satisfies the Maurer–Cartan equation,

Theorem 5.1 gives that CS.� QG/ D CS.�>
QG
/ and using (2.7) we conclude that

i� CS.�>
QG
/ D CSQg.i��>

QG
/. Since we use the restriction of h � ; � i on g, this coincides

with CSg.�G/. Thus the result follows from the fact the pullback preserve integral
cohomology classes. □

There is a conceptual way to obtain compatible invariant bilinear forms as we
need them here. Assume that Qg is realized as a subalgebra of gl.n;R/ for some n.
Then it is well-known that the trace form hX; Y i WD tr.XY / defines a GL.n;R/-
invariant bilinear form on gl.n;R/. Of course, the restriction of h � ; � i to Qg is the
QG-invariant for the subgroup QG � GL.n;R/ corresponding to the Lie subalgebra
Qg. If Qg is simple and the restriction is non-zero, then it has to be a multiple of the
Killing form and hence is non-degenerate. Of course, we can restrict further to
g � Qg and apply the same argument if g is also simple.

Even better, for m > n, we can decompose Rm D Rm�n ˚ Rn and then
include GL.n;R/ � GL.m;R/ as the maps that send Rn to itself and are the
identity on the complementary subspace Rm�n. For the infinitesimal inclusion
gl.n;R/ ! gl.m;R/ the trace form on gl.m;R/ evidently restricts to the trace
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form on gl.n;R/. This allows us to also compare algebras of matrices of different
sizes.

It is easy to write an explicit formula for Chern–Simons forms on subalgebras
of gl.n;R/ computed with respect to the trace form. One realizes a 1-form �

on N with values in such a subalgebra as a matrix .� ij /
n
i;jD1 of real-valued 1-

forms � ij 2 �
1.N /. Then of course, we get d� D .d� ij /

n
i;jD1, and employing the

summation convention, we can write Œ�; �� D .2� i
k
^ �kj /

n
i;jD1. By definition of the

Chern–Simons form, this implies that we get (still using the summation convention)

CS.�/ D � ij ^ d�ji C
2
3
� ij ^ �

j

k
^ �ki :

It is usual in Chern–Simons theory to write this as tr.�^d�C 2
3
�^�^�/. Using this,

we can prove a result on the Lie algebras we will need in the further developments:

Proposition 5.4. For n > 3, consider the subgroups Gn WD SO.n;R/ � QG WD
SL.n;R/ � GL.n;R/ and denote the Maurer–Cartan forms by �n D �Gn

and
Q�n D � QGn

. Then for Cn 2 R the statements

Cn tr
�
�n ^ d�n C

2

3
�n ^ �n ^ �n

�
2 H 3.Gn;Z/(5.3)

Cn tr
�
Q�n ^ d Q�n C

2

3
Q�n ^ Q�n ^ Q�n

�
2 H 3. QGn;Z/:(5.4)

are equivalent and for any N > 5, there exists a constant C such that they hold
with Cn D C for all n 6 N .

Proof. It is well-known that for both gn D so.n/ and Qg D sl.n;R/ the trace-
form is a non-zero multiple of the Killing form, see e.g. [7], so it is always non-
degenerate. It is also well known that for n > 2, Gn � QGn is a strong deformation
retract by Iwasawa decomposition, so the inclusion induces an isomorphism in
cohomology with both real and integer coefficients. Finally, for n ¤ 4, H 3. QGn;R/

is 1-dimensional, so we one can choose Cn in such a way that (5.4) holds for n. But
then the full result immediately follows from Theorem 5.3. □

The explicit normalizations we will use are computed in Section A below.

6. Flat extensions of principal connections

We continue to work in the setting of an inclusion i W G ! QG of a Lie subgroup
and an invariant bilinear form h � ; � i on Qg whose restriction to g is non-degenerate.
All Chern–Simons forms will be formed with respect to this bilinear form from now
on. In this setting recall from Theorem 1.1 our key concept of a flat extension:

Definition. Let � W P !M be a principal G-bundle and � 2 �1.P; g/ a connec-
tion. A flat extension of � of type . QG;G/ is a bundle homomorphism F W P ! QG

into the total space of the principal G-bundle QG ! QG=G so that � D F �.�>
QG
/.

Remark 6.1. The concept of flat extensions as defined here makes sense also in
the case of a g-connection on an H -principal bundle with H � G as in Section 3.
We restrict to the case G D H here, however, since for H ¤ G, integrality of the
cohomology class ŒCS.� QG/� does not imply integrality of ŒCSg.�H /�, so additional
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assumptions are needed to obtain a general result on integrality or vanishing of
Chern–Simons invariants in that setting.

Theorem 6.2. Consider a pair G � eG and a bilinear form h � ; � i oneg which is
normalized in such a way that ŒCS.� QG/� 2 H

3. QG;Z/. Let � W P ! M be a
principal G-bundle and � 2 �1.P; g/ a G-equivariant form.

Suppose that � admits admits a flat extension of type .eG;G/ such that for the
corresponding map F W P ! QG, we get

(6.1) ŒF �.�?
QG
/; F �.�?

QG
/� 2 �2.P; g/:

Then for any global smooth section � of P , we have
R
M �� CS.�/ 2 Z. If CS.�eG/

is exact, then we even have
R
M �� CS.�/ D 0.

Remark 6.3. Since the condition (6.1) is automatically satisfied if .Qg; g/ is a sym-
metric pair, Theorem 6.2 implies Theorem 1.2.

Proof. Observe that by Theorem 5.3, our assumptions imply that ŒCS.�G/� 2
H 3.G;Z/, so our construction of invariants from Section 3 can be applied. For
a flat extension F W P ! QG, consider F �� QG 2 �

1.N;eg/ which by definition
satisfies � D F �.�>

QG
/ D .F �� QG/

>. Since ŒF �.�?
QG
/; F �.�?

QG
/� 2 �2.P; g/, we

can apply Theorem 5.1 to F �� QG to conclude that CS.�/ D CS.F �� QG/ which in
turn equals F �.CS.� QG// by (2.7). Hence ��.CS.�// D .F ı �/�.CS.�eG// and,
as a pullback of an integral class, this represents a class in H 3.M;Z/, so the result
follows. □

Thus we see that in the cases where we obtain R=Z-valued invariants, existence
of a flat extension implies vanishing of the invariant. In the case of R-valued
invariants, the consequence of flat extensions depends on the topology of eG. In case
that H 3.eG;R/ D f0g (or more generally Œ�eG � D 0), we again get vanishing of the
invariant. However, if 0 ¤ Œ�eG � 2 H 3.eG;Z/, then we can only conclude that the
invariant is an integer.

6.1. Geometric interpretation of Riemannian flat extensions

The basic example of a flat extension comes from the original article of Chern–
Simons. Suppose that .M; g/ is an oriented Riemannian 3-manifold, so G D H D
SO.3/. Then we choose QG D SO.4/, which containsG as a subgroup in the obvious
way, i.e. as matrices of the form �

1 0

0 A

�
:

One immediately verifies that for the Lie algebras this implies that .eg; g/ is a
symmetric pair.

Now QG acts transitively on the space of oriented 3-planes in the inner product
space R4 and for this action, G is the stabilizer of the oriented subspace R3 � R4.
Hence we can identify the symmetric space SO.4/=SO.3/ as the space of all ori-
ented 3-planes in R4. An oriented 3-plane in R4 is of course uniquely determ-
ined by its positive unit normal, which leads to the more common identification
SO.4/=SO.3/ Š S3.
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As the SO.4/-invariant inner product oneg, we use 1
16�2 times the trace form.

Theorem A.1 in Section A below shows that this is a minimal choice for which
we get ŒCS.�SO.4//� 2 H

3.SO.4/;Z/. By Theorem 5.3, the restriction of this
form to so.3/ has the property that ŒCS.�SO.3//� 2 H

3.SO.3/;Z/. More precisely,
Theorem A.1 actually shows that

R
SO.3/ CS.�SO.3// D 1, so this is an optimal

choice of normalization for obtaining an invariant with values in R=Z.

Proposition 6.4. Suppose that .M; g/ is a closed oriented Riemannian 3-manifold
and let � 2 �1.SOM; g/ be the Levi-Civita connection form of g on the oriented
orthonormal frame bundle of M . Then an isometric immersion i WM ! R4 gives
rise to a flat extension of � of type .SO.4/; SO.3// and hence the Chern–Simons
invariant of .M; g/ vanishes.

Proof. Let f be the Gauss map of i , which sends a point x 2 M to the 3-plane
Txi.TxM/with the orientation induced from the one of TxM (or alternatively to the
positive unit normal), viewed as a smooth map M ! SO.4/=SO.3/. Since we start
from an isometric immersion the map Txi is orthogonal for gx and the restriction
of the standard inner product to Txi.TxM/. A point in SOM over x 2M can be
viewed as an orientation preserving linear isomorphism u W R3 ! TxM which is
orthogonal with respect to the standard inner product on R3 and gx . Hence Txi ı u
is an orthogonal isomorphism from R3 to Txi.TxM/ and using the positively
oriented unit normal we can extend this to an orientation preserving orthogonal
isomorphism from R4 to itself, i.e. to an element of SO.4/. This defines a smooth
map F W SOM ! SO.4/ which lifts the Gauss map f and by construction
is SO.3/-equivariant and hence a homomorphism of principal bundles. Hence
F ��>SO.4/ 2 �

1.SOM; g/ is a principal connection form on SOM , so we only
have to prove that it coincides with the Levi-Civita connection.

The orthonormal frame bundle of R4 is the trivial bundle R4 � SO.4/ and
viewed as a 1-form on this bundle �SO.4/ is the Levi-Civita connection form for
the flat metric on R4. Now consider a vector field Q� on R4 and the corresponding
SO.4/-equivariant function R4 � SO.4/! R4. Splitting this into a R3-component
and an R-component and composing with F , we obtain maps SOM ! R3 and
SOM ! R, which are SO.3/-equivariant and SO.3/-invariant, respectively. So
the first component defines a vector field � on M while the second descends to
a smooth function a W M ! R. By construction, these have the property that
Q�.i.x// D Txi.�.x//Ca.x/n.x/, where n.x/ is the positively oriented unit normal
to Txi.TxM/. But this implies that the covariant derivative induced by F ��>SO.4/
coincides with the tangential part of the covariant derivative in R4 and since i is
isometric, this coincides with the Levi-Civita connection of M . □

Remark 6.5. Consider a flat extension F W SOM ! SO.4/ as in Theorem 6.4.
Since F maps the fundamental vector field generated by X 2 g D so.3/ to left-
invariant vector field LX on SO.4/, it follows that F �.�?SO.4// is not only SO.3/-
equivariant but also horizontal. Since g? Š R3 Š R3� as a representation of SO.3/,
we can identify F �.�?SO.4// as a 1-form on M with values in TM Š T �M . From
the description in the proof of Theorem 6.4, one readily concludes that in the first
interpretation, this produces the classical shape operator, which maps � 2 X.M/

to the tangential component of the derivative of the unit normal in direction �. In
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the second interpretation, one obtains the second fundamental form, which maps
�; � 2 X.M/ to the normal component of the derivative of � in direction �. The
fact that the shape operator and the second fundamental form are essentially the
same object in this case is a consequence of the unit normal being orthogonal to the
tangent spaces.

6.2. Lorentzian flat extensions

The line of argument of Section 6.1 carries over directly to the Lorentzian case, but
things become more interesting here. On the one hand, so far no normalization of
the invariant bilinear form was needed in this case, but this becomes important now.
On the other hand, we have now two possibilities for isometric immersions, namely
either into R3;1 (with positive normal) or into R2;2 (with negative normal). As we
shall see, these have different consequences for the invariant. The corresponding
choices for QG are SO0.3; 1/ and SO0.2; 2/ respectively, with the obvious inclusion
of G D SO0.2; 1/ in both cases. In both cases, one obtains a symmetric pair
.eg; g/. The homogeneous space SO0.3; 1/=SO0.2; 1/ can be interpreted as the
space of all space- and time-oriented Lorentzian linear subspaces V � R3;1. For
any such subspace there is a unique oriented (positive) unit normal. Similarly,
SO0.2; 2/=SO0.2; 1/ is the space of all space- and time-oriented Lorentzian linear
subspaces V � R2;2 and such a space determines a unique (negative) oriented unit
normal.

The difference between the two cases comes from the structure of H 3. QG;R/.
For SO0.3; 1/, the maximal compact subgroup is isomorphic to SO.3/, so the
third cohomology is non-trivial here. For SO0.2; 2/, the maximal compact sub-
group is two dimensional and hence the third cohomology vanishes identically.
Thus the appropriate normalization for our purposes is to start with an invariant
non-degenerate symmetric bilinear form on so.3; 1/ normalized in such a way
that ŒCS.�SO0.3;1//� 2 H

3.SO0.3; 1/;Z/ for the resulting normalization. As we
have seen in Section 6.1 above, 1

16�2 times the trace form leads to an optimal
normalization for SO.3/. By the Iwasawa decomposition, SO.3/ is a deformation
retract of SO0.3; 1/, so we can use the same normalization here. Now the proof of
Theorem 6.4 generalizes in a straightforward way to show

Proposition 6.6. Suppose that .M; g/ is a closed space – and time oriented
Lorentzian 3-manifold which admits a global orthonormal frame and let � 2
�1.SO0M; g/ be the Levi-Civita connection form of g on the space – and time
oriented orthonormal frame bundle of M .

(1) An isometric immersion i WM ! R2;2 gives rise to a flat extension of � of
type .SO0.2; 2/;SO0.2; 1// and hence the (R-valued) Chern–Simons invariant of
.M; g/ vanishes.

(2) An isometric immersion i W M ! R3;1 gives rise to a flat extension of � of
type .SO0.3; 1/;SO0.2; 1// and hence the (R-valued) Chern–Simons invariant of
.M; g/ has to be an integer.

The interpretation of F �.�?
QG
/ for a flat extension F is completely parallel to the

Riemannian case discussed in Theorem 6.5.
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6.3. Equiaffine immersions and flat extensions

We next discuss the case of volume preserving affine connections on 3-manifolds,
so G D H D SL.3;R/. Similarly to the pseudo-Riemannian case, we considereG WD SL.4;R/ and the obvious inclusion of SL.3;R/ here and the flat extension
will be obtained from a Gauss map. The details will be quite a bit more involved,
though, in particular QG=G has dimension 7 and is not a symmetric space. Indeed, on
the level of Lie algebras, the inclusion g WD sl.3;R/ ,! sl.4;R/ DWeg corresponds
to a block decomposition of elements ofeg of the form�

a Z

X A � a
3
I

�
with A 2 g, a 2 R, X 2 R3 and Z 2 R3�. Hence we conclude that g? D
R˚R3 ˚R3� as a representation of g, and the component g? � g? ! g? of the
Lie bracket ofeg is (in obvious notation) given by

(6.2) Œ.a1; X1; Z1/; .a2; X2; Z2/�

D .Z1X2 �Z2X1;
4

3
.�a1X2 C a2X1/;

4

3
.a1Z2 � a2Z1//:

Let us first give an appropriate interpretation of the homogeneous space QG=G.
Consider the set of all pairs .V; `/, where V � R4 is an oriented linear subspaces of
dimension 3 endowed with a volume element and ` � R4 is a 1-dimensional linear
subspace complementary to V . Then SL.4;R/ acts on this space by A � .V; `/ WD
.A.V /; A.`//. Starting from the natural base point given by V D R3 with the
orientation and volume element induced by the standard basis fe1; e2; e3g and,
` D R � e4, linear algebra shows that the action of SL.4;R/ is transitive and that
the stabilizer of the base point is SL.3;R/. Hence we may identify QG=G with the
space of all such pairs.

Now let us assume that we have given an oriented 3-manifold M . Suppose
that i W M ! R4 is an immersion and that in addition we choose a transversal,
i.e. for each x 2M , we choose a line `.x/ � R4, which is complementary to the
3-dimensional subspace Txi.TxM/ � R4 D Ti.x/R

4. We assume this choice to be
smooth in the obvious sense, i.e. locally around each point the lines can be spanned
by a smooth vector field along i . This shows that i and ` determine a smooth Gauss
map f WM ! QG=G, which sends each x 2M to the pair .Txi.TxM/; `.x//.

Via i and `, any tangent vector at a point i.x/ decomposes uniquely into a
component in `.x/ and a component in Txi.TxM/. Via this decomposition, the flat
connection on R4 induces a linear connection r> on TM as well as a connection
r? on the trivial line bundle M �R. It is easy to understand when r> preserves a
volume form.

Lemma 6.7. Given an immersion i WM ! R4 and a choice ` of transversal, the
induced connection r> preserves a volume form if and only if there is a global
non-zero section of M �R which is parallel for r?.

Proof. The standard volume form on R4 defines an isomorphism ƒ4R4 ! R.
The decomposition R4 D Txi.TxM/ ˚ `.x/ induces an isomorphism ƒ4R4 Š

ƒ3.Txi.TxM//˝ `.x/ for each x 2M . Over M , this gives rise to a trivialization
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of the bundle ƒ3TM ˝ L, where L D M � R and hence to an isomorphism
ƒ3T �M Š L. Since the trivialization of ƒ4R4 is compatible with the flat connec-
tion on R4 this isomorphism pulls back the connection r? on L to the connection
on ƒ3T �M induced by r>. By definition, r> preserves a volume form if and
only if the latter connection admits a non-zero global parallel section. □

Now we introduce the classical concept of an equiaffine immersion, as in [10,
Defintion 1.4].

Definition 6.8. Let M be a smooth manifold of dimension 3 endowed with a fixed
volume form � 2 �3.M/ and a torsion-free linear connection r on TM which
preserves �. An equiaffine immersion ofM into R4 is given by a smooth immersion
i W M ! R4 and a choice ` W M ! RP 3 of transversal such that the induced
connection r> on TM coincides with r.

As the invariant bilinear form oneg D sl.4;R/, we again use 1
16�2 times the trace

form. In view of Theorem 5.4 the considerations in Section 6.1 show that this leads
to ŒCS.�SL.4;R//� 2 H

3.�SL.4;R/;Z/ as well as
R

SL.3;R/ CS.�SL.3;R// D 1.

Theorem 6.9. Let M be a closed oriented 3-manifold endowed with a volume form
� 2 �3.M/ and a torsion-free linear connection r on TM which preserves �.
Let SLM be the volume preserving frame bundle of M with respect to � and let
� 2 �1.SLM; sl.3;R// be the connection form of r.

Then an equiaffine immersion of M into R4 defines a flat extension of � of type
.SL.4;R/;SL.3;R// and hence implies vanishing of the Chern–Simons invariant
associated to r.

Proof. We follow the same route as in the Riemannian case with appropriate modi-
fications. A point u 2 SLM over x 2 M is a linear isomorphism R3 ! TxM

which maps the standard basis fe2; e3; e4g to a positively oriented basis of unit
volume. Composing this with Txi W TxM ! R4, there exists a unique vector
0 ¤ t.x/`.x/ � R4 which completes Txi.u.e1//; Txi.u.e2//; Txi.u.e3// to a pos-
itively oriented basis of R4 of unit volume. Choosing F.u/.e1/ D t.x/ extends
u to a linear isomorphism F.u/ W R4 ! R4 which is orientation-preserving and
volume-preserving and hence an element of QG D SL.4;R/. Clearly, this defines a
smooth map F W SLM ! QG which is G-equivariant, where G D SL.3;R/. Thus
it defines a morphism of principal fibre bundles to G ! G= QG.

As we have noted above, the flat connection on R4 induces linear connections
r> on TM and r? on M � R. Since we started with an equiaffine immersion,
r> D r and since this is volume preserving r? is flat by Lemma 6.7. Now
as in the proof of Theorem 6.4, the first property implies that � D F �.�>eG/ 2
�1.SLM; g/. The second property implies that the 1-form F �.�?eG/ has vanishing

R-component. From formula (6.2) we conclude that this implies that the g?-
component of ŒF �.�?eG/; F �.�?eG/� has values in the R-component of g? only. But

on the other hand, we can take the g?-component of the Maurer–Cartan equation
for �eG and pull back by F to conclude that the latter component can be written as

�2dF �.�?eG/ � 2ŒF �.�>eG/; F �.�?eG/�;
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which by construction has vanishing R-component. Thus we have found the claimed
flat extension and the vanishing of the Chern–Simons invariant follows from The-
orem 6.2 and the comparison of normalization conditions on h � ; � i above. □

Remark 6.10. (1) As before, the two non-vanishing components of F �.�?eG/ are
horizontal, G-equivariant 1-forms with values in R3 respectively in R3�. From
the description of the induced connection in the proof of Theorem 6.9 we see that
these are again the shape operator in �1.M; TM/ and the second fundamental
form in �1.M; T �M/ of the equiaffine immersion. In contrast to the (pseudo-
)Riemannian case, these two objects are independent now, their only relation is
that wedge-contraction of the two forms (which is an element of �2.M/) vanishes,
which follows immediately from the volume compatibility of the immersion.

(2) If .M; g/ is an oriented Riemannian 3-manifold and i W M ! R4 is an iso-
metric immersion, then using the normal as a transversal makes i into an equiaffine
immersion. Since both results use the same multiple of the trace form, this shows
that Theorem 6.4 actually is a special case of Theorem 6.9.

Appendix A. Normalization

We can apply the construction of the Riemannian Gauss map from Section 6.1 (in
general dimensions) to the inclusion i W Sn ! RnC1 of the standard sphere. Lifting
this to the oriented orthonormal frame bundle SOSn one obtains an isomorphism
F W SOSn ! SO.nC 1/ covering the diffeomorphism Sn ! SO.nC 1/=SO.n/
discussed in Section 6.1. This is most easily interpreted as taking the map p W
SO.n C 1/ ! Sn defined by mapping A 2 SO.n C 1/ to A.e1/, i.e. the first
column vector of A. This is the projection of the oriented orthonormal frame
bundle, since the remaining columns of A are a positively oriented orthonormal
basis for A.e1/? D TA.e1/S

n. The considerations in Section 6.1 also show that
for the Maurer-Cartan form �nC1 of SO.nC 1/, �>nC1 is the connection form of
the Levi-Civita connection of the round metric on Sn, while �?nC1 represents the
second fundamental form.

Proposition A.1. Let �4 denote the Maurer–Cartan form of SO.4/. Then

(A.1) � WD
1

16�2
tr
�
�4 ^ d�4 C 2

3
�4 ^ �4 ^ �4

�
represents an element of H 3.SO.4/;Z/. Moreover, for the inclusion � W SO.3/!
SO.4/, we have

R
SO.3/ �

�� D 1.

Proof. We will show that the 3-form defined in (A.1) evaluated on a set of generators
of H3.SO.4/;Z/ is 1. The principal right SO.3/-bundle � W SO.4/! S3 is trivial
so that SO.4/ is diffeomorphic to S3 � SO.3/. Standard results about the homology
of S3 and SO.3/ ' RP3 together with Künneth’s theorem imply that

H3.SO.4/;Z/ ' H3.S3 � SO.3/;Z/ ' Z˚ Z:

Moreover, H3.SO.4/;Z/ is generated by the pushforward of the fundamental class
of SO.3/ under the inclusion � W SO.3/ ! SO.4/ and the pushforward of the
fundamental class of S3 under a section � W S3 ! SO.4/. It is thus sufficient to
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show that we have

(A.2)
Z

SO.3/
��� D 1 and

Z
S3

��� D 1

with respect to suitable orientations of S3 and SO.3/. We first treat the left integral.
We know from the proof of Theorem 5.3 that ���>4 D �3, the Maurer–Cartan form
of SO.3/. Furthermore, .Qg; g/ is a symmetric pair so that Theorem 5.1 impliesZ

SO.3/
��� D

1

16�2

Z
SO.3/

tr
�
�3 ^ d�3 C 2

3
�3 ^ �3 ^ �3

�
:

Writing

�3 D

0@ 0 �!1 �!2
!1 0 � 

!2  0

1A
for left-invariant 1-forms !1; !2;  2 �1.SO.3//, an elementary computation
gives

tr
�
�3 ^ d�3 C 2

3
�3 ^ �3 ^ �3

�
D 2!1 ^ !2 ^  :

Under the identification SO.3/ Š SOS2 observed above, the integralZ
SO.3/

!1 ^ !2 ^  

equals the product of the length of the typical fibre of SO.2/! SOS2 ! S2 with
the surface area of S2. The former is given by 2� and the latter by 4� . In summary
we thus haveZ

SO.3/
��� D

2

16�2

Z
SO.3/

!1 ^ !2 ^  D
1

8�2

Z
SO.3/

!1 ^ !2 ^  D 1:

In order to compute the right integral of (A.2) we consider the smooth �-section
� W S3 ! SO.4/ given by the rule

x D

0BB@
x1
x2
x3
x4

1CCA 7!
0BB@
x1 �x2 �x3 �x4
x2 x1 x4 �x3
x3 �x4 x1 x2
x4 x3 �x2 x1

1CCA
for all x 2 S3. A tedious but straightforward calculation shows that

���4 D

0BB@
0 � �� ��

�� 0 � ��

� �� 0 ��

� � � 0

1CCA
where �; �; � 2 �1.S3/ are given by

(A.3)

� D �x3dx1 C x4dx2 C x1dx3 � x2dx4;

� D �x4dx1 � x3dx2 C x2dx3 C x1dx4;

� D x2dx1 � x1dx2 C x4dx3 � x3dx4:

From this one computes

��� D
8

16�2
� ^ � ^ � D

1

2�2
� ^ � ^ �
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and

(A.4) � ^ � ^ � D x4dx1 ^ dx2 ^ dx3 � x3dx1 ^ dx2 ^ dx4
C x2dx1 ^ dx3 ^ dx4 � x1dx2 ^ dx3 ^ dx4;

where we use that jxj2 D 1. The right hand side of (A.4) equals the restriction
to S3 of the interior product of the inwards pointing radial vector field �

P
i xi@i

and the standard volume form dx1 ^ dx2 ^ dx3 ^ dx4 of R4. This is the standard
volume form of S3 with respect to the inwards orientation. We thus have

(A.5)
Z
S3

� ^ � ^ � D 2�2

and the claim follows. □

Appendix B. Examples

B.1. Lorentzian metrics

We compute the Chern–Simons invariant for a 1-parameter family of left-invariant
Lorentzian metrics on SU.2/. Under the identification SU.2/ ' S3 � R4 given by

�
x1 C ix2 �x3 C ix4
x3 C ix4 x1 � ix2

�
7!

0BB@
x1
x2
x3
x4

1CCA D x
for all x 2 R4 with jxj D 1, the Maurer–Cartan form of SU.2/ can be written as

� WD �SU.2/ D

�
�i� �� C i�
� C i� i�

�
;

where �; �; � are given by (A.3). The Maurer–Cartan equation d�C 1
2
Œ�; �� D 0 is

equivalent to the structure equations

d� D �2� ^ �; d� D �2� ^ �; d� D �2� ^ �:

For � 2 R n f0g consider the Lorentzian metric g� D �2 C �2 � �2�2. This can be
viewed as a natural Lorentzian analog of a Berger sphere or of a pseudo-Hermitian
structure on the CR-manifold SU.2/ induced by a left-invariant contact form. The
Levi-Civita connection form �� of g� – when pulled back with respect to the section
�� W SU.2/! SO0SU.2/ corresponding to .�; �; ��/ – becomes

����� D

0@ 0 �.�2 C 2/� ���

.�2 C 2/� 0 ��

��� �� 0

1A :
Using the normalisation of Section A, we compute for the Chern–Simons 3-form

��� CS.��/ D
�

8

16�2

�
.�4 C 2�2 C 2/ � ^ � ^ �:

Consequently, (A.5) givesZ
SU.2/

��� CS.��/ D �
4
C 2�2 C 2 > 0;
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so that Theorem 6.6 implies that there is no isometric immersion of g� into R2;2

for all � 2 R n f0g and that there is no isometric immersion of g� into R3;1 for all
� 2 R n f0g such that �4 C 2�2 C 2 … Z.

B.2. Equiaffine immersion

Real projective 3-space RP3 equipped with its standard metric gSt is isometric to
SO.3/ equipped with the metric g D 1

4

�
.!1/

2 C .!2/
2 C  2

�
. The Levi-Civita

connection form � of g – when pulled back with respect to the section � W SO.3/!
SOSO.3/ corresponding to 1

2
.!1; !2;  / – becomes

��� D
1

2

0@ 0 � !2
 0 �!1
�!2 !1 0

1A :
Using the normalisation of Section A, we compute for the Chern–Simons 3-form
�� CS.�/ D 1

16�2 !1 ^ !2 ^  so that

c� D

Z
SO.3/

�� CS.�/ D
1

2
… Z:

Theorem 6.4 implies that there is no isometric immersion of .RP3; gSt/ into E4, as
previously observed by Chern–Simons [4]. We can however say a bit more. Let
r denote the Levi-Civita connection of gSt on TRP3 and � the r-parallel volume
form on RP3 corresponding to !1 ^ !2 ^  . Since the normalisation of h � ; � i for
SL.3;R/ is the same as for SO.3/, our Theorem 6.9 implies:

Proposition B.1. There exists no global equiaffine immersion of .RP3;r; �/ into
R4.
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