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Geometric theory of Weyl structures

andreas čap and thomas mettler

Abstract. Given a parabolic geometry on a smooth manifold M , we
study a natural affine bundle A → M , whose smooth sections can be
identified with Weyl structures for the geometry. We show that the
initial parabolic geometry defines a reductive Cartan geometry on A,
which induces an almost bi-Lagrangian structure on A and a compatible
linear connection on TA. We prove that the split-signature metric given
by the almost bi-Lagrangian structure is Einstein with non-zero scalar
curvature, provided the parabolic geometry is torsion-free and |1|-graded.
We proceed to study Weyl structures via the submanifold geometry of the
image of the corresponding section in A. For Weyl structures satisfying
appropriate non-degeneracy conditions, we derive a universal formula
for the second fundamental form of this image. We also show that for
locally flat projective structures, this has close relations to solutions of
a projectively invariant Monge-Ampere equation and thus to properly
convex projective structures.

1. Introduction

Parabolic geometries form a class of geometric structures that look very
diverse in their standard description. This class contains important and well-
studied examples like conformal and projective structures, non-degenerate
CR structures of hypersurface type, path geometries, quaternionic contact
structures, and various types of generic distributions. They admit a uniform
conceptual description as Cartan geometries of type (G,P ) for a semisimple
Lie group G and a parabolic subgroup P ⊂ G in the sense of representation
theory. Such a geometry on a smooth manifold M is given by a principal
P -bundle p : G → M together with a Cartan connection ω ∈ Ω1(G, g), which
defines an equivariant trivialization of the tangent bundle TG. A standard
reference for parabolic geometries is [16].

The group P can be naturally written as a semi-direct product G0⋉P+ of
a reductive subgroup G0 and a nilpotent normal subgroup P+. For a Cartan
geometry (p : G → M,ω) the quotient G0 := G/P+ → M is a principal
G0-bundle, and some parts of ω can be descended to that bundle. In the
simplest cases, this defines a usual first order G0-structure on M , in more
general situations a filtered analog of such a structure. Thus the Cartan
geometry can be viewed as an extension of a first order structure. This
reflects the fact that morphisms of parabolic geometries are in general not
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determined locally around a point by their 1-jet in that point, and the Cartan
connection captures the necessary higher order information.

To work explicitly with parabolic geometries, one often chooses a more
restrictive structure, say a metric in a conformal class, a connection in a
projective class or a pseudo-Hermitian structure on a CR manifold, expresses
things in terms of this choice and studies the effect of different choices. It
turns out that there is a uniform way to do this that can be applied to all
parabolic geometries, namely the concept of Weyl structures introduced in
[15], see Chapter 5 of [16] for an improved exposition. Choosing a Weyl
structure, one in particular obtains a linear connection on any natural vector
bundle associated to a parabolic geometry, as well as an identification of
higher order geometric objects like tractor bundles with more traditional
natural bundles. The set of Weyl structures always forms an affine space
modeled on the space on one-forms on the underlying manifold, and there
are explicit formulae for how a change of Weyl structure affects the various
derived quantities.

The initial motivation for this article were the results in [19] on projec-
tive structures. Such a structure on a smooth manifold M is given by an
equivalence class [∇] of torsion-free connections on its tangent bundle, where
two connections are called equivalent if they have the same geodesics up to
parametrization. While these admit an equivalent description as a parabolic
geometry, the underlying structure G0 → M is the full frame bundle of
M and thus contains no information. Hence there is the natural question,
whether a projective structure can be encoded into a first order structure on
some larger space constructed from M . Indeed, in [19], the authors associate
to a projective structure on an n-dimensional manifold M a certain rank n
affine bundle A → M , whose total space can be canonically endowed with a
neutral signature metric h, as well as a non-degenerate 2-form Ω. It turns
out that the metric h is Einstein and Ω is closed. Moreover, the pair (h,Ω)
is related by an endomorphism of TA which squares to the identity map
and its eigenbundles L± are Lagrangian with respect to Ω. Equivalently,
we may think of the pair (h,Ω) as an almost para-Kähler structure or as
an almost bi-Lagrangian structure (Ω, L+, L−) on A, see Section 3.1 for the
formal definition and more details.

In addition, it is observed that the sections of A → M are in bijective
correspondence with the connections in the projective class. Consequently, all
the submanifold notions of symplectic – and pseudo-Riemannian geometry can
be applied to the representative connections of [∇]. This leads in particular
to the notion of a minimal Lagrangian connection [28]. As detailed below,
this concept has close relations to the concept of properly convex projective
structures. These in turn provide a connection to the study of representation
varieties and higher Teichmüller spaces, see [32] for a survey.

In an attempt to generalize these constructions to a larger class of parabolic
geometries, we were led to a definition of A → M that directly leads to an
interpretation as a bundle of Weyl structures. This means that the space
of sections of A → M can be naturally identified with the space of Weyl
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structures for the geometry (p : G → M,ω). At some stage it was brought to
our attention that a bundle of Weyl structures had been defined in that way
already in the article [21] by M. Herzlich in the setting of general parabolic
geometries. In this article, Herzlich gave a rather intricate argument for the
existence of a connection on TA and used this to study canonical curves in
parabolic geometries.

The crucial starting point for our results here is that a parabolic geometry
(p : G → M,ω) can also naturally be interpreted as a Cartan geometry on
A with structure group G0. This immediately implies that for any type of
parabolic geometry, there is a canonical linear connection on any natural
vector bundle over A as well as natural almost bi-Lagrangian structure on A
that is compatible with the canonical connection. So in particular, we always
obtain a non-degenerate two-form Ω ∈ Ω2(A), a neutral signature metric h
on TA as well as a decomposition TA = L− ⊕ L+ as a sum of Lagrangian
subbundles.

Using the interpretation via Cartan geometries, it turns out that all
elements of the theory of Weyl structures admit a natural geometric inter-
pretation in terms of pulling back operations on A via the sections defined
by a Weyl structure. This works for general parabolic geometries as shown
in Section 2. In particular, we show that Weyl connections are obtained
by pulling back the canonical connection on A, while the Rho tensor (or
generalized Schouten tensor) associated to a Weyl connection is given by the
pullback of a canonical L+-valued one-form on A.

We believe that this interpretation of Weyl structures should be a very
useful addition to the tool set available for the study of parabolic geometries.
Indeed, working with the canonical geometric structures on A compares to
the standard way of using Weyl structures, like working on a frame bundle
compares to working in local frames.

For the second part of the article, we adopt a different point of view. From
Section 3 on, we use the relation to Weyl structures as a tool for the study of
the intrinsic geometric structure on A and its relation to non-linear invariant
PDE. Our first main result shows that one has to substantially restrict the
class of geometries in order to avoid getting into exotic territory. Recall that
for a parabolic subgroup P ⊂ G the corresponding Lie subalgebra p ⊂ g can
be realized as the non-negative part in a grading g = ⊕k

i=−kgi of g, which
is usually called a |k|-grading. There is a subclass of parabolic geometries
that is often referred to as AHS structures, see e.g. [3, 4, 14], which is the
case k = 1, see Section 2.2 and Theorem 3.2 for more details. This is exactly
the case in which the underlying structure G0 → M is an ordinary first
order G0-structure. In particular, there is the notion of intrinsic torsion for
this underlying structure. Vanishing of the intrinsic torsion is equivalent
to the existence of a torsion free connection compatible with the structure
and turns out to be equivalent to torsion-freeness of the Cartan geometry
(p : G → M,ω). Using this background, we can formulate the first main
result of Section 3, that we prove as Theorem 3.1:
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Theorem. Let (p : G → M,ω) be a parabolic geometry of type (G,P ) and
π : A → M its associated bundle of Weyl structures. Then the natural 2-form
Ω ∈ Ω2(A) is closed if and only if (G,P ) corresponds to a |1|-grading and
the Cartan geometry (p : G → M,ω) is torsion-free.

Hence we restrict our considerations to torsion-free AHS structures from
this point on. Apart from projective and conformal structures, this contains
also Grassmannian structures of type (2, n) and quaternionic structures, for
which there are many non-flat examples. For several other AHS structures,
torsion-freeness implies local flatness, but the locally flat case is of particular
interest for us anyway. Our next main result, which we prove in Theorem 3.5,
vastly generalizes [19]:

Theorem. For any torsion-free AHS structure, the pseudo-Riemannian
metric h induced by the canonical almost bi-Lagrangian structure on the
bundle A of Weyl structures is an Einstein metric with non-zero scalar
curvature.

While one could prove the aforementioned Theorems on a case by case basis
by using the techniques from [19], our arguments instead rely on a careful
analysis of the properties of the curvature tensor of the induced connection
on TA. Following [28], we next initiate the study of Weyl structures via the
geometry of submanifolds in A. We call a Weyl structure s : M → A of a
torsion-free AHS structure Lagrangian if s : M → (A,Ω) is a Lagrangian
submanifold. Likewise, s is called non-degenerate if s : M → (A, h) is a
non-degenerate submanifold. We show that a Weyl structure is Lagrangian
if and only if its Rho tensor is symmetric and that it is non-degenerate if
and only if the symmetric part of its Rho tensor is non-degenerate.

In Theorem 3.12 we characterize Lagrangian Weyl structures that lead
to totally geodesic submanifolds s(M) ⊂ A, which provides a connection
to Einstein metrics and reductions of projective holonomy. If s in addition
is non-degenerate, then there is a well defined second fundamental form of
s(M) with respect to any linear connection on TA that is metric for h and we
show that this admits a natural interpretation as a

(1
2
)
-tensor field on M . In

our next main result, Theorem 3.13, we give explicit formulae for the second
fundamental forms of the canonical connection and the Levi-Civita connection
of h. These are universal formulae in terms of the Weyl connection, the Rho-
tensor, and its inverse, which are valid for all torsion-free AHS structures. As
an application, we are able to characterize non-degenerate Lagrangian Weyl
structures that are minimal submanifolds in (A, h) in terms of a universal
PDE. Again, this is a vast generalization of [28, Theorem 4.4], where
merely the case of projective structures on surfaces was considered.

In Section 4 we connect our results to the study of fully non-linear invariant
PDE on AHS structures. A motivating example arises from the work of
E. Calabi. In [7], Calabi related complete affine hyperspheres to solutions
of a certain Monge-Ampère equation. This Monge-Ampère equation, when
interpreted correctly, is an invariant PDE that one can associate to a projec-
tive structure and it is closely linked to properly convex projective manifolds,
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see [26, Theorem 4]. In Theorem 4.4, we relate Calabi’s equation to our
equation for a minimal Lagrangian Weyl structure and as Theorem 4.6, we
obtain:

Corollary. Let (M, [∇]) be a closed oriented locally flat projective mani-
fold. Then [∇] is properly convex if and only if [∇] arises from a minimal
Lagrangian Weyl structure whose Rho tensor is positive definite.

The convention for the Rho tensor used here is chosen to be consistent
with [16]. This convention is natural from a Lie theoretic viewpoint, but
differs from the standard definition in projective – and conformal differential
geometry by a sign. It should also be noted that a relation between properly
convex projective manifolds and minimal Lagrangian submanifolds has been
observed previously in [23, 22] (but not in the context of Weyl structures).

The notion of convexity for projective structures is only defined for locally
flat structures. The above Corollary thus provides a way to generalize the
notion of a properly convex projective structure to a class of projective
structures that are possibly curved, namely those arising from a minimal
Lagrangian Weyl structure. Going beyond projective geometry, this class
of differential geometric structures is well-defined for all torsion-free AHS
structures.

We conclude the article by showing that there are analogs of the projective
Monge-Ampère equation for other AHS structures, and that these always
can be described in terms of the Rho tensor, which provides a relation to
submanifold geometry of Weyl structures. These topics will be studied in
detail elsewhere.
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2. The bundle of Weyl structures

This section works in the setting of general parabolic geometries. We assume
that the reader is familiar with the the basic concepts and only briefly collect
what we need about parabolic geometries and Weyl structures. Then we
define the bundle of Weyl structures and identify some of the geometric
structures that are naturally induced on its total space. We then prove
existence of a canonical connection and explain how these structures can be
used as an equivalent encoding of the theory of Weyl structures.
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2.1. Parabolic geometries

The basic ingredient needed to specify a type of parabolic geometry is a
semisimple Lie algebra g that is endowed with a so-called |k|-grading. This
is a decomposition

g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk

of g into a direct sum of linear subspaces such that
• [gi, gj ] ⊂ gi+j , where we agree that gℓ = {0} for |ℓ| > k.
• No simple ideal of g is contained in the subalgebra g0.
• The subalgebra p+ = g1 ⊕ · · · ⊕ gk is generated by g1.

In particular, this implies that the Lie subalgebra g0 naturally acts on each of
the spaces gi via the restriction of the adjoint action. Moreover, p := g0 ⊕ p+
is a Lie subalgebra of g, which turns out to be a parabolic subalgebra in the
sense of representation theory.

Such |k|-gradings can be easily described in terms of the structure theory
of semisimple Lie algebras, see Section 3.2 of [16]. In particular, it turns
out that any parabolic subalgebra is obtained in this way and, essentially,
the classification of gradings is equivalent to the classification of parabolic
subalgebras. Further, the decomposition p = g0 ⊕ p+ is the reductive Levi
decomposition, so it is a semi-direct product, p+ is the nilradical of p, and
the subalgebra g0 is reductive. Of course, also g− := g−k ⊕ · · · ⊕ g−1 is a
Lie subalgebra of g, which is nilpotent by the grading property. It turns out
that g− and p+ are isomorphic.

Next, one chooses a Lie group G with Lie algebra g. Then the normalizer
of p in G has Lie algebra p, and one chooses a closed subgroup P ⊂ G lying
between this normalizer and its connected component of the identity. The
subgroup P naturally acts on g and p via the adjoint action. More generally,
one puts gi := ⊕j≥igj to define a filtration of g by linear subspaces that is
invariant under the adjoint action of P . This makes g into a filtered Lie
algebra in the sense that [gi, gj ] ⊂ gi+j .

Having made these choices, there is the concept of a parabolic geometry
of type (G,P ) on a manifold M of dimension dim(G/P ). This is defined
as a Cartan geometry (p : G → M,ω) of type (G,P ), which means that
p : G → M is a principal P -bundle and that ω ∈ Ω1(G, g) is a Cartan
connection. This in turn means that ω is equivariant for the principal right
action, so (rg)∗ω = Ad(g−1) ◦ ω, reproduces the generators of fundamental
vector fields, and that ω(u) : TuG → g is a linear isomorphism for each u ∈ G.
In addition, one requires two conditions on the curvature of ω, which are
called regularity and normality, which we don’t describe in detail.

While Cartan geometries provide a nice uniform description of parabolic
geometries, this should be viewed as the result of a theorem rather than a
definition. To proceed towards more common descriptions of the geometries,
one first observes that the Lie group P can be decomposed as a semi-direct
product. On the one hand, the exponential map restricts to a diffeomorphism
from p+ onto a closed normal subgroup P+ ⊂ P . On the other hand, one
defines a closed subgroup G0 ⊂ P as consisting of those elements, whose
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adjoint action preserves the grading of g and observes that this has Lie algebra
g0. Then the inclusion of G0 into P induces an isomorphism G0 → P/P+.

Using this, one can pass from the Cartan geometry (p : G → M,ω) to an
underlying structure by first forming the quotient G0 := G/P+, which is a
principal G0-bundle. Moreover, for each i = −k, . . . , k, there is a smooth
subbundle T iG ⊂ TG consisting of those tangent vectors that are mapped to
gi ⊂ g by ω. Since T 1G is the vertical bundle of G → G0, these subbundles
descend to a filtration {T iG0 : i = −k, . . . , 0} of TG0. Moreover, for each
i < 0, the component of ω in gi descends define a smooth section of the
bundle L(T iG0, gi) of linear maps, so this can be viewed as a partially defined
gi-valued differential form.

The simplest case here is k = 1, for which the geometries in question are
often referred to as AHS structures. In this case, one obtains a g−1-valued
one-form θ on G0, which is G0-equivariant and whose kernel in each point is
the vertical subbundle. This means that (p0 : G0 → M, θ) in this case simply
is a classical first order structure corresponding to the adjoint action of G0 on
g−1 (which turns out to be infinitesimally effective). According to a result of
Kobayashi and Nagano (see [24]), the resulting class of structures for simple
g is very peculiar, since these are the only irreducible first order structures
of finite type, for which the first prolongation is non-trivial. This class
contains important examples, like conformal structures, almost quaternionic
structures, and almost Grassmannian structures.

For general k, there is an interpretation of G0 and the partially defined
forms as a filtered analogue of a first order structure. This involves a filtration
of the tangent bundle TM by smooth subbundles T iM for i = −k, . . . ,−1
with prescribed (non–)integrability properties together with a reduction
of structure group of the associated graded vector bundle to the tangent
bundle. This leads to examples like hypersurface-type CR structures, in
which the filtration is equivalent to a contact structure, while the reduction
of structure group is defined by an almost complex structure on the contact
subbundle. Further important example of such structures are path geometries,
quaternionic contact structures and various types of generic distributions.

Except for two cases, the Cartan geometry can be uniquely (up to iso-
morphism) recovered from the underlying structure (see Section 3.1 of [16]),
and indeed this defines an equivalence of categories. So in this case, one has
two equivalent descriptions of the structure. The two exceptional cases are
projective structures and a contact analogue of those. In these cases, the
underlying structure contains no information respectively describes only the
contact structure, and one in addition has to choose an equivalence class of
connections in order to describe the structure. Still, these fit into the general
picture with respect to Weyl structures, which we discuss next.

2.2. Weyl structures

These provide the basic tool to explicitly translate between the description of
a parabolic geometry as a Cartan geometry and the picture of the underlying
structure. So let us suppose that (p : G → M,ω) is a Cartan geometry of
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type (G,P ) and that p0 : G0 → M is the underlying structure described in
Section 2.1. The original definition of a Weyl structure used in [15] is as a
G0-equivariant section σ of the natural projection q : G → G0 = G/P+. One
shows that such sections always exist globally and by definition, they provide
reductions of the principal P -bundle p : G → M to the structure group
G0 ⊂ P . As a representation of G0, the Lie algebra g splits as g− ⊕ g0 ⊕ p+
(and indeed further according to the |k|-grading). Thus, the pullback σ∗ω
splits accordingly into a sum of three G0-equivariant one-forms with values
in g−, g0 and p+, respectively, which then admit nice interpretations in
terms of the underlying structure. The g0-component defines a principal
connection on G0, which induces the Weyl connections on associated bundles.
The component in p+ descends to a one-form on M with values in the
associated graded to the cotangent bundle T ∗M , which is the Rho-tensor
associated to the Weyl structure. The g−-component also descends to M and
provides an isomorphism between the tangent bundle TM and its associated
graded bundle. For the structures we consider in this article, this component
coincides with the soldering form that identifies G0 as a reduction of structure
group of TM .

As observed in [21], any reduction of p : G → M to the structure group
G0 ⊂ P comes from a Weyl structure. This is because the composition of q
with the principal bundle morphism defining such a reduction clearly is an
isomorphism of G0-principal bundles. Thus one could equivalently define a
Weyl structure as such a reduction of structure group and then observe that
this defines a G0-equivariant section of q : G → G0. It is a classical result
that reductions of G to the structure group G0 can be equivalently described
as smooth sections of the associated bundle with fiber P/G0. This motivates
the following definition from [21].

Definition 2.1. The bundle of Weyl structures associated to the parabolic
geometry (p : G → M,ω) is π : A := G ×P (P/G0) → M .

The correspondence between Weyl structures and smooth sections of
π : A → M can be easily made explicit. Given a G0-equivariant section
σ : G0 → G one considers the map sending u0 ∈ G0 to the class of (σ(u0), eG0)
in G ×P (P/G0), where e ∈ P is the neutral element. By construction, the
resulting smooth map G0 → A is constant on the fibers of p0 : G0 → M
and thus descends to a smooth map s : M → A, which is a section of
π by construction. Conversely, a section s of π corresponds to a smooth,
G0-equivariant map f : G → P/G0 characterized by the fact that s(x) is the
class of (u, f(u)) for each u in the fiber of G over x. But then f−1(eG0) is a
smooth submanifold of G on which the projection q : G → G0 restricts to a
G0-equivariant diffeomorphism. The inverse of this diffeomorphism gives the
Weyl structure determined by s.

From the definition, we can verify that the bundle of Weyl structures is
similar to an affine bundle. This will also provide the well known affine
structure on Weyl structures in our picture. To formulate this, recall first
that the parabolic subgroup P ⊂ G is a semi-direct product of the subgroup
G0 ⊂ P and the normal subgroup P+ ⊂ P . In particular, any element
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g ∈ P can be uniquely written as g0g1 with g0 ∈ G0 and g1 ∈ P+, compare
with Theorem 3.1.3 of [16], and of course g0g1 = (g0g1g−1

0 )g0 provides the
corresponding decomposition in the opposite order.

Proposition 2.2. Let π : A → M be the bundle of Weyl structures associated
to a parabolic geometry (p : G → M,ω). Then sections of π : A → M
can be naturally identified with smooth functions f : G → P+ such that
f(u · (g0g1)) = g−1

1 g−1
0 f(u)g0 for each u ∈ G, g0 ∈ G0 and g1 ∈ P+.

Fixing one function f that satisfies this equivariancy condition, any other
function which is equivariant in the same way can be written as f̂(u) =
f(u)h(u), where h : G → P+ is a smooth function such that h(u · (g0g1)) =
g−1
0 h(u)g0.

Proof. The inclusion P+ ↪→ P induces a smooth map P+ → P/G0, and from
the decomposition of elements of P described above, we readily see that this
is surjective. On the other hand, writing the quotient projection P → G0 as
α, the map g 7→ gα(g)−1 induces a smooth inverse, so P/G0 is diffeomorphic
to P+. Since A = G ×P (P/G0), smooth sections of π : A → M are in
bijective correspondence with P -equivariant smooth functions G → P/G0,
so these can be viewed as functions with values in P+. The equivariancy
condition reads as f(u · (g0g1)) = g−1

1 g−1
0 · f(u). But starting from g̃1G0,

we get g−1
1 g−1

0 g̃1G0 = g−1
1 g−1

0 g̃1g0G0, and g−1
1 g−1

0 g̃1g0 ∈ P+. This completes
the proof of the first claim.

Given one function f : G → P+, of course any other such function can be
uniquely written as f̂ = fh for a smooth function h : G → P+, so it remains
to understand P -equivariance. What we assume is that f(u · (g0g1)) =
g−1
1 g−1

0 f(u)g0 and we want f̂ to satisfy the analogous equivariancy condition.
But this exactly requires that g−1

1 g−1
0 f(u)g0h(u·(g0g1)) = g−1

1 g−1
0 f(u)h(u)g0,

which is equivalent to the claimed equivariancy of h. □

To connect to the well-known affine structure on the set of Weyl structures,
we observe two alternative ways to express things using the exponential
map. On the one hand, we have observed above that exp : p+ → P+ is a
diffeomorphism. Thus we can write h(u) = exp(Υ(u)) and equivariancy of h is
equivalent to Υ(u·(g0g1)) = Ad(g0)−1(Υ(u)). On the other hand, in the proof
of Theorem 3.1.3 of [16] it shown that also (Z1, . . . , Zk) 7→ exp(Z1) · · · exp(Zk)
defines a diffeomorphism g1 ⊕ · · · ⊕ gk → P+. Correspondingly, we can write
h(u) = exp(Υ1(u)) · · · exp(Υk(u)) where Υi : G → gi is a smooth map for
each i = 1, . . . , k. Again, equivariancy of h translates to Υi(u · (g0g1)) =
Ad(g0)−1(Υi(u)) for each i.

There is also a nice global way to express the affine structure. The
filtration of TM induced by a parabolic geometry dualizes to a filtration of
the cotangent bundle T ∗M and we can form the associated graded bundle
gr(T ∗M). The general theory implies that this can be realized as G ×P

gr(p+) ∼= G0 ×G0 p+.

Proposition 2.3. Let π : A → M be the bundle of Weyl structures associated
to a parabolic geometry (p : G → M,ω). Then for any smooth section s of π,
there is an induced diffeomorphism ϕs : T ∗M → A.
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Proof. Let σ : G0 → G be the G0-equivariant section determined by s.
Since exp : p+ → P+ is a diffeomorphism, we conclude that Φs(u0, Z) :=
σ(u0) exp(Z) defines a diffeomorphism Φs : G0×p+ → G. Given g0 ∈ G0, the
definition readily implies that Φs(u · g0,Ad(g−1

0 )(Z)) = Φs(u0, Z) · g0. Hence
there is an induced diffeomorphisms between the orbit spaces gr(T ∗M) =
G0 ×G0 p+ and A = G0/G0. □

2.3. The basic geometric structures on A

It was shown in [21] that the parabolic geometry (p : G → M,ω) gives rise to
a connection on the tangent bundle TA of A. The argument used to obtain
this connection is rather intricate: There is the opposite parabolic subgroup
P op to P which corresponds to the Lie subalgebra g− ⊕ g0 ⊂ g and one
considers the homogeneous space G/P op. Restricting the G-action to P and
forming the associated bundle G×P (G/P op) the Cartan connection ω induces
a natural affine connection on the total space of this bundle. It is then easy
to see that P ∩ P op = G0, so acting with P on eP op defines a P -equivariant
open embedding A → G ×P (G/P op), thus providing a connection on TA
as claimed. Our first main result provides a more conceptual description of
this connection, which directly implies compatibility with several additional
geometric structures on A.

Proposition 2.4. The canonical projection G → A is a G0-principal bundle
and ω defines a Cartan connection on that bundle, so (G → A,ω) is a Cartan
geometry of type (G,G0). In particular, the g0-component of ω defines a
canonical principal connection on G → A and TA ∼= G ×G0 (g/g0), so this
inherits a canonical linear connection. Finally, there is a natural splitting
TA = L− ⊕ L+ into a direct sum of two subbundles of rank dim(M), which
is parallel for the connection and such that L+ is the vertical bundle of π.

Proof. Mapping u ∈ G to the class of (u, eG0) in G×P (P/G0) is immediately
seen to be surjective and its fibers coincide with the orbits of G0 on G. Hence
one obtains an identification of G/G0 with A, and it is well known that
this makes the projection G → A into a G0-principal bundle. The defining
properties of ω for the group P and the Lie algebra p then imply the
corresponding properties for the group G0 and the Lie algebra g0, so ω
defines a Cartan connection on G → A.

As a representation of G0, we get g = g0 ⊕ (g− ⊕ p+). This means that we
have given a G0-invariant complement to g0 in g. Decomposing ω accordingly,
the component ω0 in g0 is G0-equivariant, thus defining a principal connection
on G → A, which induces linear connections on all associated vector bundles.
Moreover, since ω is a Cartan connection on G → A, we can identify TA
with the associated vector bundle

G ×G0 (g/g0) ∼= G ×G0 (g− ⊕ p+).

This readily implies both the existence of a natural connection and of a
compatible decomposition of TA with L− = G ×G0 g− and L+ = G ×G0 p+.
The tangent map Tπ : TA → TM is induced by the projection g/g0 → g/p.
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Identifying g/g0 with g−⊕p+ the kernel of this projection is p+, which shows
that L+ ⊂ TA coincides with ker(Tπ). □

This result also gives us a basic supply of natural vector bundles on A,
namely the vector bundles associated to the principal bundle G → A via
representations of G0. Moreover, the principal connection on that bundle
coming from ω0 gives rise to an induced linear connection on each of these
associated bundles. We will denote all these induced connections by D. Given
an associated bundle E → A, we can view D as an operator D : Γ(E) →
Γ(T ∗A⊗E). Of course the splitting TA = L−⊕L+ from Theorem 2.4 induces
an analogous splitting of T ∗A, which allows us to split D into two partial
connections D = D− ⊕D+. Here D± : Γ(E) → Γ((L±)∗ ⊗ E). Viewing D
as a covariant derivative, D± is defined by differentiating only in directions
of the corresponding subbundle of TA.

2.4. Relations between natural vector bundles

Recall that the natural vector bundles for the parabolic geometry (p : G →
M,ω) are the associated vector bundles of the form VM = G ×P V for
representations V of P . Throughout this article, we will only consider the
case that the center Z(G0) of the subgroup G0 ⊂ P acts diagonalizably
on V. Together with the fact that G0 is reductive, this implies that V is
completely reducible as a representation of G0. One important subclass of
natural bundles is formed by completely reducible bundles that correspond
to representations of P on which the subgroup P+ ⊂ P acts trivially, which
is equivalent to complete reducibility as a representation of P . On the other
hand, there are tractor bundles which correspond to restrictions to P of
representations of G.

Any representation V of P can naturally be endowed with a P -invariant
filtration of the form V = V0 ⊃ V1 ⊃ · · · ⊃ VN as follows (see Section 3.2.12
of [16]). The smallest component VN consists of those elements, on which
p+ acts trivially under the infinitesimal action. The larger components are
characterized iteratively by the fact that v ∈ Vj if and only if it is sent to
V

j+1 by the action of any element of p+. Then one defines the associated
graded representation gr(V) := ⊕N

i=0 gri(V) with gri(V) := (Vi/Vi+1) and
V

N+1 = {0}. By construction, this is a completely reducible representation
of P .

As an important special case, consider the restriction of the adjoint rep-
resentation of G to P . Then it turns out that, up to a shift in degree,
the canonical P -invariant filtration is exactly the filtration {gi} derived
from the |k|-grading of g as in Section 2.1. In particular, this implies that
g2 = [p+, p+] and similarly, the higher filtrations components form the lower
central series of p+. Using this it is easy to see that the natural filtration
on any representation V of P has the property that gi ·Vj ⊂ V

i+j for all
i, j ≥ 0 under the infinitesimal representation of p = g0. This readily implies
that there is a natural action of the associated graded gr(p) on gr(V), which
is compatible with the grading. Since the filtration of p is induced by the
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(non-negative part of the) grading on g, we can identify gr(p) with p via the
inclusion of gi into gi. Altogether, we get, for each i, j ≥ 0, bilinear maps
gi × grj(V) → gri+j(V), which are P -equivariant (with trivial action of P+)
by construction.

As a representation of the subgroup G0 ⊂ P , the associated graded gr(V)
is isomorphic to V. Indeed, we have observed above that V is completely
reducible as a representation of G0, so the same holds for each of the
subrepresentations Vj ⊂ V. In particular, there always is a G0-invariant
complement Vj to the invariant subspace Vj+1 ⊂ Vj and we put VN = VN .
By construction, we on the one hand get V ∼= ⊕Vj and on the other hand
Vj

∼= Vj/Vj+1 which implies that claimed statement. Otherwise put, one
can interpret the passage from V to gr(V) as keeping the restriction to G0
of the P -action on V and extending this by the trivial action of P+ to a new
action of P .

The construction of the associated graded has a direct counterpart on
the level of associated bundles. Putting VM := G ×P V → M , any of the
filtration components Vi defines a smooth subbundle ViM := G×P V

i → M .
Thus VM is filtered by the smooth subbundles ViM and we can form the
associated graded vector bundle gr(VM) = ⊕(ViM/Vi+1M). It is easy to see
that this can be identified with the associated bundle G ×P gr(V). However,
the fact that V and gr(V) are isomorphic as representations of G0 does not
have a geometric interpretation without making additional choices. Hence on
the level of associated bundles, it is very important to carefully distinguish
between a filtered vector bundle and its associated graded.

Any representation V of P defines a representation of G0 by restriction.
Hence denoting by π : A → M the bundle of Weyl structures, V also gives
rise to a natural vector bundle over A that we denote by VA := G×G0V→ A.
Some information is lost in that process, however, for example G ×G0 V

∼=
G×G0 gr(V) for any representation V of P . Next, sections of VA → A can be
naturally identified with smooth functions G → V that are G0-equivariant.
Similarly, sections of VM → M are in bijective correspondence with smooth
functions G → V, which are P -equivariant. Thus we see that there is a
natural inclusion of Γ(VM → M) as a linear subspace of Γ(VA → A). We
will denote this by putting a tilde over the name of a section of VM → M in
order to indicate the corresponding section of VA → A. So both the sections
of VM → M and of its associated graded vector bundle can be interpreted
as (different) subspaces of the space of sections of VA → A.

Now we can describe the relations of bundles and sections explicitly.

Theorem 2.5. Let (p : G → M,ω) be a parabolic geometry of type (G,P )
and let π : A → M be the corresponding bundle of Weyl structures. Fix
a representation V of P and consider the corresponding natural bundles
VM = G ×P V→ M and VA = G ×G0 V→ A. Then we have:

(1) VA can be naturally identified with the pullback bundle π∗VM . In
particular, L− ∼= π∗TM and L+ ∼= π∗T ∗M .

(2) The operation σ 7→ σ̃ identifies Γ(VM → M) with the subspace of
Γ(VA → A) consisting of those sections τ for which D+

ϕ τ = −ϕ • τ for
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all ϕ ∈ Γ(L+). Here • : L+ × VA → VA is induced by the infinitesimal
representation p+ ×V→ V.

In particular, for a completely reducible bundle VM , σ̃ = π∗σ and the
image consists of all sections that are parallel for D+.

(3) Any section s : M → A of π determines a natural pullback operator
s∗ : Γ(VA → A) → Γ(gr(VM) → M). In particular, choosing s, σ 7→ s∗σ̃
defines a map Γ(VM) → Γ(gr(VM)). This map is induced by a vector bundle
isomorphism VM → gr(VM) that coincides with the isomorphism determined
by the Weyl structure corresponding to s as in Section 5.1.3 of [16].

Proof. (1) follows directly from the construction: Mapping a G0-orbit in
G × V to the P -orbit it generates, defines a bundle map VA → VM with
base map π : A → M . This evidently restricts to a linear isomorphism in
each fiber and hence defines an isomorphism VA → π∗VM . The second
statement follows from the well known facts that TM ∼= G ×P (g/p) and
T ∗M ∼= G ×P p+ and the fact that g/p ∼= g− as a representation of G0.
(2) Since P is a semi-direct product, P -equivariancy of a function is

equivalent to equivariancy under G0 and P+ and equivariancy under P+ is
equivalent to equivariancy for the infinitesimal action of p+. Hence for a
G0-equivariant function f : G → V, P -equivariancy is equivalent to the fact
that for each u ∈ G and Z ∈ p+ with fundamental vector field ζZ , we get
ζZ(u)·f = Z ·f(u). Here in the left hand side the vector field differentiates the
function, while in the right hand side we use the infinitesimal representation
of p+ on V. Suppose that u projects to y ∈ A. Then by definition, ζZ(u)
is the horizontal lift with respect to D of a tangent vector ϕ ∈ L+

y ⊂ TyA.
Hence ζZ(u) · f represents Dϕτ(y) = D+

ϕ τ(y) in the, while Z · f(u) of course
represents ϕ • τ(y).

In the case of a completely reducible bundle, • is the zero map, so we see
that our subspace coincides with the D+-parallel sections. On the other hand,
for any section σ ∈ Γ(VM), the pullback π∗σ is constant along the fibers of
π. Since we know from Theorem 2.4 that L+ is the vertical subbundle of π,
this implies that π∗σ = σ̃.
(3) As we have noted already, for any representation V of P , the associated

graded gr(V) is isomorphic to V as a representation of G0. Thus we conclude
from (1) that we can not only identify VA with the pullback of VM but also
with the pullback of the associated graded vector bundle gr(VM). Hence
for a smooth section s : M → A and a point x ∈ M , we can naturally
identify the fiber Vs(x)A with the fiber over x of gr(VM). This provides a
pullback operator s∗ : Γ(VA) → Γ(gr(VM)), so σ 7→ s∗σ̃ defines an operator
Γ(VM) → Γ(gr(VM)). This operator is evidently linear over C∞(M,R) and
thus induced by a vector bundle homomorphism VM → gr(VM) with base
map idM . Suppose that for σ ∈ Γ(VM) and x ∈ M we have (s∗σ̃)(x) = 0.
Then the function f : G → V which corresponds to both σ and σ̃ has to
vanish along the fiber of G → A over s(x). But P -equivariancy then implies
that f vanishes along the fiber of G → M over x, so σ(x) = 0. This implies
that our bundle map is injective in each fiber and since both bundles have
the same rank it is an isomorphism of vector bundles.
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The standard description of the isomorphism VM → gr(VM) induced by a
Weyl structure is actually also phrased in the language of sections; Given the
P -equivariant function f : G → V corresponding to σ and the G0-equivariant
section s : G0 → G determined by s, one considers the G0-equivariant
function f ◦ s. This describes a section of G0 ×G0 V

∼= G0 ×G0 gr(V). Going
through the identifications, it is clear that this coincides with the isomorphism
described above. □

Remark 2.6. (1) In principle, the pullback operation defined in part (3) of
Theorem 2.5 could also be interpreted as having values in Γ(VM → M).
Since VA does not contain any information about the p+-action on V, the
interpretation with values in Γ(gr(VM) → M) seems much more natural to
us.

(2) The comparison to the standard description of Weyl structures in
part (3) of the theorem also implies how the isomorphisms VM → gr(VM)
induced by sections s of A → M are compatible with the affine structure
on the space of these sections from Theorem 2.2, compare with Proposition
5.1.5 of [16]. It is also easy to give a direct proof of this result in our picture.
One just has to interpret the affine structure in terms of sections of L+ → A
and then use the obvious solution of the differential equation D+

ϕ τ = ϕ • τ
for appropriate sections ϕ.

2.5. The Weyl connections

We next describe the interpretation of Weyl connections in our picture. At
the same time, we obtain a nice description of the Rho-corrected derivative
associated to a Weyl structure, that was first introduced in [10], see Section
5.1.9 of [16] for a discussion. The Rho-corrected derivative comes from a
principal connection on G determined by an equivariant section σ : G0 → G.
One takes the component of ω in p along the image of σ and extends it
equivariantly to a principal connection. The name "Rho-corrected derivative"
comes from the explicit formula of this derivative in terms of Weyl connection
an the Rho-tensor. To obtain our description, we first observe that the
pullback operation from part (3) of Theorem 2.5 clearly extends to differential
forms with values in a natural vector bundle. Let V be a representation of
P with corresponding natural bundles VM → M and VA → A. Then one
can pull back a VA-valued k form ϕ on A along a section s : M → A to a
gr(VM)-valued k-form s∗ϕ on M in an obvious way.

Theorem 2.7. Let V be a representation of P and let VM → M and
VA → A be the corresponding natural bundles. For σ ∈ Γ(VM) consider the
natural lift σ̃ ∈ Γ(VA). For a smooth section s : M → A let ∇s be the Weyl
connection of the Weyl structure determined by s. Let ξ ∈ X(M) be a vector
field with natural lift ξ̃ ∈ Γ(L−).

(1) The pullback s∗Dσ̃ ∈ Ω1(M, gr(VM)) of Dσ̃ ∈ Ω1(A,VA) coincides
with the image of ∇sσ ∈ Ω1(M,VM) under the isomorphism VM → gr(VM)
induced by s as in Theorem 2.5.
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(2) The pullback s∗(D−
ξ̃
σ̃) ∈ Γ(gr(VM)) coincides with the image of the

Rho-corrected derivative ∇P
ξ σ ∈ Γ(VM) under the isomorphism induced by s

as in Theorem 2.5.

Proof. Let s̄ : G0 → G be the G0-equivariant section corresponding to s. For
a point x ∈ M , an element u ∈ G with p(u) = x lies in the image of s̄ if and
only if u projects to s(x) ∈ A. Assuming this, put u0 = q(u) where q : G → G0
is the projection, so u = s̄(u0). To compute ∇s, we need the horizontal lift
ξ̂ ∈ X(G0) of ξ for the principal connection s̄∗ω0. This is characterized by the
fact that ξ̂(u0) projects onto ξ(x) and that ω(u)(Tu0 s̄ · ξ̂(u0)) has vanishing
g0-component. But by construction Tu0 s̄ · ξ̂(u0) projects onto Txs · ξ(x) and
so vanishing of the g0-component implies that this is the horizontal lift of
Txs · ξ(x) in u corresponding to the principal connection ω0 that induces D.
From this, (1) follows immediately.

The argument for (2) is closely similar. By definition, ξ̃(s(x)) is the unique
tangent vector that lies in L− and projects onto ξ(x). The D-horizontal
lift of this tangent vector in u, by construction, is mapped to g− by ω and
projects onto ξ(x) ∈ TxM . But this is exactly the characterizing property of
the horizontal lift with respect to the principal connection γ s̄ used in Section
5.1.9 of [16] to define the Rho-corrected derivative. Thus the restriction of
the G0-equivariant function G → V representing D−

ξ̃
σ̃ to s̄(G0) coincides

with the restriction of the P -equivariant function representing ∇P
ξ σ and the

claim follows from Theorem 2.5. □

2.6. The universal Rho-tensor

Using the pullback of bundle valued forms, we can also describe the Rho
tensor in our picture. Recall that we use the convention of [15] and [16] for
Rho tensors in the setting of general parabolic geometries, which differ by
sign from the standard conventions for projective and conformal structures.

Proposition 2.8. Let us view the projection TA → L+ as P ∈ Ω1(A,L+).
Then for each smooth section s : M → A, the pullback s∗P ∈ Ω1(M, gr(T ∗M))
coincides with the Rho-tensor of the Weyl structure determined by s as defined
in Section 5.1.2 of [16].

Proof. Take a point x ∈ M , a tangent vector ξ ∈ TxM and consider Txs · ξ ∈
Ts(x)A. Choose a point u ∈ G over s(x) and consider its image u0 = q(u) ∈ G0.
Since u projects to s(x), it lies in the image of the G0-equivariant section
s̄ : G0 → G determined by s, so u = s̄(u0). Taking a tangent vector
ξ̂ ∈ Tu0G0, the tangent vector Tu0 s̄ · ξ̂ ∈ TuG, by construction, projects onto
Txs · ξ ∈ Ts(x)A. But then, by definition, the L+ component of Txs · ξ is
obtained by projecting ω(u)−1(ω+(Tu0 s̄ · ξ̂)) to Ts(x)A, where ω+ denotes
the p+-component of the Cartan connection ω. But the Rho-tensor of s̄ is
defined as the gr(T ∗M)-valued form induced by the G0-equivariant form
s̄∗ω+, which completes the argument. □
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Definition 2.9. The form P ∈ Ω1(A,L+) defined by the projection TA → L+

is called the universal Rho-tensor of the parabolic geometry (p : G → M,ω).

2.7. Curvature and torsion quantities

The curvature K ∈ Ω2(G, g) of the Cartan connection ω is defined by
K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)] for ξ, η ∈ X(G). Since K is horizontal and
P -equivariant, it can be interpreted as κ ∈ Ω2(M,AM), whereAM = G×P g
is the adjoint tractor bundle. In the same way, we can interpret it as a
two-form on A with values in the associated bundle G ×G0 g. Since K is
horizontal over M , it follows that this two form vanishes upon insertion of one
tangent vector from L+ ⊂ TA. In view of the G0-invariant decomposition
g = g− ⊕ g0 ⊕ p+ we can decompose that two-form further. To do this, we
denote by End0(TA) the associated bundle G×G0 g0. Via the adjoint action,
this can naturally be viewed as a subbundle of L(TA, TA).

Definition 2.10. The components T ∈ Ω2(A,L−), W ∈ Ω2(A,End0(TA))
and Y ∈ Ω2(A,L+) of the two form on A induced by K are called the
universal torsion, the universal Weyl curvature and the universal Cotton-
York tensor of the parabolic geometry (p : G → M,ω).

The following result follows directly from the definitions.

Proposition 2.11. For any smooth section s : M → A, the pullbacks s∗T ∈
Ω2(M, gr(TM)), s∗W ∈ Ω2(M,End0(TM)) and s∗Y ∈ Ω2(M, gr(T ∗M))
correspond to the components of the Cartan curvature κ ∈ Ω2(M,AM)
under the isomorphism AM ∼= gr(AM) ∼= gr(TM)⊕End0(TM)⊕ gr(T ∗M)
induced by the Weyl structure determined by s.

These quantities are related to data associated to the Weyl structure
determined by s in Section 5.2.9 of [16] and these results can be easily
recovered in the current context.

On the level of A, the best way to interpret the components of the Cartan
curvature is via the torsion and curvature of the canonical connection D. This
interpretation will also be crucial for the analysis of the intrinsic geometric
structure on A in Section 3 below. To formulate the result, we need a bit
more notation. The Lie bracket is a G-equivariant, skew symmetric bilinear
map g× g → g. Now we can restrict this to entries from g− ⊕ p+ and then
decompose the values according to g = (g− ⊕ p+)⊕ g0, and the result will
still be G0-equivariant. The first component induces a two-form on A with
values in TA which we denote by { , }. Similarly, the g0-component of the
bracket defines a two-form { , }0 on A with values in End0(TA). Using this,
we formulate

Theorem 2.12. Let A → M be the bundle of Weyl structures associated
to a parabolic geometry, and let D be the canonical connection on TA. Let
τ ∈ Ω2(A, TA) be the torsion and ρ ∈ Ω2(A,L(TA, TA)) be the curvature of
D. Then we have:
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(1) The TA-valued two form τ + { , } vanishes upon insertion of one
section of L+. On Λ2L−, its components in L− and L+ are the tensors T
and Y from Theorem 2.10, respectively.

(2) The curvature ρ has values in End0(TA) ⊂ L(TA, TA). Moreover,
ρ+ { , }0 vanishes upon insertion of one section of L+ and coincides with
the tensor W from Theorem 2.10 on Λ2L−.

Proof. This follows from well known results on the curvature and torsion of
the affine connection induced by a reductive Cartan geometry. For ξ ∈ X(A),
let ξh ∈ X(G) be the horizontal lift. Then ω(ξh) : G → (g− ⊕ p+) is the
equivariant function corresponding to ξ. Taking a second field η, the bracket
[ξh, ηh] lifts [ξ, η] so ω±([ξh, ηh]) is the equivariant function representing
[ξ, η].
(1) From these considerations and the definition of the exterior derivative,

it follows readily that dω±(ξh, ηh) is the equivariant function representing
τ(ξ, η). On the other hand, the component of [ω(ξh), ω(ηh)] in g− ⊕ p+
of course represents {ξ, η}, so the claim follows from the definition of the
curvature of a Cartan connection.
(2) It is also well known that −ω0([ξh, ηh]) is the function representing

ρ(ξ, η). Since the g0-component of [ω(ξh), ω(ηh)] clearly represents {ξ, η}0,
the result again follows from the definition of the Cartan curvature. □

3. The natural almost bi-Lagrangian structure

From here on, we take a different point of view. We study the geometry on
the total space of the bundle of Weyl structures associated to a parabolic
geometry from an intrinsic point of view, using the relation to parabolic
geometries and Weyl structures as technical input. We shall see below that
these structures become rather exotic in the case of general gradings, so we
will restrict to parabolic geometries associated to |1|-gradings soon.

3.1. The almost bi-Lagrangian structure and torsion freeness

Consider a parabolic geometry (p : G → M,ω) of some type (G,P ) and
let π : A → M the associated bundle of Weyl structures. As we have
noted in Section 2.2, the tangent bundle TA decomposes as L− ⊕ L+, where
L− = G ×G0 g− and L+ = G ×G0 p+. It is also well known that g− and p+
are dual as representations of G0 via the restriction of the Killing form of
g. Thus we obtain a non-degenerate pairing B mapping L− × L+ to the
trivial real line bundle M × R. This pairing can be extended as either a
skew symmetric or a symmetric bilinear bundle map on TA, thus defining
Ω ∈ Ω2(A) and h ∈ Γ(S2T ∗A). By construction, for each y ∈ A both values
Ω(y) and h(y) are non-degenerate bilinear forms on TyA for which L+

y and
L−
y are isotropic. The resulting structure (Ω, L+, L−) is called an almost

bi-Lagrangian structure.
In particular, Ω ∈ Ω2(A) is an almost symplectic structure and an obvious

first question is when this structure is symplectic, i.e. when dΩ = 0.
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Theorem 3.1. Let (p : G → M,ω) be a parabolic geometry of type (G,P )
and π : A → M its associated bundle of Weyl structures. Then the natural
2-form Ω ∈ Ω2(A) is closed if and only if (G,P ) corresponds to a |1|-grading
and the Cartan geometry (p : G → M,ω) is torsion-free.

Proof. Let D be the canonical connection on TA from Section 2.3. Since Ω is
induced by a G0-invariant pairing on g− ⊕ g+ it satisfies DΩ = 0. If D were
torsion-free, then dΩ would coincide with the complete alternation of DΩ
and thus would vanish, too. In the presence of torsion, there still is a relation
as follows. Expanding DΩ = 0 by inserting vector fields ξ, η, ζ ∈ X(A), we
obtain

0 = ξ · Ω(η, ζ)− Ω(Dξη, ζ)− Ω(η,Dξζ).

Now one takes the sum of the right hand side over all cyclic permutations
of the arguments and uses skew symmetry of Ω to bring all derivatives of
vector fields into the first component. Then one may use the definition of the
torsion τ of D to rewrite Dξη−Dηξ as [ξ, η] + τ(ξ, η) and similarly for other
combinations of the fields. Then the terms in which one field differentiates
the value of Ω together with the terms involving a Lie bracket add up to the
exterior derivative. One concludes that DΩ = 0 implies

dΩ(ξ, η, ζ) =
∑

cyclΩ(τ(ξ, η), ζ),

where in the right hand side we have the sum over all cyclic permutations
of the arguments. Now let us assume that (G,P ) corresponds to a |k|-
grading with k > 1. Then L− and L+ decompose into direct sums of
subbundles according to the grading of g− and p+, respectively. Now we
take ξ ∈ L− of degree −1, η ∈ L+ of degree i > 1 and ζ ∈ L+ of degree
i − 1. Then by Theorem 2.12, τ coincides with { , } on any two of these
three fields. The restriction of dΩ to the subbundles corresponding to these
three degrees is induced by the trilinear map g−1 × gi × gi−1 → R given
by (X,Y, Z) 7→

∑
cyclB([X,Y ], Z), where B denotes the Killing form of

g. But B([X,Y ], Z) is already totally skew, so dΩ = 0 would imply that
B([X,Y ], Z) = 0 for all elements of the given homogeneities. But non-
degeneracy of B shows that B([X,Y ], Z) = 0 for all Z implies [X,Y ] = 0
while for Y ∈ gi, the equation [X,Y ] = 0 for all X ∈ g−1 implies Y = 0, see
Proposition 3.1.2 in [16].

Thus we may assume from now on that (G,P ) corresponds to a |1|-grading.
In this case, the bracket { , } is identically zero, so by Theorem 2.12,
τ vanishes upon insertion of one element from L+. Hence we see that
dΩ vanishes upon insertion of two elements of L+. Decomposing Λ3T ∗A
according to TA = L− ⊕ L+, the only potentially non-zero components of
dΩ thus are the ones in Λ3(L−)∗ and in Λ2(L−)∗ ⊗ (L+)∗.

Now if ξ, η ∈ Γ(L−) and ζ ∈ Γ(L+), then we simply obtain dΩ(ξ, η, ζ) =
Ω(T (ξ, η), ζ), where T is defined in Theorem 2.10. Non-degeneracy of Ω
shows that this vanishes for all ξ, η, ζ if and only if T = 0. This shows that
vanishing of T is a necessary condition for Ω being closed. In the case of
a |1|-grading, the pullback of T along a Weyl structure as in Theorem 2.11
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is independent of the Weyl structure and gives the torsion of the Cartan
geometry (p : G → M,ω).

To complete the proof, we thus have to show that (still in the case of a
|1|-grading) vanishing of T implies that the component of dΩ in Λ3(L−)∗
vanishes identically. As above, Theorem 2.12 shows that this component is
given by the sum of Ω(Y (ξ, η), ζ) over all cyclic permutations of its arguments.
But by construction, this is simply the complete alternation of Y , viewed as
a section of Λ2L+ ⊗ L+ via the identification (L−)∗ ∼= L+. In terms of the
Cartan geometry (p : G → M), it thus suffices to show that the component
κ+ of the Cartan curvature in p+ always has trivial complete alternation.

To do this, we first observe that for a |1|-graded Lie algebra g, the subal-
gebra g0 always splits into its center z(g0), which has dimension one, and
a semisimple part gss0 . For a torsion-free geometry, the component κ0 of κ
with values in g0 is the lowest non-vanishing homogeneous component of κ,
which implies that its values have to lie in gss0 , compare with Theorem 4.1.1
in [16]. Thus we conclude that, viewed as a function G → g, κ has values in
the subspace gss0 ⊕ g1.

Now we can apply the Bianchi identity in the form of equation (1.25)
in Proposition 1.5.9 of [16]. This contains four terms, three of which are
evaluations of the function κ or its derivative along some vector field, so
these have values in gss0 ⊕ g1, too. Formulated in terms of functions, the
Bianchi identity thus implies that for X1, X2, X3 the cyclic sum over the
arguments of [X1, κ(ω−1(X2), ω−1(X3))] has trivial component in z(g0). Now
we can replace the Xi by their components in g− without changing the
g0-component of [X1, κ(ω−1(X2), ω−1(X3))], which in addition depends only
on the g1-component of κ. Now it is well known that for X ∈ g−1 and Z ∈ g1,
the component of [X,Z] in z(g0) is a non-zero multiple of B(X,Z), where B
denotes the Killing form. But this exactly shows that, up to a non-zero factor,
the z(g0)-component of

∑
cycl[X1, κ(ω−1(X2), ω−1(X3))] represents the action

of the complete alternation of κ+ on the three vector fields corresponding to
the Xi. Thus this complete alternation vanishes identically. □

Remark 3.2. (1) The failure of closedness of Ω for |k|-gradings with k > 1
can be described more precisely. The map (X,Y, Z) 7→ B([X,Y ], Z) that
shows up in the proof defines a G-invariant element in Λ3g∗ and hence a
bi-invariant 3-form on G. Restricting this to Λ3(g− ⊕ p+)∗, one obtains a
G0-invariant trilinear form, which is non-zero provided that k > 1. This
in turn induces a natural 3-form on each manifold endowed with a Cartan
Geometry of type (G,G0). On a bundle of Weyl structures, the proof of
Theorem 3.1 shows that this form always is a component of dΩ.

(2) The parabolic geometries corresponding to |1|-gradings form a very
interesting class of structures. For a |1|-grading, the subalgebras g− and
p+ become Abelian, whence the name “Abelian parabolic geometries” is
sometimes used for these structures. The classification of |1|-gradings of
simple Lie algebras is well known from the theory of Hermitian symmetric
spaces, which motivates the more common name “AHS structures” where
AHS is shorthand for “almost Hermitian symmetric”.
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Suppose that (G,P ) corresponds to a |1|-grading on g. As noted in
Section 2.1, the underlying structure p0 : G0 → M of a Cartan geometry
(p : G → M) simply becomes a reduction of the linear frame bundle of M to
the structure group G0 ⊂ GL(g−1). Thus AHS structures are a special class
of G-structures, whose relevance is explained by the classification results by
S. Kobayashi and T. Nagano in [24]. They prove that these are the only
structures for which the group acts irreducibly, and which have the property
that any automorphism is determined by a finite jet in a point but not by
the one-jet in a point. In fact, automorphisms are always determined by
the two-jet in a point and the equivalent canonical Cartan geometry of type
(G,P ) is the most effective description for these structures.

The torsion-freeness condition that shows up in Theorem 3.1 has a natural
interpretation in the language of G0-structures. As noted in the proof, the
torsion T associated to a Weyl structure in this case is independent of the Weyl
structure. It turns out that this coincides with the intrinsic torsion of the G0-
structure (i.e. the component of the torsion that is independent of the choice
of connection). Thus torsion-freeness of the Cartan geometry corresponds to
the usual notion of integrability in the language of G0-structures.

(3) For some types of AHS-structures, torsion-freeness implies local flatness.
Locally flat structures can be equivalently be characterized as being obtained
from local charts with values in the homogeneous model G/P , for which the
transition functions are given by restrictions of left actions of elements of g.
This case anyway plays a very important role in the results we are going to
prove, so our results are also relevant to these types of AHS structures.

3.2. Local frames

From this point on, we restrict the discussion to torsion-free geometries
of some type (G,P ) that corresponds to a |1|-grading of g, so that by
Theorem 3.1 Ω defines a symplectic structure on A. Recall from Section 2.4
that any vector field ξ ∈ X(M) determines a section ξ̃ ∈ Γ(L−), and since
g− is a completely reducible representation in the |1|-graded case, we get
D+ξ̃ = 0. Similarly, a one-form α ∈ Ω1(M) defines a section α̃ ∈ Γ(L+) such
that D+α̃ = 0. We further know that L− ∼= π∗TM and L+ = π∗T ∗M . This
implies that starting with local frames for TM and T ∗M defined on some
open set U ⊂ M , the lifts form local frames for L± defined on π−1(U), so
together, these form a local frame for TA. One may in particular use dual
local frames for TM and T ∗M in which case the resulting local frame for
TA is nicely adapted to the almost bi-Lagrangian structure and thus both
to Ω and to h. As a preparation for the following computations, we next
compute the Lie brackets of such sections.

Proposition 3.3. Consider a torsion-free AHS structure (p : G → M,ω)
and let π : A → M be the corresponding bundle of Weyl structures. Let
ξ, η ∈ X(M) be vector fields and α, β ∈ Ω1(M) be one-forms on M and
consider the corresponding sections ξ̃, η̃ ∈ Γ(L−) and α̃, β̃ ∈ Γ(L+).
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Then for the Lie brackets on A, we get [α̃, β̃] = 0 and [ξ̃, α̃] = Dξ̃α̃ ∈
Γ(L+). Finally, the L−-component of [ξ̃, η̃] coincides with ˜[ξ, η], while its
L+-component coincides with −Y (ξ̃, η̃), see Theorem 2.10.

Proof. By definition of the torsion
(1) τ(X,Z) = DXZ −DZX − [X,Z]
for all X,Z ∈ X(A). If at least one of the two fields is a section of L+, then
the left hand side of (1) vanishes by Theorem 2.12. Moreover, all the sections
coming from M are parallel in L+-directions. This immediately shows that
[α̃, β̃] = 0 and 0 = Dξ̃α̃ − [ξ̃, α̃]. In view of torsion-freeness, Theorem 2.12
further tells us that τ(ξ̃, η̃) = Y (ξ̃, η̃) ∈ Γ(L+). Inserting X = ξ̃ and Z = η̃
into the right hand side of (1), the first two terms are sections of L−, so the
claim about the L+-component of [ξ̃, η̃] follows. Finally, since ξ̃ and η̃ are
lifts to A of ξ and η, the bracket [ξ̃, η̃] ∈ X(A) is a lift of [ξ, η]. Since [̃ξ, η] is
the unique section of L− that projects onto [ξ, η], it has to coincide with the
L−-component of that lift. □

In particular, we see that, while L+ always defines an involutive distribu-
tion, L− is only involutive if the curvature component Y from Theorem 2.10
vanishes identically. From the interpretation via the Cartan curvature, one
easily concludes that this is equivalent to local vanishing of the Cartan curva-
ture. Thus our structure is bi-Lagrangian (in the sense that both subbundles
L± are integrable) if and only if the initial parabolic geometry is locally flat.

3.3. The canonical metric

We next study the pseudo-Riemannian metric h induced on A. By definition,
the subbundles L± are isotropic for h, so this metric always has split signature
(n, n), where n = dim(M). Our main next aim will be to prove that the
metric h is always Einstein. As a first step in this direction, consider the
canonical connection D and its curvature ρ ∈ Ω2(A,End0(TA)) as described
in Section 2.7.

Lemma 3.4. The Ricci-type contraction of ρ is a non-zero multiple of h.

Proof. By Theorem 2.12, ρ+ { , }0 vanishes upon insertion of one section of
L+ and coincides with W on Λ2(L−)∗. Decomposing Λ2TA∗ according to
TA = L+ ⊕ L−, we conclude that the component of ρ in Λ2(L+)∗ vanishes,
its component in (L−)∗ ⊗ (L+)∗ is induced by −{ , }0, and the component
in Λ2(L−)∗ is induced by W . On the other hand, End0(TA) = G ×G0 g0, so
this is a subbundle of ((L−)∗ ⊗ L−)⊕ ((L+)∗ ⊗ L+) ⊂ TA∗ ⊗ TA. Thus we
conclude that the Ricci-type contraction of ρ vanishes on L+ × L+, while
its components on L− × L+ and L− × L− are induced by the Ricci-type
contractions of −{ , }0 and W , respectively. By Theorem 2.11, the pullback
of W along any section s : M → A represents the Weyl curvature of the Weyl
structure determined by s. In the torsion-free case, this is well known to have
values in an irreducible representation of G0 that occurs with multiplicity one
in Λ∗g∗− ⊗ g, which implies that any contraction of W vanishes identically.
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Hence we see that the Ricci type contraction of ρ has values in (L−)∗ ⊗
(L+)∗ and is induced by the Ricci type contraction of −{ , }0, so this is a
natural bundle map, and we can compute it on the inducing representations.
Take a basis {ei} of g−1 and let {ei} be the dual basis of g∗−1

∼= g1, which
means that for the Killing form B, we get B(ei, ej) = δji . Now we have to
view the g0 component of the bracket [ , ] in g as a map sending (g− ⊕ p+)2
to an endomorphism of g−⊕ p+ via the adjoint action. Hence for X,Y ∈ g−1
and Z,W ∈ g1, the Ricci type contraction sends

(X
Z

)
and

(Y
W

)
to∑

iB
([[(X

Z

)
,
(ei
0
)]
,
(Y
W

)]
,
( 0
ei
)
) +

∑
iB

([[(X
Z

)
,
( 0
ei
)]
,
(Y
W

)]
,
(ei
0
))
.

Expanding the first sum using invariance of the Killing form and the fact
that g−1 is abelian, we obtain∑

iB([[Z, ei], Y ], ei) =
∑

iB(Z, [ei, [Y, ei]]) =
∑

iB(Z, [Y, [ei, ei]]),
and in the same way the second sum gives

∑
iB([X, [ei, ei]],W ). But the

element
∑

i[ei, ei] ∈ g0 is obtained from the identity map in g−1 ⊗ g∗−1 via
the isomorphism to g−1 ⊗ g1 and the bracket in g. Since these both are
g0-equivariant,

∑
i[ei, ei] is g0-invariant and thus contained in the center of

g0. In the |1|-graded case, this center is spanned by the grading element E.
In addition, B(E,

∑
i[ei, ei]) =

∑
iB([E, ei], ei) = − dim(g−1), so

∑
i[ei, ei]

is a non-zero multiple of E. Hence the whole contraction gives a non-zero
multiple of B(Z, Y ) +B(X,W ) = h(

(X
Z

)
,
(Y
W

)
). □

Now by construction, the canonical connection D satisfies Dh = 0, so D
is metric for h. This implies that the Levi-Civita connection ∇ of h can be
computed from D and its torsion τ . Indeed, we claim that for ξ, η, ζ ∈ X(A),
h(∇ξη, ζ) is given by
(2) h(Dξη, ζ)− 1

2h(τ(ξ, η), ζ) +
1
2h(τ(ξ, ζ), η) +

1
2h(τ(η, ζ), ξ).

This evidently defines a linear connection ∇ on TA. Moreover, the last three
terms in (2) are visibly skew symmetric in η and ζ, whence the fact that D
is metric with respect to h implies that ∇ is metric with respect to h, too.
On the other hand, since the last two terms in (2) are symmetric in ξ and
η, and τ is the torsion of D, one immediately verifies that ∇ is torsion-free.
Let us write C ∈ Γ(⊗2T ∗A⊗ TA) for the contorsion tensor between ∇ and
D, so C(ξ, η) = ∇ξη −Dξη and the last three terms in (2) explicitly express
h(C(ξ, η), ζ). Using this, we prove the following result

Theorem 3.5. For any torsion-free AHS structure, the pseudo-Riemannian
metric h induced by the canonical almost bi-Lagrangian structure on the
bundle A of Weyl structures is an Einstein metric with non-zero scalar
curvature.

Proof. Theorem 2.12 in the torsion-free case shows that τ vanishes upon
insertion of one section of L+ and has values in L+. Thus equation (2) shows
that h(C(ξ, η), ζ) vanishes if one of the three fields is a section of L+. This
shows that the only non-zero component of C is the one mapping L− × L−

to L+. Now it is standard how to compute the curvature of ∇ from C and
the curvature ρ of D via differentiating the equation defining C. The result
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contains terms in which C is differentiated as well as terms in which values of
C are inserted into C. From the form of C we have just deduced, it follows
that the latter terms vanish identically.

Using this, one computes that for ξ, η, ζ ∈ X(A) the difference R(ξ, η)(ζ)−
ρ(ξ, η)(ζ) is given by

(3) Dξ(C(η, ζ))−Dη(C(ξ, ζ)) + C(ξ,Dηζ)− C(η,Dξζ)− C([ξ, η], ζ).

(This is just the covariant exterior derivative of C with respect to D evaluated
on ξ and η and then applied to ζ.) In view of Theorem 3.4, it suffices to
prove that the Ricci-type contraction of this expression vanishes. To compute
this contraction, we leave ξ and ζ as entries, insert the elements of a local
frame of TA for η and hook the result into h together with the elements of
the dual frame. First of all, (3) visibly vanishes for ζ ∈ Γ(L+). If we insert
for η an element of a frame for L−, then the element of the dual frame will
sit in L+. Since C has values in L+, these summands do not contribute to
the contraction. Thus we only have to take into account the case that we
insert elements of a frame for L+ for η, and then the first and fourth term of
(3) visibly vanish. The remaining three terms vanish if ξ is a section of L+,
so what we have to compute is∑

i h
(
−D+

ei
(C(ξ, ζ)) + C(ξ,D+

ei
ζ)− C([ξ, ei], ζ), ei

)
for a smooth local frame {ei} for L+ with dual frame {ei} for L− and local
sections ξ, ζ ∈ Γ(L−). Now we can take ξ and ζ and the local frames to be
obtained from vector fields respectively one-forms on M . Then D+

ei
ζ = 0,

while [ξ, ei] ∈ Γ(L+) by Theorem 3.3 and thus C([ξ, ei], ζ) = 0.
Thus we are left with computing

∑
i h(D+

ei
(C(ξ, ζ)), ei) with the frames,

ξ and ζ all coming from M . In particular, ei is parallel for D+ so since D
is metric for h, we may rewrite this as

∑
i e

i · h(C(ξ, ζ), ei). We can then
insert the formula for h(C(ξ, ζ), ei) resulting from (2), taking into account
that on entries from L− the torsion τ is determined by the tensor Y from
Theorem 2.10. Viewing Y as a section of Λ2(L−)∗ ⊗ (L−)∗, this leads to∑

i e
i · h(C(ξ, ζ), ei) = 1

2
∑

i e
i · (−Y (ξ, ζ, ei) + Y (ξ, ei, ζ) + Y (ζ, ei, ξ)).

From the proof of Theorem 3.1, we know that the complete alternation of
Y vanishes, which allows us to rewrite this as

∑
i e

i · Y (ζ, ei, ξ). Under the
standing assumption that all sections come from M , they are parallel for
D+, so we can complete the proof by showing that

∑
i(D+

ei
Y )(ζ, ei, ξ) = 0.

Now by definition, Y is a component of the Cartan curvature, which
descends to a well defined section of the bundle Λ2T ∗M ⊗ AM , where
AM = G ×P g. By torsion freeness, the full Cartan curvature has the form
(0,W, Y ) with respect to the decomposition g = g−1 ⊕ g0 ⊕ g1. Hence by
Theorem 2.5, we get

D+
ϕ (0,W, Y ) = (0, D+

ϕW,D+
ϕ , Y ) = −ϕ • (0,W, Y ),

and the action • is induced by the Lie bracket on g. Since this bracket vanishes
on g1×g1 and defines the action of g0 on g±1, we conclude that D+W = 0 and
D+

ϕY = W (ϕ), where we view W as an section of Λ2(L−−)∗ ⊗ End(L+) ∼=
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Λ2(L−−)∗ ⊗ (L−)∗ ⊗ (L+)∗ in the right hand side. But this implies that∑
i(D+

ei
Y )(ζ, ei, ξ) is given by evaluating a trace of W on ζ and ξ and thus

vanishes. □

Remark 3.6. In the special case of a projective structure on a surface Σ,
the resulting Einstein metric on the four-manifold A is also anti-self-dual,
see [19] and also [8].

Remark 3.7. The automorphisms of a projective structure on a smooth mani-
foldM lift to become isometric symplectomorphisms of (A,Ω, h), see [19]. For
background about automorphisms of a parabolic geometry, see [1, 16, 20].

Remark 3.8. A pair (h,Ω), consisting of a split-signature metric h and a
symplectic form Ω that are related by an endomorphism which squares to
become the identity map, is also known as an almost para-Kähler structure.
Here, following [6], we refer to such a pair, or rather its associated triple
(Ω, L+, L−), as an almost bi-Lagrangian structure.

3.4. Geometry of Weyl structures

Viewed as a section of π : A → M , any Weyl structure defines an embedding
of M into A, and we can now study this embedding via submanifold geometry
related to the almost bi-Lagrangian structure. In particular, we can pull
back the two-form Ω and the pseudo-Riemannian metric to M along s, and
this naturally leads to the following definitions.

Definition 3.9. Let (p : G → M,ω) be a torsion-free AHS structure and let
s : M → A be a smooth section.

(1) The Weyl structure corresponding to s is called Lagrangian if and only
if s∗Ω = 0 and thus s(M) ⊂ A is a Lagrangian submanifold.

(2) The Weyl structure corresponding to s is called non-degenerate if
and only if s∗h ∈ Γ(S2T ∗M) is non-degenerate and thus defines a pseudo-
Riemannian metric on M .

These properties can easily be characterized in terms of the Rho tensor.

Proposition 3.10. A Weyl structure is Lagrangian if and only if its Rho
tensor is symmetric and non-degenerate if and only if the symmetric part of
its Rho tensor is non-degenerate.

Proof. For a point x ∈ M and a tangent vector ξ ∈ TxM consider Txs · ξ ∈
Ts(x)(A). Since this is a lift of ξ, its L−-component has to coincide with
ξ̃(s(x)). On the other hand, by Theorem 2.8, the L+-component of Txs · ξ
corresponds to P(x)(ξ) ∈ T ∗

xM . Pulling back the pairing between L− and
L+, one thus obtains the map (ξ, η) 7→ P(x)(η)(ξ) and thus the result follows
from the definitions of Ω and h. □

Remark 3.11. (1) For any type of parabolic geometry, there are natural line
bundles called bundles of scales, an example in the AHS-case is provided
by the bundle EM in Theorem 4.2 below. If EM is any bundle of scales
on M , then mapping a Weyl structure to the induced Weyl connection on
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EM induces a bijective correspondence between Weyl structures and linear
connections on EM . Fixing EM , one calls a Weyl structure closed if the
corresponding linear connection on EM is flat and exact if in addition there is
a global parallel section of EM , see [15] and Section 5.1 of [16]. For general
types of geometries there is a larger freedom of choice of bundles of scales,
but for AHS-structures all bundles of scales lead to the same subclasses of
closed and exact Weyl structures.

Together with the general theory of Weyl structures, Theorem 3.10 implies
that, on a torsion-free AHS-structure, a Weyl structure is Lagrangian if
and only if it is closed. This follows from the relation between curvature
and torsion of a Weyl connection and the Cartan curvature as discussed in
Example 5.2.3 of [16] in the setting of AHS structures. By Theorem 5.2.3
of that reference, the curvature R ∈ Ω2(M,G ×g g0) of the Weyl connection
corresponding to s ∈ Γ(A) can be computed as s∗W +∂s∗P for the quantities
from Theorem 2.11 and a certain natural bundle map ∂. For the action on
a bundle of scales, the component of R with values in the center z(g0) is
relevant. For a torsion free geometry, W is the lowest non-zero component of
the Cartan curvature and hence by general results has values in an irreducible
subrepresentation which cannot meet this center. Hence the curvature of the
Weyl connection is only induced by ∂s∗P, and the component of this in z(g0)
is immediately seen to be the skew part of the Rho tensor up to a non-zero
factor.

This result nicely corresponds to the fact that for the canonical symplectic
structure on any cotangent bundle T ∗N , the image of a one-form α ∈ Ω1(N)
in T ∗N is a Lagrangian submanifold if and only if dα = 0.

(2) In the case of an AHS-structure, the cotangent bundle T ∗M coincides
with the associated graded bundle, so Theorem 2.3 shows that a Weyl
structure s determines a diffeomorphism ϕs : T ∗M → A. Now we can use this
to pull back the geometric structures on A to T ∗M and in particular, in the
torsion-free case, compare the pullback of the symplectic form Ω ∈ Ω2(A) to
the canonical symplectic structure on T ∗M . Recall that the diffeomorphism
ϕs is induced by Φs : G0 × p+ → G, Φs(u0, Z) = σ(u0) · exp(Z), where
σ : G0 → G is the equivariant section determined by s.

Equivariancy of the Cartan connection ω ∈ Ω1(G, g) then implies that the
pullback Φ∗

sω can be easily expressed explicitly in terms of σ∗ω. Denoting by
q : G0×p+ → T ∗M the canonical projection, the definition of Ω in Section 3.1
shows that q∗ϕ∗

sΩ = Φ∗
sΩ sends tangent vectors ξ, η to the alternation of the

pairing between (Φ∗
sω)−(ξ) ∈ g−1 and (Φ∗

sω)+(η) ∈ g1. On the other hand,
it is easy to explicitly describe q∗α ∈ Ω1(G0 × p+), where α ∈ Ω1(T ∗M) is
the canonical one-form. From this, one can explicitly compute the pullback
−q∗dα of the canonical symplectic form on T ∗M and show that it equals
the sum of Φ∗

sΩ and the pullback of the alternation of the Rho-tensor. In
particular, generalizing a result from [28] in the projective case, we conclude
that ϕs : T ∗M → A is a symplectomorphism if and only if the Weyl-structure
s is Lagrangian. Indeed, it turns out that also the split-signature metric ϕ∗

sh



26 Čap and Mettler

on T ∗M can be computed explicitly in terms of the underlying AHS-structure.
All this will be taken up in more detail elsewhere.

To start the geometric study of Lagrangian Weyl structures, we can
characterize when s has the property that the submanifold s(M) ⊂ A is
totally geodesic.

Theorem 3.12. Let (p : G → M,ω) be a torsion-free AHS structure and
π : A → M its bundle of Weyl structures. Let s : M → A be a smooth
section corresponding to a Lagrangian Weyl structure, let ∇s denote the
corresponding Weyl connections and Ps the corresponding Rho-tensor. Then
the following conditions are equivalent:

(1) The submanifold s(M) ⊂ A is totally geodesic for the canonical
connection D.

(2) The submanifold s(M) ⊂ A is totally geodesic for the Levi-Civita
connection of h.

(3) ∇sPs = 0

Proof. We will use abstract index notation to carry out the computations
and denote the Rho tensor of s just by P, so this has the form Pij and is
symmetric by assumption. Since for each y ∈ A and x := π(y) ∈ M , we can
identify L−

y with TxM and L+
y with T ∗

xM , we can use the index notation also
on A, but here tangent vectors have the form (ξi, αj). In this language the
proof of Theorem 3.10 shows that for x ∈ M the tangent space Ts(x)s(M)
consists of all pairs of the form (ξi,Pjaξ

a). The condition that s(M) is
totally geodesic with respect to D means that for vector field (ξ, α) on A that
is tangent to s(M) along s(M), also the covariant derivative in directions
tangent to s(M) is tangent to s(M).

In particular, for a vector field η ∈ X(M), we know from above that
(η̃j , P̃kbηb) ∈ X(A) is tangent to s(M) along s(M). Since these fields are
parallel for D+, we see that s(M) is totally geodesic for D if and only if all
derivatives with respect to D of that field are tangent to s(M) along s(M).
But this can be checked by pulling back the components of D(η̃j , P̃kbηb)
along s, which by Theorem 2.7 leads to ∇s

iη
j and

(4) ∇s
iPkaη

a = ηa∇s
iPka + Pka∇s

iη
a,

respectively. So evidently, the result is tangent to s(M) if and only if
ηa∇s

iPka = 0 and since this has to hold for each η, we conclude that (1) is
equivalent to (3).

To deal with (2), we use the information on the contorsion tensor C from
Section 3.3. As observed in the proof of Theorem 3.5, the only non-zero
component of C maps L− × L− to L+. This means that (η̃j , P̃kbηb) is also
parallel in L+-directions for the Levi-Civita connection, so as above, we can
use the pull back of the full derivative along s and the result has to be tangent
to s(M). We write the pullback of C along s as Cijk using the convention
that C(ξ, η)k = ξiηjCijk. Now formula (2) from Section 3.3 expresses C
in terms of the torsion τ of D (with h just playing the role of identifying
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L+ with the dual of L−) and we know that the torsion corresponds to the
Cartan curvature quantity Y , see Theorem 2.12. Writing the pullback of
this along s in abstract index notion as Yijk, we conclude form formula (2)
that Cijk = 1

2(−Yijk + Yikj + Yjki). The pullback of the derivative along s

again has first component ∇s
iη

j but for the second component, we have to
add Ciakη

a to the right hand side of (4).
But it is a well known fact (see Theorem 5.2.3 of [16]) that the pullback

of Y along s is given by the covariant exterior derivative of the Rho-tensor
of s and since ∇s is torsion-free, this is expressed in abstract index notation
as Yijk = ∇s

iPjk − ∇s
jPik. Inserting this into the formula for Cijk, we

immediately conclude that we have to add ηa∇s
aPik − ηa∇s

kPia to (4). As
above, this implies that (2) is equivalent to

(5) ∇s
iPka +∇s

aPik −∇s
kPia = 0.

Of course, (5) is satisfied if ∇sP = 0. Conversely, if (5) holds, then summing
over all cyclic permutations of the indices shows that the total symmetrization
of ∇sP has to vanish. But subtracting three times this total symmetrization
from the left hand side of (5), one obtains −2∇s

kPia, so this has to vanish,
too. □

The result of Theorem 3.12 is particularly interesting if s is non-degenerate.
By Theorem 3.10 this implies that Ps defines a pseudo-Riemannian metric on
M and since ∇s is torsion-free, ∇sPs = 0 implies that ∇s is the Levi-Civita
connection of Ps. On the other hand, Ps is always related to the Ricci-type
contraction of the curvature of ∇s, see Section 4.1.1 of [16]. In particular, for
projective structures, symmetry of Ps implies that it is a non-zero multiple of
the Ricci curvature of ∇s, see [2], so in this case Ps defines an Einstein metric
on M . The condition that a projective structure contains the Levi-Civita
connection of an Einstein metric can be expressed as a reduction of projective
holonomy, see [12] and [11].

For a non-degenerate Lagrangian Weyl structure s, there is a well defined
second fundamental form of s(M) with respect to any linear connection on
TA which is metric for h. Extending the result of Theorem 3.12 in this case,
we can next explicitly compute the second fundamental forms for D and for
the Levi-Civita connection. To formulate the result, we use abstract index
notation as in the proof of Theorem 3.12.

Fix the section s : M → A corresponding to a non-degenerate, Lagrangian
Weyl structure. By non-degeneracy, the Rho tensor Pij of s admits an
inverse Pij ∈ Γ(S2TM) which is characterized by PijPjk = δik. In the proof
of Theorem 3.12, we have seen that Ts(x)s(M) is spanned by all elements of
the form (ηi,Pkaη

a) with ηi ∈ TxM . The definition of h readily implies that
the normal space T⊥

s(x)s(M) consists of all pairs of the form (ηi,−Pjkη
k), so

we can identify both the tangent and the normal space in s(x) with TxM via
projection to the first component. Correspondingly, the second fundamental
form of s(M) (with respect to any connection on TA which is metric for h)
can be viewed as a

(1
2
)
-tensor field on M . We denote the second fundamental
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form of s : M → (A, h) with respect to D by IIsD and with respect to the
Levi-Civita connection of h by IIsh.
Theorem 3.13. Let (p : G → M,ω) be a torsion-free AHS-structure with
bundle of Weyl structures π : A → M . Let s : M → A be a non-degenerate,
Lagrangian Weyl structure with Weyl connection ∇s and Rho-tensor P ∈
Γ(S2T ∗M), then
IIsD = −1

2P
ka∇s

iPja and IIsh = −1
2P

ka(∇s
iPja +∇s

jPia −∇s
aPij).

Proof. We only have to project the derivatives computed in the proof of
Theorem 3.12 to the normal space. From the description of tangent and
normal spaces, it follows readily that projecting (ξi, αj) to the normal space
and taking the L−-component of the result, one obtains 1

2(ξ
i−Piaαa). Using

this, the formulae follow directly from the the proof of Theorem 3.12. □

4. Relations to non-linear invariant PDE

We conclude this article by discussing a relation between the geometry on
the bundle A of Weyl structures and non-linear invariant PDE associated
to AHS structures. We will mainly consider the prototypical example of
a projectively invariant PDE of Monge-Ampère type. We briefly discuss
analogs of this and other invariant non-linear PDE for specific types of AHS
structures, but this will be taken up in detail elsewhere.

4.1. A tractorial description of A

We start by deriving an alternative description of the bundle A → M of
Weyl structures associated to an AHS structure (p : G → M,ω) based on
tractor bundles. As mentioned in Section 2.4, these are bundles associated
to representations of P that are restrictions of representations of G. An
important feature of these bundles is that they inherit canonical linear
connections from the Cartan connection ω. Together with some algebraic
ingredients, these form the basis for the machinery of BGG sequences that
was developed in [17] and [9], which will provide input to some of the
further developments. We have also met the canonical invariant filtration
on representations of P in Section 2.4 and the corresponding filtration of
associated bundles by smooth subbundles. For representations of G, these
admit a simpler description, that we derive first. In most of the examples we
need below, this description is rather obvious, so readers not interested in
representation theory aspects can safely skip the proof of this result.

Recall that for any |k|-grading on g, there is a unique grading element E,
such that for i = −k, . . . , k the subspace gi is the eigenspace with eigenvalue
i for the adjoint action of E. In particular, E has to lie in the center of the
subalgebra g0. In the case of a |1|-grading, this center has dimension 1 and
thus is spanned by E.
Lemma 4.1. Consider a Lie group G with simple Lie algebra g that is
endowed with a |1|-grading with grading element E, and let G0 ⊂ P ⊂ G
be subgroups associated to this grading. Let V be a representation of G
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which is irreducible as a representation of g. Then there is a G0-invariant
decomposition V = V0 ⊕ · · · ⊕VN such that

• Each Vj is an eigenspace of E.
• For i ∈ {−1, 0, 1} and each j, we have gi ·Vj ⊂ Vi+j.
• For each j > 0, restriction of the representation defines a surjection
g1 ⊗Vj−1 → Vj.

• The canonical P -invariant filtration on V is given by Vj = ⊕ℓ≥jVℓ.

Proof. Note first that the |1|-grading of g induces a |1|-grading on the
complexification gC of g, which has the same grading element E as g. It is
also well known that there is a Cartan subalgebra of gC that contains E.
Complexifying V and g if necessary and then passing back to the E-invariant
subspace V, we conclude that E acts diagonalizably on V. Denoting the
λ-eigenspace for E in V by Vλ, it follows readily that gi · Vλ ⊂ Vλ+i for
i ∈ {−1, 0, 1}. Now take an eigenvalue λ0 with minimal real part, let N be
the smallest positive integer such that λ0 + N + 1 is not an eigenvalue of
E and put Vj := Vλ0+j for j = 0, . . . , N . Then, by construction, g−1 acts
trivially on V0, g1 acts trivially on VN , and each Vj is g0-invariant. This
shows that V0 ⊕ · · · ⊕VN is g-invariant and hence has to coincide with V
by irreducibility.

By definition, the adjoint action of each element g0 ∈ G0 preserves the
grading of g, which easily implies that Ad(g0)(E) acts on gi by multiplication
by i for i ∈ {−1, 0, 1}. This means that Ad(g0)(E) − E lies in the center
of g, so Ad(g0)(E) = E. But then for v ∈ V, we can compute E · g0 · v as
Ad(g0)(E) · g0 · v = g0 ·E · v. This shows that each Vj is G0-invariant and it
only remains to prove the last two claimed properties of the decomposition.

We put Ṽ0 := V0 and for j > 0, we inductively define Ṽj as the image of
the map g1 ⊗ Ṽj−1 → Vj . Then, by construction, each Ṽj is a g0-invariant
subspace of Vj , so Ṽ := ⊕N

j=0Ṽj ⊂ V is invariant under the actions of g0
and g1. But for X ∈ g−1 and Z ∈ g1, we have [X,Z] ∈ g0 and for v ∈ V we
get

X · Z · v = Z ·X · v + [Z,X] · v.
This inductively shows that Ṽ is invariant under the action of g−1. Thus it is
g-invariant and hence has to coincide with V by irreducibility, so it remains
to verify the claimed description of the canonical P -invariant filtration.

To do this, we first claim that an element v ∈ V such that Z · v = 0
for all Z ∈ g1 has to be contained in VN . It suffices to prove this for the
complexification, so we may assume that both g and V are complex and
so there is a highest weight vector v0 ∈ V which is unique up to scale by
irreducibility. It is then well known that V is spanned by vectors obtained
from v0 by the iterated action of elements in negative root spaces of g. Since
on such elements E has non-positive eigenvalues, we conclude that v0 ∈ VN .
Now assume that for some j < N , the space W := {v ∈ Vj : g1 · v = {0}}
is non-trivial. Then, by construction, this is a g0-invariant subspace of Vj

on which the center of g0 acts by a scalar, so it must contain a vector that
is annihilated by all elements in positive root spaces of g0. But since any
positive root space of g either is a positive root space of g0 or is contained in
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g1, this has to be a highest weight vector for g, which contradicts uniqueness
of v0 up to scale.

Having proved the claim, we can first interpret it as showing thatVN = VN .
From this the description of the P -invariant filtration follows by backwards
induction: Suppose that that we have shown that VN−j = VN−j ⊕ · · · ⊕
VN and let w ∈ V be such that for all Z ∈ g1, we have Z · w ∈ V

N−j .
Decomposing w = w0 + · · ·+ wN , we conclude that for all i < N − j − 1 we
must have Z ·wi = 0 and hence w ∈ VN−j−1 ⊕ · · · ⊕VN . Together with the
obvious fact that ⊕ℓ≥N−j−1Vℓ ⊂ VN−j−1, this implies the description of the
P -invariant filtration. □

Using this, we can now prove an alternative description of the bundle of
Weyl structures that, as we shall see in the examples below, generalizes the
construction of [19].

Theorem 4.2. Suppose that (G,P ) corresponds to a |1|-grading of the
Lie algebra g of G. Let V be a representation of G, which is non-trivial
and irreducible as a representation of g, with natural P -invariant filtration
{Vj : j = 0, . . . , N} such that V/V1 has real dimension 1. For a parabolic
geometry (p : G → M,ω) of type (G,P ) let VM be the tractor bundle induced
by V, VjM the subbundle corresponding to Vj, and define EM to be the real
line bundle VM/V1M .

Then the bundle A → M of Weyl structures can be naturally identified
with the open subbundle in the projectivization P(VM/V2M) formed by all
lines that are transversal to the subbundle V1M/V2M of hyperplanes. This
in turn leads to an identification of A → M with the bundle of all linear
connections on the line bundle EM → M .

Proof. By assumption V1 ⊂ V is a P -invariant hyperplane, so this de-
scends to a P -invariant hyperplane V1/V2 in V/V2. Passing to the projec-
tivization, the complement of this hyperplane is a P -invariant open subset
U ⊂ P(V/V2) and hence defines a natural open subbundle in the associated
bundle P(VM/V2M).

Now take the decomposition V = ⊕N
j=0Vj from Theorem 4.1. Then V0 is

a line in V transversal to V1 and hence defines a point ℓ0 ∈ U . We claim
that the P -orbit of ℓ0 is all of U , while its stabilizer subgroup in P coincides
with G0. This shows that U ∼= P/G0 and thus implies the first claimed
description of A → M . As observed in Section 2.4, an element g ∈ P can
be written uniquely as exp(Z)g0 for g0 ∈ G0 and Z ∈ g1. We know that V0
is G0-invariant, so for w ∈ ℓ0 we get g0 · w = aw for some nonzero element
a ∈ R. On the other hand, exp(Z) · w = w + Z · w + 1

2Z · Z · w + . . . , and
all but the first two summands lie in V2. This shows that the action of
exp(Z)g0 sends ℓ0 to the line in V/V2 spanned by w+Z ·w+V2. But from
Theorem 4.1, we know that the action defines a surjection g1 ⊗V0 → V1,
which shows that P · ℓ0 = U . On the other hand, it is well known that g1
is an irreducible representation of g0. Thus also g1 ⊗V0 is irreducible, so
Z · w = 0 if and only Z = 0, which shows that the stabilizer of ℓ0 in P
coincides with G0.
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For the second description, we need some input from the machinery
of BGG sequences. There is a natural invariant differential operator S :
Γ(EM) → Γ(VM) which splits the tensorial map Γ(VM) → Γ(EM) induced
by the quotient projection VM → EM . It turns out that the operator
Γ(EM) → Γ(VM/Vi+1M) induced by S has order i, so there is an induced
vector bundle map from the jet prolongation J iEM to VM/Vi+1M . As
proved in [5], the representation V determines an integer i0 such that this is
an isomorphism for all i ≤ i0. For a non-trivial representation i0 ≥ 1, so we
conclude that J1EM ∼= VM/V2M . Since S splits the tensorial projection,
we see that, in a point x ∈ M , the hyperplane V1

xM/V2
xM corresponds to the

jets of sections vanishing in x. Thus lines in VM/V2M that are transversal
to V1M/V2M exactly correspond to lines in J1EM that are transversal to
the kernel of the natural projection to EM . Choosing such a line is equivalent
to choosing a splitting of this projection and thus of the jet exact sequence
for J1EM . It is well known that the choice of such a splitting is equivalent
to the choice of a linear connection on EM . □

Example 4.3. (1) Oriented projective structures. For n ≥ 2, put
G := SL(n+ 1,R) and let P be the stabilizer of the ray in Rn+1 spanned
by the first element e0 in the standard basis. Taking the complementary
hyperplane spanned by the remaining basis vectors, one obtains a |1|-grading
on the Lie algebra g of G by decomposing into blocks of sizes 1 and n as in( g0 g1
g−1 g0

)
. The subgroup G0 ⊂ P is then easily seen to consist of all block

diagonal matrices in P .
Now we define V := R(n+1)∗, the dual of the standard representation of

G. In terms of the dual of the standard basis, this decomposes as the sum of
V0 := R · e∗0 and V1 spanned by the remaining basis vectors. All properties
claimed in Theorem 4.1 are obviously satisfied in this case. The tractor
bundle VM corresponding to V is usually called the (standard) cotractor
bundle T∗M and the line bundle EM is the bundle E(1) of projective 1-
densities. Since V2 = {0} in this case, Theorem 4.2 realizes A as an open
subbundle in P(T∗M), and this is exactly the construction from [19]. In
fact, it is well known that T∗M ∼= J1E(1) in this case, this is even used as a
definition in [2].

More generally, for k ≥ 2, we can take V to be the symmetric power
Sk
R

(n+1)∗. This visibly decomposes as V0 ⊕ · · · ⊕Vk, where Vi is spanned
by the symmetric products of (e∗0)k−i with i other basis elements. This
corresponds to the tractor bundle SkT∗M , while the quotient V/V1 induces
the kth power of E(1), which is usually denoted by E(k) and called the bundle
of projective k-densities. Again, all properties claimed in Theorem 4.1 are
obviously satisfied.

(2)Conformal structures. For p+q = n ≥ 3, we putG := SO(p+1, q+1)
and we take a basis e0, . . . , en+1 for the standard representation Rn+2 of G
such that the non-trivial inner products are ⟨e0, en+1⟩ = 1, and ⟨ei, ei⟩ = 1
for 1 ≤ i ≤ p and ⟨ei, ei⟩ = −1 for p + 1 ≤ i ≤ n. Splitting matrices into
blocks of sizes 1, n, and 1 defines a |1|-grading of g according to

(
g0 g1 0
g−1 g0 ∗
0 ∗ ∗

)
,
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where entries marked by ∗ are determined by other entries of the matrix.
Again G0 turns out to consist of block diagonal matrices and is isomorphic
to the conformal group CO(p+ 1, q + 1) via the adjoint action on g−1. In
view of Theorem 3.2 we conclude that a parabolic geometry of type (G,P )
on a manifold M is equivalent to a conformal structure.

The standard representation V of G now decomposes as V = V0 ⊕V1 ⊕
V2, with the subspaces spanned by e0, {e1, . . . , en}, and en+1, respectively.
This induces the standard tractor bundle TM on conformal manifolds, and
the bundle induced by V/V1 is the bundle E[1] of conformal 1-densities.
Hence Theorem 4.2 in this case realizes A as an open subbundle of the
projectivization of the quotient of TM by its smallest filtration component.
Again, it is well known that this quotient is isomorphic to J1E[1].

Alternatively, for k ≥ 2, we can take V to be the trace-free part Sk
0R

n+2

in the symmetric power of the standard representation. This leads to the
bundle Sk

0TM and the line bundle E[k] of conformal densities of weight k.
Here the decomposition from Theorem 4.1 becomes a bit more complicated,
since the individual pieces Vj are not irreducible representations of G0 in
general. Still the properties claimed in Theorem 4.1 are obvious via the
construction from the decomposition of the standard representation.

(3) Almost Grassmannian structures. Here we choose integers 2 ≤
p ≤ q, put n = p+ q, take G := SL(n,R) and P ⊂ G the stabilizer of the
subspace spanned by the first p vectors of the standard basis of the standard
representation Rn of G. Fixing the complementary subspace spanned by the
remaining q vectors in that basis, one obtains a decomposition of the Lie
algebra g of G into blocks of sizes p and q, which defines a |1|-grading as in
the projective case. Then G0 again turns out to consist of block diagonal
matrices and hence is isomorphic to S(GL(p,R)×GL(q,R)), while g−1 can
be identified with the space of q × p-matrices endowed with the action of G0
defined by matrix multiplication from both sides.

Hence the corresponding geometries exist in dimension pq and they are
essentially given by an identification of the tangent bundle with a tensor
product of two auxiliary bundles of rank p and q, respectively, see Section
4.1.3 of [16]. There it is also shown that for these types of structures the
Cartan curvature has two fundamental components, but their nature depends
on p and q. For p = q = 2, such a structure is equivalent to a split-signature
conformal structure, so we will not discuss this case here. If p = 2 and q > 2,
then one of these quantities is the intrinsic torsion of the structure, but the
second is a curvature, so this is a case in which there are non-flat, torsion-free
examples. For p > 3, the intrinsic torsion splits into two components, and
torsion-freeness of a geometry implies local flatness.

The basic choice of a representation V that Theorem 4.2 can be applied
to is given by Λp

R
n∗, the pth exterior power of the dual of the standard

representation. This decomposes as V = V0⊕ · · · ⊕Vp, where Vj is spanned
by wedge products of elements of the dual of the standard basis that contain
p − j factors from {e∗1, . . . , e∗p}. The properties claimed in Theorem 4.1
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can be easily deduced from the construction from the dual of the standard
representation.

4.2. The projective Monge-Ampère equation

This is the prototypical example of the non-linear PDE that we want to
study. In the setting of projective geometry, we have met the density bundles
E(k) for k > 0 in Theorem 4.3. We define E(−k) to be the line bundle
dual to E(k) and use the convention that adding “(k)” to the name of a
bundle indicates a tensor product with E(k) for k ∈ Z. The first step
towards the construction of the projective Monge-Ampère equation is that
there is a projectively invariant, linear, second order differential operator
H : Γ(E(1)) → Γ(S2T ∗M(1)) called the projective Hessian. Indeed, this is
the first operator in the BGG sequence determined by the standard cotractor
bundle, see [13].

Now for a section σ ∈ Γ(E(1)), H(σ) defines a symmetric bilinear form on
each tangent space of M , and such a form has a well defined determinant.
In projective geometry, this determinant admits an interpretation as a
density as follows. In the setting of part (1) of Theorem 4.3, the top
exterior power Λn+1

R
(n+1)∗ is a trivial representation, which implies that

the bundle Λn+1T∗M is canonically trivial. Identifying T∗M with J1E(1),
the jet exact sequence 0 → T ∗M(1) → J1E(1) → E(1) → 0 implies that
Λn+1T∗M ∼= ΛnT ∗M(n + 1), so ΛnT ∗M ∼= E(−n − 1). This isomorphism
can be encoded as a tautological section of ΛnTM(−n − 1). To form the
determinant of H(σ), one now takes the tensor product of two copies of this
canonical section and of n copies of H(σ) and forms the unique (potentially)
non-trivial complete contraction of the result (so the two indices of each
copy of H(σ) have to be contracted into different copies of the tautological
form). This shows that det(H(σ)) can be naturally interpreted as a section
of E(−n− 2).

Assuming that σ ∈ Γ(E(1)) is nowhere vanishing, we can form σk ∈ Γ(E(k))
for any k ∈ Z, and hence

(6) det(H(σ)) = ±σ−n−2

is a projectively invariant, fully non-linear PDE on nowhere vanishing sections
of E(1). Observe that multiplying σ by a constant, the two sides of the
equation scale by different powers of the constant, so allowing a constant
factor instead of just a sign in the right hand side of the equation would only
be a trivial modification.

4.3. Interpretation in terms of Weyl structures

Let us first observe that a nowhere vanishing section σ ∈ E(1) uniquely
determines a Weyl structure. In the language of Theorem 4.2 this can
be either described as the structure corresponding to the flat connection
on E(1) determined by σ or as the one corresponding to the line in T∗M
spanned by S(σ), where S denotes the BGG splitting operator. From either
interpretation it is clear that this Weyl structure remains unchanged if σ
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is multiplied by a non-zero constant. Alternatively, one can easily verify
that any projective class on M contains a unique connection such that σ is
parallel for the induced connection on E(1).

To deal with non-flat cases in the following theorem, we use a concept
of mean curvature tailored to the case of connections compatible with an
almost bi-Lagrangian structure that was introduced in [18]. That article
uses the terminology of (almost) para-Kähler structures, which is slightly
different from ours, but it is easy to translate between the two.

Theorem 4.4. Let M be an oriented smooth manifold of dimension n
which is endowed with a projective structure. Let σ ∈ Γ(E(1)) be a nowhere-
vanishing section and let us denote by ∇σ the Weyl connections of the Weyl
structure determined by σ and by Pσ its Rho tensor. Then we have:

(1) An appropriate constant multiple of σ satisfies (6) if and only if
∇σ(det(Pσ)) = 0 and det(Pσ) is nowhere vanishing.

(2) The Weyl structure determined by σ is always Lagrangian. If M is
projectively flat, then an appropriate constant multiple of σ satisfies (6)
if and only if this Weyl structure is non-degenerate and the image of the
corresponding section s : M → A is a minimal submanifold. This extends to
curved projective structures provided that minimality of s(M) is defined as
vanishing of the mean curvature form associated to the canonical connection
D via the definition in [18, p. 120].

Proof. It is well known how to decompose the curvature of a linear connection
on TM into the projective Weyl curvature and the Rho-tensor, see Section
3.1 of [2] (taking into account the sign conventions mentioned in Section 2.6).
It is also shown there that the Bianchi identity shows that the skew part of
the Rho tensor is a non-zero multiple of the trace of the curvature tensor,
which describes the action of the curvature on the top exterior power of the
tangent bundle and thus on density bundles. This readily implies that Pσ is
symmetric, so the Weyl structure defined by σ is Lagrangian by Theorem 3.10.
(1) It is well known that the projective Hessian in terms of a linear

connection ∇ in the projective class and its Rho tensor P is given by the
symmetrization of ∇2σ − Pσ, see Section 3.2 of [13]. (The different sign is
caused by different sign conventions for the Rho-tensor.) But by definition
∇σσ = 0 and Pσ is symmetric, so we conclude that H(σ) = −Pσσ and hence
det(H(σ)) = (−1)nσn det(Pσ). Now for each k ̸= 0, the sections of E(k) that
are parallel for ∇σ are exactly the constant multiples of σk, so (1) follows
readily.
(2) Since Pσ is symmetric, det(Pσ) is nowhere vanishing if and only if Pσ

is non-degenerate. By Theorem 3.10, this is equivalent to non-degeneracy of
the Weyl structure determined by σ, and we assume this from now on. Let
us write det(Pσ) in terms of the tautological section ϵ of ΛnTM(−n− 1) as
above as C(ϵ⊗ ϵ⊗ (Pσ)⊗n), where C denotes the appropriate contraction.
Applying ∇σ to this, we observe that C and ϵ are projectively invariant
bundle maps and thus parallel for any Weyl connection. Thus we conclude
that

∇σ det(Pσ) = (n− 1)C
(
ϵ⊗ ϵ⊗ (Pσ)⊗n−1 ⊗∇σPσ

)
.
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Here we have used that the contraction is symmetric in the bilinear forms we
enter and in the right hand side the form index of ∇σ remains uncontracted.
Since we assume that Pσ is invertible, linear algebra tells us that contracting
two copies of ϵ with (Pσ)⊗n−1 gives det(Pσ)Φ, where Φ ∈ Γ(S2TM) is the
inverse of Pσ. Returning to the abstract index notation used in Theorem 3.13
and writing ∇ and P instead of ∇σ and Pσ, we conclude that ∇ det(P) = 0
is equivalent to 0 = Pab∇iPab.

On the other hand, we know the second fundamental form of s(M) ⊂ A
from Theorem 3.13. To determine the mean curvature, we have to contract
an inverse metric into this expression, and we already know that this inverse
metric is just Pij . Vanishing or non-vanishing of the result is independent of
the final contraction with Pkc. Thus we conclude that s(M) ⊂ A is minimal
if and only if

(7) 0 = Pab(2∇aPbi −∇iPab).

In the proof of Theorem 3.13, we have also noted that the Cotton-York
tensor is given by the alternation of ∇iPjk in the first two indices. It is well
known that this vanishes for projectively flat structures (see [2]) and hence
in the projectively flat case, ∇iPjk is completely symmetric. Using this, the
claim in the projectively flat case follows immediately.

In the non-flat case, we first have to determine the map ϕ from Lemma
4 of [18]. In our notation, the map P used there is given by P |L± = ± id.
Using this, the beginning of the proof of Theorem 3.12 readily shows that, in
the notation used there, for ξ ∈ TxM ∼= L−

s(x), we get ϕ(ξi) = (ξi,−Pjaξ
a).

Now we can combine this with the formula for IID from Theorem 3.13,
which describes the operator Â used in [18]. This easily shows that, up to a
non-zero factor, that the operator ĥ from [18] is given by

ĥ(ξi, ηj , ζk) = ξiηjζkPiaPab∇s
jPkb.

By definition, the mean curvature form Ĥ from [18] is the trace over the
first and third entry of this. Thus we have to contract ĥijk with Pik, which
again leads to Pab∇s

jPab. □

Remark 4.5. In the special case of a two-dimensional projective structure the
minimality condition (7) was previously obtained in [28, Theorem 4.4].

A deep relation between solutions of the projective Monge-Ampère equation
and properly convex projective structures was established in the works [25]
by Labourie and [26] by Loftin. Recall that a projective manifold (M, [∇]) is
called properly convex if it arises as a quotient of a properly convex open set
M̃ ⊂ RPn by a group Γ of projective transformations which acts discretely
and properly discontinuously. The projective line segments contained in M̃
project to M to become the geodesics of [∇]. Therefore, locally, the geodesics
of a properly convex projective structure [∇] can be mapped diffeomorphically
to segments of straight lines, that is, [∇] is locally flat. Combining the work
of Labourie and Loftin with Theorem 4.4, we obtain:
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Corollary 4.6. Let (M, [∇]) be a closed oriented locally flat projective
manifold. Then [∇] is properly convex if and only if [∇] arises from a
minimal Lagrangian Weyl structure whose Rho tensor is positive definite.

Proof. Suppose that the flat projective structure [∇] arises from a minimal
Lagrangian Weyl structure s whose Rho tensor Ps is positive definite. Since
s is Lagrangian, Ps is a constant negative multiple of the Ricci tensor of the
Weyl connection ∇s, see [2], and taking into account the sign issue mentioned
in Section 2.6. By Theorem 3.13, the nowhere vanishing density det(Ps) is
preserved by ∇s, whence an appropriate power defines a volume density that
is parallel for ∇s. Finally, projective flatness implies that the pair (∇s,Ps)
satisfies the hypothesis of Theorem 3.2.1 of [25], which then implies that [∇]
is properly convex.

Conversely, suppose that [∇] is properly convex. By [26, Theorem 4]
there is a solution σ to the projective Monge-Ampère equation with right hand
side (−1)n+2σn+2 and such that σ is negative for the natural orientation on
E(1). By Theorem 4.4, [∇] arises from a minimal Lagrangian Weyl structure.
Since the Hessian of σ is positive definite, so is the Rho tensor. □

Remark 4.7. Existence and uniqueness of minimal Lagrangian Weyl structures
for a given torsion-free AHS structure is an interesting fully non-linear PDE
problem. In the special case of projective surfaces, some partial results
regarding uniqueness have been obtained in [27] and [30]. See also [31] for a
connection to dynamical systems and [29] for a related variational problem
on the space of conformal structures.

4.4. Invariant non-linear PDE for other AHS structures

We conclude this article with some remarks on analogs of the projective
Monge-Ampère equation for other AHS structures. The first observation
is that a small representation theoretic condition is sufficient to obtain an
analog of the projectively invariant Hessian, which again is closely related to
the Rho tensor.

To formulate this, we need a bit of background. Suppose that (G,P ) cor-
responds to a |1|-grading of G and let G0 ⊂ P be the subgroup determined
by the grading. Then this naturally acts on each gi, and there is an induced
representation on S2g1. We can decompose this representation into irre-
ducibles and there is a unique component whose highest weight is twice the
highest weight of g1. This is called the Cartan square of g1 and denoted by
⊚2g1. It comes with a canonical G0-equivariant projection π : ⊗2g1 → ⊚2g1.
For any parabolic geometry of type (G,P ), this induces a natural subbundle
⊚2T ∗M ⊂ S2T ∗M and a natural bundle map π : ⊗2T ∗M → ⊚2T ∗M .

Proposition 4.8. Suppose that (G,P ) corresponds to a |1|-grading on the
simple Lie algebra g of G. Suppose further, that there is a representation V
of G satisfying the assumptions of Theorem 4.2 whose complexification is a
fundamental representation of the complexification of g, and let EM denote
the natural line bundle induced by V/V1.
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(1) There is an invariant differential operator H : Γ(EM) → Γ(⊚2T ∗M ⊗
EM) of second order.

(2) For a nowhere vanishing section σ ∈ Γ(EM), let Pσ be the Rho tensor
of the Weyl structure determined by σ. Then H(σ) is a non-zero multiple of
π(Pσ)σ, where π is the projection to the Cartan square.

Proof. (1) The representation V induces a tractor bundle on parabolic ge-
ometries of type (G,P ) to which the construction of BGG sequences can be
applied. The first operator H in the resulting sequence is defined on Γ(EM).
Now the condition that dim(V/V1) = 1 implies that the complexification of
V is the fundamental representation corresponding to the simple root that
induces the |1|-grading that defines p. Since the complexification of V is a
fundamental representation, the results of [5] show that the first operator in
the BGG sequence has order two and the target space claimed in (1).

(2) It is also known in general (see [14] or [10]) how to write out H in
terms of a Weyl structure with Weyl connection ∇s and Rho tensor Ps: For
σ ∈ Γ(EM), one then has to form ∇2σ − Psσ, symmetrize and then project
to the Cartan square. But if s is the Weyl structure determined by σ, then
by definition ∇sσ = 0 and Ps = Pσ, which implies the claim. □

Observe that Theorem 4.3 provides representations V that satisfy the
assumptions of the proposition for conformal and for almost Grassmannian
structures. Hence for these two geometries an invariant Hessian is available.
It is worth mentioning that, for conformal structures, π(Pσ) is the trace-free
part of Pσ.

It is also a general fact that the top-exterior power of T ∗M is isomorphic
to a positive, integral power of the dual E∗M of EM : By definition, the
grading element E acts by multiplication by dim(g1) on the top exterior
power of g1, which represents the top exterior power of T ∗M . On the other
hand, the construction implies that a generator of V0 ⊂ V will be a lowest
weight vector of the complexification of V, so E acts by a negative number
on this. The fact that we deal with a fundamental representation implies that
dim(g−1) is an integral multiple of that number. As in the projective case,
this can be phrased as the existence of a tautological section, which can then
be used together with copies of H(σ) to obtain a section of a line bundle,
which can be trivial, a tensor power of E or a tensor power of E∗. In any
case, a nowhere vanishing section of E determines a canonical section of that
bundle (which is the constant 1 in the trivial case), so there is an invariant
version of the Monge-Ampère equation. In view of part (2) of Theorem 4.8,
for these equations there is always an analog of part (1) of Theorem 4.4.

For some of the structures, there are additional natural sections that can
be used together with powers of H(σ) to construct other non-linear invariant
operators, for example, the conformal metric for conformal structures and
partial (density valued) volume forms for Grassmannian structures. Again
part (2) of Theorem 4.8 shows that all these equations can be phrased as
equations on Pσ, so there should be a relation to submanifold geometry of
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Weyl structures in the style of part (2) of Theorem 4.4. All this will be taken
up in detail elsewhere.
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