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Geometric Theory of Weyl Structures

ANDREAS CAP AND THOMAS METTLER

ABSTRACT. Given a parabolic geometry on a smooth manifold M , we study a
natural affine bundle A!M , whose smooth sections can be identified with Weyl
structures for the geometry. We show that the initial parabolic geometry defines a
reductive Cartan geometry on A, which induces an almost bi-Lagrangian structure
on A and a compatible linear connection on TA. We prove that the split-signature
metric given by the almost bi-Lagrangian structure is Einstein with non-zero
scalar curvature, provided the parabolic geometry is torsion-free and j1j-graded.
We proceed to study Weyl structures via the submanifold geometry of the image
of the corresponding section in A. For Weyl structures satisfying appropriate non-
degeneracy conditions, we derive a universal formula for the second fundamental
form of this image. We also show that for locally flat projective structures, this has
close relations to solutions of a projectively invariant Monge-Ampere equation
and thus to properly convex projective structures.

1. Introduction

Parabolic geometries form a class of geometric structures that look very diverse in
their standard description. This class contains important and well-studied examples
like conformal and projective structures, non-degenerate CR structures of hyper-
surface type, path geometries, quaternionic contact structures, and various types
of generic distributions. They admit a uniform conceptual description as Cartan
geometries of type .G; P / for a semisimple Lie group G and a parabolic subgroup
P � G in the sense of representation theory. Such a geometry on a smooth manifold
M is given by a principal P -bundle p W G !M together with a Cartan connection
! 2 �1.G ; g/, which defines an equivariant trivialization of the tangent bundle T G .
A standard reference for parabolic geometries is [16].

The group P can be naturally written as a semi-direct product G0 Ë PC of a
reductive subgroup G0 and a nilpotent normal subgroup PC. For a Cartan geometry
.p W G ! M;!/ the quotient G0 WD G=PC ! M is a principal G0-bundle, and
some parts of ! can be descended to that bundle. In the simplest cases, this defines
a usual first order G0-structure on M , in more general situations a filtered analog of
such a structure. Thus the Cartan geometry can be viewed as an extension of a first
order structure. This reflects the fact that morphisms of parabolic geometries are in
general not determined locally around a point by their 1-jet in that point, and the
Cartan connection captures the necessary higher order information.

To work explicitly with parabolic geometries, one often chooses a more restrictive
structure, say a metric in a conformal class, a connection in a projective class or
a pseudo-Hermitian structure on a CR manifold, expresses things in terms of this
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choice and studies the effect of different choices. It turns out that there is a uniform
way to do this that can be applied to all parabolic geometries, namely the concept of
Weyl structures introduced in [15], see Chapter 5 of [16] for an improved exposition.
Choosing a Weyl structure, one in particular obtains a linear connection on any
natural vector bundle associated to a parabolic geometry, as well as an identification
of higher order geometric objects like tractor bundles with more traditional natural
bundles. The set of Weyl structures always forms an affine space modeled on the
space on one-forms on the underlying manifold, and there are explicit formulae for
how a change of Weyl structure affects the various derived quantities.

The initial motivation for this article were the results in [19] on projective struc-
tures. Such a structure on a smooth manifold M is given by an equivalence class
Œr� of torsion-free connections on its tangent bundle, where two connections are
called equivalent if they have the same geodesics up to parametrization. While these
admit an equivalent description as a parabolic geometry, the underlying structure
G0 ! M is the full frame bundle of M and thus contains no information. Hence
there is the natural question, whether a projective structure can be encoded into a
first order structure on some larger space constructed from M . Indeed, in [19], the
authors associate to a projective structure on an n-dimensional manifoldM a certain
rank n affine bundle A!M , whose total space can be canonically endowed with a
neutral signature metric h, as well as a non-degenerate 2-form �. It turns out that
the metric h is Einstein and � is closed. Moreover, the pair .h;�/ is related by an
endomorphism of TA which squares to the identity map and its eigenbundlesL˙ are
Lagrangian with respect to �. Equivalently, we may think of the pair .h;�/ as an
almost para-Kähler structure or as an almost bi-Lagrangian structure .�;LC; L�/
on A, see Section 3.1 for the formal definition and more details.

In addition, it is observed that the sections of A!M are in bijective correspon-
dence with the connections in the projective class. Consequently, all the submanifold
notions of symplectic – and pseudo-Riemannian geometry can be applied to the
representative connections of Œr�. This leads in particular to the notion of a minimal
Lagrangian connection [28]. As detailed below, this concept has close relations
to the concept of properly convex projective structures. These in turn provide a
connection to the study of representation varieties and higher Teichmüller spaces,
see [32] for a survey.

In an attempt to generalize these constructions to a larger class of parabolic
geometries, we were led to a definition of A! M that directly leads to an inter-
pretation as a bundle of Weyl structures. This means that the space of sections
of A ! M can be naturally identified with the space of Weyl structures for the
geometry .p W G ! M;!/. At some stage it was brought to our attention that a
bundle of Weyl structures had been defined in that way already in the article [21] by
M. Herzlich in the setting of general parabolic geometries. In this article, Herzlich
gave a rather intricate argument for the existence of a connection on TA and used
this to study canonical curves in parabolic geometries.

The crucial starting point for our results here is that a parabolic geometry
.p W G ! M;!/ can also naturally be interpreted as a Cartan geometry on A
with structure group G0. This immediately implies that for any type of parabolic
geometry, there is a canonical linear connection on any natural vector bundle over
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A as well as natural almost bi-Lagrangian structure on A that is compatible with
the canonical connection. So in particular, we always obtain a non-degenerate two-
form � 2 �2.A/, a neutral signature metric h on TA as well as a decomposition
TA D L� ˚ LC as a sum of Lagrangian subbundles.

Using the interpretation via Cartan geometries, it turns out that all elements of
the theory of Weyl structures admit a natural geometric interpretation in terms of
pulling back operations on A via the sections defined by a Weyl structure. This
works for general parabolic geometries as shown in Section 2. In particular, we
show that Weyl connections are obtained by pulling back the canonical connection
on A, while the Rho tensor (or generalized Schouten tensor) associated to a Weyl
connection is given by the pullback of a canonical LC-valued one-form on A.

We believe that this interpretation of Weyl structures should be a very useful
addition to the tool set available for the study of parabolic geometries. Indeed,
working with the canonical geometric structures on A compares to the standard way
of using Weyl structures, like working on a frame bundle compares to working in
local frames.

For the second part of the article, we adopt a different point of view. From
Section 3 on, we use the relation to Weyl structures as a tool for the study of the
intrinsic geometric structure on A and its relation to non-linear invariant PDE. Our
first main result shows that one has to substantially restrict the class of geometries
in order to avoid getting into exotic territory. Recall that for a parabolic subgroup
P � G the corresponding Lie subalgebra p � g can be realized as the non-negative
part in a grading g D ˚k

iD�k
gi of g, which is usually called a jkj-grading. There is

a subclass of parabolic geometries that is often referred to as AHS structures, see
e.g. [3, 4, 14], which is the case k D 1, see Section 2.2 and Remark 3.2 for more
details. This is exactly the case in which the underlying structure G0 ! M is an
ordinary first order G0-structure. In particular, there is the notion of intrinsic torsion
for this underlying structure. Vanishing of the intrinsic torsion is equivalent to the
existence of a torsion free connection compatible with the structure and turns out to
be equivalent to torsion-freeness of the Cartan geometry .p W G !M;!/. Using
this background, we can formulate the first main result of Section 3, that we prove
as Theorem 3.1:

Theorem. Let .p W G ! M;!/ be a parabolic geometry of type .G; P / and
� W A ! M its associated bundle of Weyl structures. Then the natural 2-form
� 2 �2.A/ is closed if and only if .G; P / corresponds to a j1j-grading and the
Cartan geometry .p W G !M;!/ is torsion-free.

Hence we restrict our considerations to torsion-free AHS structures from this
point on. Apart from projective and conformal structures, this contains also Grass-
mannian structures of type .2; n/ and quaternionic structures, for which there are
many non-flat examples. For several other AHS structures, torsion-freeness implies
local flatness, but the locally flat case is of particular interest for us anyway. Our
next main result, which we prove in Theorem 3.5, vastly generalizes [19]:

Theorem. For any torsion-free AHS structure, the pseudo-Riemannian metric h
induced by the canonical almost bi-Lagrangian structure on the bundle A of Weyl
structures is an Einstein metric with non-zero scalar curvature.
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While one could prove the aforementioned Theorems on a case by case basis
by using the techniques from [19], our arguments instead rely on a careful anal-
ysis of the properties of the curvature tensor of the induced connection on TA.
Following [28], we next initiate the study of Weyl structures via the geometry of
submanifolds in A. We call a Weyl structure s W M ! A of a torsion-free AHS
structure Lagrangian if s WM ! .A;�/ is a Lagrangian submanifold. Likewise, s
is called non-degenerate if s WM ! .A; h/ is a non-degenerate submanifold. We
show that a Weyl structure is Lagrangian if and only if its Rho tensor is symmetric
and that it is non-degenerate if and only if the symmetric part of its Rho tensor is
non-degenerate.

In Theorem 3.12 we characterize Lagrangian Weyl structures that lead to totally
geodesic submanifolds s.M/ � A, which provides a connection to Einstein metrics
and reductions of projective holonomy. If s in addition is non-degenerate, then
there is a well defined second fundamental form of s.M/ with respect to any linear
connection on TA that is metric for h and we show that this admits a natural
interpretation as a

�
1
2

�
-tensor field on M . In our next main result, Theorem 3.13, we

give explicit formulae for the second fundamental forms of the canonical connection
and the Levi-Civita connection of h. These are universal formulae in terms of the
Weyl connection, the Rho-tensor, and its inverse, which are valid for all torsion-free
AHS structures. As an application, we are able to characterize non-degenerate
Lagrangian Weyl structures that are minimal submanifolds in .A; h/ in terms of
a universal PDE. Again, this is a vast generalization of [28, Theorem 4.4], where
merely the case of projective structures on surfaces was considered.

In Section 4 we connect our results to the study of fully non-linear invariant PDE
on AHS structures. A motivating example arises from the work of E. Calabi. In
[7], Calabi related complete affine hyperspheres to solutions of a certain Monge-
Ampère equation. This Monge-Ampère equation, when interpreted correctly, is an
invariant PDE that one can associate to a projective structure and it is closely linked
to properly convex projective manifolds, see [26, Theorem 4]. In Theorem 4.4, we
relate Calabi’s equation to our equation for a minimal Lagrangian Weyl structure
and as Corollary 4.6, we obtain:

Corollary. Let .M; Œr�/ be a closed oriented locally flat projective manifold. Then
Œr� is properly convex if and only if Œr� arises from a minimal Lagrangian Weyl
structure whose Rho tensor is positive definite.

The convention for the Rho tensor used here is chosen to be consistent with
[16]. This convention is natural from a Lie theoretic viewpoint, but differs from the
standard definition in projective – and conformal differential geometry by a sign. It
should also be noted that a relation between properly convex projective manifolds
and minimal Lagrangian submanifolds has been observed previously in [23, 22]
(but not in the context of Weyl structures).

The notion of convexity for projective structures is only defined for locally flat
structures. The above Corollary thus provides a way to generalize the notion of
a properly convex projective structure to a class of projective structures that are
possibly curved, namely those arising from a minimal Lagrangian Weyl structure.
Going beyond projective geometry, this class of differential geometric structures is
well-defined for all torsion-free AHS structures.
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We conclude the article by showing that there are analogs of the projective
Monge-Ampère equation for other AHS structures, and that these always can be
described in terms of the Rho tensor, which provides a relation to submanifold
geometry of Weyl structures. These topics will be studied in detail elsewhere.
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2. The bundle of Weyl structures

This section works in the setting of general parabolic geometries. We assume that
the reader is familiar with the the basic concepts and only briefly collect what we
need about parabolic geometries and Weyl structures. Then we define the bundle
of Weyl structures and identify some of the geometric structures that are naturally
induced on its total space. We then prove existence of a canonical connection and
explain how these structures can be used as an equivalent encoding of the theory of
Weyl structures.

2.1. Parabolic geometries

The basic ingredient needed to specify a type of parabolic geometry is a semisimple
Lie algebra g that is endowed with a so-called jkj-grading. This is a decomposition

g D g�k ˚ � � � ˚ g�1 ˚ g0 ˚ g1 ˚ � � � ˚ gk

of g into a direct sum of linear subspaces such that

� Œgi ; gj � � giCj , where we agree that g` D f0g for j`j > k.
� No simple ideal of g is contained in the subalgebra g0.
� The subalgebra pC D g1 ˚ � � � ˚ gk is generated by g1.

In particular, this implies that the Lie subalgebra g0 naturally acts on each of the
spaces gi via the restriction of the adjoint action. Moreover, p WD g0 ˚ pC is a
Lie subalgebra of g, which turns out to be a parabolic subalgebra in the sense of
representation theory.

Such jkj-gradings can be easily described in terms of the structure theory of
semisimple Lie algebras, see Section 3.2 of [16]. In particular, it turns out that
any parabolic subalgebra is obtained in this way and, essentially, the classification
of gradings is equivalent to the classification of parabolic subalgebras. Further,
the decomposition p D g0 ˚ pC is the reductive Levi decomposition, so it is a
semi-direct product, pC is the nilradical of p, and the subalgebra g0 is reductive. Of
course, also g� WD g�k ˚ � � � ˚ g�1 is a Lie subalgebra of g, which is nilpotent by
the grading property. It turns out that g� and pC are isomorphic.
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Next, one chooses a Lie group G with Lie algebra g. Then the normalizer of p in
G has Lie algebra p, and one chooses a closed subgroup P � G lying between this
normalizer and its connected component of the identity. The subgroup P naturally
acts on g and p via the adjoint action. More generally, one puts gi WD ˚j�igj to
define a filtration of g by linear subspaces that is invariant under the adjoint action
of P . This makes g into a filtered Lie algebra in the sense that Œgi ; gj � � giCj .

Having made these choices, there is the concept of a parabolic geometry of type
.G; P / on a manifold M of dimension dim.G=P /. This is defined as a Cartan
geometry .p W G ! M;!/ of type .G; P /, which means that p W G ! M is a
principal P -bundle and that ! 2 �1.G ; g/ is a Cartan connection. This in turn
means that ! is equivariant for the principal right action, so .rg/�! D Ad.g�1/ı!,
reproduces the generators of fundamental vector fields, and that !.u/ W TuG ! g
is a linear isomorphism for each u 2 G . In addition, one requires two conditions
on the curvature of !, which are called regularity and normality, which we don’t
describe in detail.

While Cartan geometries provide a nice uniform description of parabolic geome-
tries, this should be viewed as the result of a theorem rather than a definition. To
proceed towards more common descriptions of the geometries, one first observes
that the Lie group P can be decomposed as a semi-direct product. On the one hand,
the exponential map restricts to a diffeomorphism from pC onto a closed normal
subgroup PC � P . On the other hand, one defines a closed subgroup G0 � P as
consisting of those elements, whose adjoint action preserves the grading of g and
observes that this has Lie algebra g0. Then the inclusion of G0 into P induces an
isomorphism G0 ! P=PC.

Using this, one can pass from the Cartan geometry .p W G ! M;!/ to an
underlying structure by first forming the quotient G0 WD G=PC, which is a principal
G0-bundle. Moreover, for each i D �k; : : : ; k, there is a smooth subbundle
T iG � T G consisting of those tangent vectors that are mapped to gi � g by !.
Since T 1G is the vertical bundle of G ! G0, these subbundles descend to a filtration
fT iG0 W i D �k; : : : ; 0g of T G0. Moreover, for each i < 0, the component of ! in
gi descends define a smooth section of the bundle L.T iG0; gi / of linear maps, so
this can be viewed as a partially defined gi -valued differential form.

The simplest case here is k D 1, for which the geometries in question are often
referred to as AHS structures. In this case, one obtains a g�1-valued one-form
� on G0, which is G0-equivariant and whose kernel in each point is the vertical
subbundle. This means that .p0 W G0 !M; �/ in this case simply is a classical first
order structure corresponding to the adjoint action of G0 on g�1 (which turns out to
be infinitesimally effective). According to a result of Kobayashi and Nagano (see
[24]), the resulting class of structures for simple g is very peculiar, since these are the
only irreducible first order structures of finite type, for which the first prolongation
is non-trivial. This class contains important examples, like conformal structures,
almost quaternionic structures, and almost Grassmannian structures.

For general k, there is an interpretation of G0 and the partially defined forms as a
filtered analogue of a first order structure. This involves a filtration of the tangent
bundle TM by smooth subbundles T iM for i D �k; : : : ;�1 with prescribed
(non–)integrability properties together with a reduction of structure group of the
associated graded vector bundle to the tangent bundle. This leads to examples like
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hypersurface-type CR structures, in which the filtration is equivalent to a contact
structure, while the reduction of structure group is defined by an almost complex
structure on the contact subbundle. Further important example of such structures
are path geometries, quaternionic contact structures and various types of generic
distributions.

Except for two cases, the Cartan geometry can be uniquely (up to isomorphism)
recovered from the underlying structure (see Section 3.1 of [16]), and indeed this
defines an equivalence of categories. So in this case, one has two equivalent
descriptions of the structure. The two exceptional cases are projective structures
and a contact analogue of those. In these cases, the underlying structure contains no
information respectively describes only the contact structure, and one in addition
has to choose an equivalence class of connections in order to describe the structure.
Still, these fit into the general picture with respect to Weyl structures, which we
discuss next.

2.2. Weyl structures

These provide the basic tool to explicitly translate between the description of a
parabolic geometry as a Cartan geometry and the picture of the underlying structure.
So let us suppose that .p W G ! M;!/ is a Cartan geometry of type .G; P /
and that p0 W G0 ! M is the underlying structure described in Section 2.1. The
original definition of a Weyl structure used in [15] is as a G0-equivariant section
� of the natural projection q W G ! G0 D G=PC. One shows that such sections
always exist globally and by definition, they provide reductions of the principal
P -bundle p W G ! M to the structure group G0 � P . As a representation of
G0, the Lie algebra g splits as g� ˚ g0 ˚ pC (and indeed further according to the
jkj-grading). Thus, the pullback ��! splits accordingly into a sum of three G0-
equivariant one-forms with values in g�, g0 and pC, respectively, which then admit
nice interpretations in terms of the underlying structure. The g0-component defines
a principal connection on G0, which induces the Weyl connections on associated
bundles. The component in pC descends to a one-form on M with values in the
associated graded to the cotangent bundle T �M , which is the Rho-tensor associated
to the Weyl structure. The g�-component also descends to M and provides an
isomorphism between the tangent bundle TM and its associated graded bundle.
For the structures we consider in this article, this component coincides with the
soldering form that identifies G0 as a reduction of structure group of TM .

As observed in [21], any reduction of p W G ! M to the structure group
G0 � P comes from a Weyl structure. This is because the composition of q with
the principal bundle morphism defining such a reduction clearly is an isomorphism
ofG0-principal bundles. Thus one could equivalently define a Weyl structure as such
a reduction of structure group and then observe that this defines a G0-equivariant
section of q W G ! G0. It is a classical result that reductions of G to the structure
group G0 can be equivalently described as smooth sections of the associated bundle
with fiber P=G0. This motivates the following definition from [21].

Definition 2.1. The bundle of Weyl structures associated to the parabolic geometry
.p W G !M;!/ is � W A WD G �P .P=G0/!M .
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The correspondence between Weyl structures and smooth sections of � W A!M

can be easily made explicit. Given a G0-equivariant section � W G0 ! G one
considers the map sending u0 2 G0 to the class of .�.u0/; eG0/ in G �P .P=G0/,
where e 2 P is the neutral element. By construction, the resulting smooth map
G0 ! A is constant on the fibers of p0 W G0 !M and thus descends to a smooth
map s WM ! A, which is a section of � by construction. Conversely, a section s
of � corresponds to a smooth, G0-equivariant map f W G ! P=G0 characterized
by the fact that s.x/ is the class of .u; f .u// for each u in the fiber of G over x. But
then f �1.eG0/ is a smooth submanifold of G on which the projection q W G ! G0
restricts to a G0-equivariant diffeomorphism. The inverse of this diffeomorphism
gives the Weyl structure determined by s.

From the definition, we can verify that the bundle of Weyl structures is similar
to an affine bundle. This will also provide the well known affine structure on Weyl
structures in our picture. To formulate this, recall first that the parabolic subgroup
P � G is a semi-direct product of the subgroup G0 � P and the normal subgroup
PC � P . In particular, any element g 2 P can be uniquely written as g0g1
with g0 2 G0 and g1 2 PC, compare with Theorem 3.1.3 of [16], and of course
g0g1 D .g0g1g

�1
0 /g0 provides the corresponding decomposition in the opposite

order.

Proposition 2.2. Let � W A! M be the bundle of Weyl structures associated to
a parabolic geometry .p W G ! M;!/. Then sections of � W A ! M can be
naturally identified with smooth functions f W G ! PC such that f .u � .g0g1// D
g�11 g�10 f .u/g0 for each u 2 G , g0 2 G0 and g1 2 PC.

Fixing one function f that satisfies this equivariancy condition, any other func-
tion which is equivariant in the same way can be written as Of .u/ D f .u/h.u/,
where h W G ! PC is a smooth function such that h.u � .g0g1// D g�10 h.u/g0.

Proof. The inclusion PC ,! P induces a smooth map PC ! P=G0, and from
the decomposition of elements of P described above, we readily see that this is
surjective. On the other hand, writing the quotient projection P ! G0 as ˛,
the map g 7! g˛.g/�1 induces a smooth inverse, so P=G0 is diffeomorphic to
PC. Since A D G �P .P=G0/, smooth sections of � W A ! M are in bijective
correspondence with P -equivariant smooth functions G ! P=G0, so these can
be viewed as functions with values in PC. The equivariancy condition reads as
f .u � .g0g1// D g

�1
1 g�10 � f .u/. But starting from Qg1G0, we get g�11 g�10 Qg1G0 D

g�11 g�10 Qg1g0G0, and g�11 g�10 Qg1g0 2 PC. This completes the proof of the first
claim.

Given one function f W G ! PC, of course any other such function can be
uniquely written as Of D f h for a smooth function h W G ! PC, so it remains to un-
derstand P -equivariance. What we assume is that f .u � .g0g1// D g�11 g�10 f .u/g0

and we want Of to satisfy the analogous equivariancy condition. But this exactly
requires that g�11 g�10 f .u/g0h.u � .g0g1// D g

�1
1 g�10 f .u/h.u/g0, which is equiv-

alent to the claimed equivariancy of h. □

To connect to the well-known affine structure on the set of Weyl structures, we
observe two alternative ways to express things using the exponential map. On
the one hand, we have observed above that exp W pC ! PC is a diffeomorphism.
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Thus we can write h.u/ D exp.‡.u// and equivariancy of h is equivalent to
‡.u � .g0g1// D Ad.g0/�1.‡.u//. On the other hand, in the proof of Theorem
3.1.3 of [16] it shown that also .Z1; : : : ; Zk/ 7! exp.Z1/ � � � exp.Zk/ defines a
diffeomorphism g1 ˚ � � � ˚ gk ! PC. Correspondingly, we can write h.u/ D
exp.‡1.u// � � � exp.‡k.u// where ‡i W G ! gi is a smooth map for each i D
1; : : : ; k. Again, equivariancy of h translates to‡i .u �.g0g1// D Ad.g0/�1.‡i .u//
for each i .

There is also a nice global way to express the affine structure. The filtration of
TM induced by a parabolic geometry dualizes to a filtration of the cotangent bundle
T �M and we can form the associated graded bundle gr.T �M/. The general theory
implies that this can be realized as G �P gr.pC/ Š G0 �G0

pC.

Proposition 2.3. Let � W A!M be the bundle of Weyl structures associated to a
parabolic geometry .p W G !M;!/. Then for any smooth section s of � , there is
an induced diffeomorphism 's W T

�M ! A.

Proof. Let � W G0 ! G be the G0-equivariant section determined by s. Since exp W
pC ! PC is a diffeomorphism, we conclude that ˆs.u0; Z/ WD �.u0/ exp.Z/
defines a diffeomorphism ˆs W G0 � pC ! G . Given g0 2 G0, the definition
readily implies that ˆs.u � g0;Ad.g�10 /.Z// D ˆs.u0; Z/ � g0. Hence there is an
induced diffeomorphisms between the orbit spaces gr.T �M/ D G0 �G0

pC and
A D G0=G0. □

2.3. The basic geometric structures on A

It was shown in [21] that the parabolic geometry .p W G ! M;!/ gives rise
to a connection on the tangent bundle TA of A. The argument used to obtain
this connection is rather intricate: There is the opposite parabolic subgroup P op

to P which corresponds to the Lie subalgebra g� ˚ g0 � g and one considers
the homogeneous space G=P op. Restricting the G-action to P and forming the
associated bundle G �P .G=P

op/ the Cartan connection ! induces a natural affine
connection on the total space of this bundle. It is then easy to see thatP\P op D G0,
so acting with P on eP op defines a P -equivariant open embedding A ! G �P
.G=P op/, thus providing a connection on TA as claimed. Our first main result
provides a more conceptual description of this connection, which directly implies
compatibility with several additional geometric structures on A.

Proposition 2.4. The canonical projection G ! A is a G0-principal bundle and !
defines a Cartan connection on that bundle, so .G ! A;!/ is a Cartan geometry
of type .G;G0/. In particular, the g0-component of ! defines a canonical principal
connection on G ! A and TA Š G �G0

.g=g0/, so this inherits a canonical linear
connection. Finally, there is a natural splitting TA D L� ˚ LC into a direct sum
of two subbundles of rank dim.M/, which is parallel for the connection and such
that LC is the vertical bundle of � .

Proof. Mapping u 2 G to the class of .u; eG0/ in G �P .P=G0/ is immediately
seen to be surjective and its fibers coincide with the orbits of G0 on G . Hence one
obtains an identification of G=G0 with A, and it is well known that this makes the
projection G ! A into a G0-principal bundle. The defining properties of ! for
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the group P and the Lie algebra p then imply the corresponding properties for the
group G0 and the Lie algebra g0, so ! defines a Cartan connection on G ! A.

As a representation of G0, we get g D g0 ˚ .g� ˚ pC/. This means that we
have given a G0-invariant complement to g0 in g. Decomposing ! accordingly,
the component !0 in g0 is G0-equivariant, thus defining a principal connection
on G ! A, which induces linear connections on all associated vector bundles.
Moreover, since ! is a Cartan connection on G ! A, we can identify TA with the
associated vector bundle

G �G0
.g=g0/ Š G �G0

.g� ˚ pC/:

This readily implies both the existence of a natural connection and of a compatible
decomposition of TA with L� D G �G0

g� and LC D G �G0
pC. The tangent map

T� W TA! TM is induced by the projection g=g0 ! g=p. Identifying g=g0 with
g� ˚ pC the kernel of this projection is pC, which shows that LC � TA coincides
with ker.T �/. □

This result also gives us a basic supply of natural vector bundles on A, namely
the vector bundles associated to the principal bundle G ! A via representations
of G0. Moreover, the principal connection on that bundle coming from !0 gives
rise to an induced linear connection on each of these associated bundles. We will
denote all these induced connections by D. Given an associated bundle E ! A,
we can view D as an operator D W �.E/! �.T �A˝E/. Of course the splitting
TA D L� ˚ LC from Proposition 2.4 induces an analogous splitting of T �A,
which allows us to split D into two partial connections D D D� ˚ DC. Here
D˙ W �.E/! �..L˙/�˝E/. ViewingD as a covariant derivative,D˙ is defined
by differentiating only in directions of the corresponding subbundle of TA.

2.4. Relations between natural vector bundles

Recall that the natural vector bundles for the parabolic geometry .p W G !M;!/

are the associated vector bundles of the form VM D G �P V for representations V

of P . Throughout this article, we will only consider the case that the center Z.G0/
of the subgroup G0 � P acts diagonalizably on V . Together with the fact that
G0 is reductive, this implies that V is completely reducible as a representation of
G0. One important subclass of natural bundles is formed by completely reducible
bundles that correspond to representations of P on which the subgroup PC � P
acts trivially, which is equivalent to complete reducibility as a representation of P .
On the other hand, there are tractor bundles which correspond to restrictions to P
of representations of G.

Any representation V of P can naturally be endowed with a P -invariant filtration
of the form V D V 0 � V 1 � � � � � VN as follows (see Section 3.2.12 of [16]). The
smallest component VN consists of those elements, on which pC acts trivially under
the infinitesimal action. The larger components are characterized iteratively by the
fact that v 2 V j if and only if it is sent to V jC1 by the action of any element of pC.
Then one defines the associated graded representation gr.V / WD ˚NiD0 gri .V / with
gri .V / WD .V i=V iC1/ and VNC1 D f0g. By construction, this is a completely
reducible representation of P .
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As an important special case, consider the restriction of the adjoint representation
of G to P . Then it turns out that, up to a shift in degree, the canonical P -invariant
filtration is exactly the filtration fgig derived from the jkj-grading of g as in Sec-
tion 2.1. In particular, this implies that g2 D ŒpC; pC� and similarly, the higher
filtrations components form the lower central series of pC. Using this it is easy to
see that the natural filtration on any representation V of P has the property that
gi � V j � V iCj for all i; j � 0 under the infinitesimal representation of p D g0.
This readily implies that there is a natural action of the associated graded gr.p/ on
gr.V /, which is compatible with the grading. Since the filtration of p is induced
by the (non-negative part of the) grading on g, we can identify gr.p/ with p via
the inclusion of gi into gi . Altogether, we get, for each i; j � 0, bilinear maps
gi � grj .V /! griCj .V /, which are P -equivariant (with trivial action of PC) by
construction.

As a representation of the subgroup G0 � P , the associated graded gr.V / is
isomorphic to V . Indeed, we have observed above that V is completely reducible
as a representation of G0, so the same holds for each of the subrepresentations
V j � V . In particular, there always is a G0-invariant complement Vj to the
invariant subspace V jC1 � V j and we put VN D VN . By construction, we on the
one hand get V Š ˚Vj and on the other hand Vj Š V j =V jC1 which implies that
claimed statement. Otherwise put, one can interpret the passage from V to gr.V / as
keeping the restriction to G0 of the P -action on V and extending this by the trivial
action of PC to a new action of P .

The construction of the associated graded has a direct counterpart on the level of
associated bundles. Putting VM WD G�PV !M , any of the filtration components
V i defines a smooth subbundle V iM WD G �P V i !M . Thus VM is filtered by
the smooth subbundles V iM and we can form the associated graded vector bundle
gr.VM/ D ˚.V iM=V iC1M/. It is easy to see that this can be identified with the
associated bundle G �P gr.V /. However, the fact that V and gr.V / are isomorphic
as representations of G0 does not have a geometric interpretation without making
additional choices. Hence on the level of associated bundles, it is very important to
carefully distinguish between a filtered vector bundle and its associated graded.

Any representation V of P defines a representation of G0 by restriction. Hence
denoting by � W A!M the bundle of Weyl structures, V also gives rise to a natural
vector bundle over A that we denote by VA WD G �G0

V ! A. Some information
is lost in that process, however, for example G �G0

V Š G �G0
gr.V / for any

representation V of P . Next, sections of VA ! A can be naturally identified
with smooth functions G ! V that are G0-equivariant. Similarly, sections of
VM !M are in bijective correspondence with smooth functions G ! V , which
are P -equivariant. Thus we see that there is a natural inclusion of �.VM !M/

as a linear subspace of �.VA ! A/. We will denote this by putting a tilde over
the name of a section of VM !M in order to indicate the corresponding section
of VA ! A. So both the sections of VM ! M and of its associated graded
vector bundle can be interpreted as (different) subspaces of the space of sections of
VA! A.

Now we can describe the relations of bundles and sections explicitly.
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Theorem 2.5. Let .p W G !M;!/ be a parabolic geometry of type .G; P / and let
� W A!M be the corresponding bundle of Weyl structures. Fix a representation
V of P and consider the corresponding natural bundles VM D G �P V ! M

and VA D G �G0
V ! A. Then we have:

(1) VA can be naturally identified with the pullback bundle ��VM . In particular,
L� Š ��TM and LC Š ��T �M .

(2) The operation � 7! Q� identifies �.VM ! M/ with the subspace of
�.VA ! A/ consisting of those sections � for which DC' � D �' � � for all
' 2 �.LC/. Here � W LC � VA! VA is induced by the infinitesimal representa-
tion pC � V ! V .

In particular, for a completely reducible bundle VM , Q� D ��� and the image
consists of all sections that are parallel for DC.

(3) Any section s W M ! A of � determines a natural pullback operator
s� W �.VA ! A/ ! �.gr.VM/ ! M/. In particular, choosing s, � 7! s� Q�

defines a map �.VM/ ! �.gr.VM//. This map is induced by a vector bundle
isomorphism VM ! gr.VM/ that coincides with the isomorphism determined by
the Weyl structure corresponding to s as in Section 5.1.3 of [16].

Proof. (1) follows directly from the construction: Mapping a G0-orbit in G � V

to the P -orbit it generates, defines a bundle map VA ! VM with base map
� W A ! M . This evidently restricts to a linear isomorphism in each fiber and
hence defines an isomorphism VA! ��VM . The second statement follows from
the well known facts that TM Š G �P .g=p/ and T �M Š G �P pC and the fact
that g=p Š g� as a representation of G0.

(2) Since P is a semi-direct product, P -equivariancy of a function is equivalent
to equivariancy under G0 and PC and equivariancy under PC is equivalent to
equivariancy for the infinitesimal action of pC. Hence for a G0-equivariant function
f W G ! V , P -equivariancy is equivalent to the fact that for each u 2 G and
Z 2 pC with fundamental vector field �Z , we get �Z.u/ � f D Z � f .u/. Here in
the left hand side the vector field differentiates the function, while in the right hand
side we use the infinitesimal representation of pC on V . Suppose that u projects
to y 2 A. Then by definition, �Z.u/ is the horizontal lift with respect to D of a
tangent vector ' 2 LCy � TyA. Hence �Z.u/ � f represents D'�.y/ D DC' �.y/
in the, while Z � f .u/ of course represents ' � �.y/.

In the case of a completely reducible bundle, � is the zero map, so we see that
our subspace coincides with the DC-parallel sections. On the other hand, for any
section � 2 �.VM/, the pullback ��� is constant along the fibers of � . Since we
know from Proposition 2.4 that LC is the vertical subbundle of � , this implies that
��� D Q� .

(3) As we have noted already, for any representation V of P , the associated
graded gr.V / is isomorphic to V as a representation of G0. Thus we conclude
from (1) that we can not only identify VA with the pullback of VM but also
with the pullback of the associated graded vector bundle gr.VM/. Hence for a
smooth section s WM ! A and a point x 2M , we can naturally identify the fiber
Vs.x/A with the fiber over x of gr.VM/. This provides a pullback operator s� W
�.VA/! �.gr.VM//, so � 7! s� Q� defines an operator �.VM/! �.gr.VM//.
This operator is evidently linear over C1.M;R/ and thus induced by a vector
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bundle homomorphism VM ! gr.VM/ with base map idM . Suppose that for
� 2 �.VM/ and x 2 M we have .s� Q�/.x/ D 0. Then the function f W G ! V

which corresponds to both � and Q� has to vanish along the fiber of G ! A over
s.x/. But P -equivariancy then implies that f vanishes along the fiber of G !M

over x, so �.x/ D 0. This implies that our bundle map is injective in each fiber and
since both bundles have the same rank it is an isomorphism of vector bundles.

The standard description of the isomorphism VM ! gr.VM/ induced by a
Weyl structure is actually also phrased in the language of sections; Given the P -
equivariant function f W G ! V corresponding to � and the G0-equivariant section
s W G0 ! G determined by s, one considers the G0-equivariant function f ı s. This
describes a section of G0�G0

V Š G0�G0
gr.V /. Going through the identifications,

it is clear that this coincides with the isomorphism described above. □

Remark 2.6. (1) In principle, the pullback operation defined in part (3) of Theo-
rem 2.5 could also be interpreted as having values in �.VM ! M/. Since VA

does not contain any information about the pC-action on V , the interpretation with
values in �.gr.VM/!M/ seems much more natural to us.

(2) The comparison to the standard description of Weyl structures in part (3)
of the theorem also implies how the isomorphisms VM ! gr.VM/ induced by
sections s of A!M are compatible with the affine structure on the space of these
sections from Proposition 2.2, compare with Proposition 5.1.5 of [16]. It is also
easy to give a direct proof of this result in our picture. One just has to interpret the
affine structure in terms of sections of LC ! A and then use the obvious solution
of the differential equation DC' � D ' � � for appropriate sections '.

2.5. The Weyl connections

We next describe the interpretation of Weyl connections in our picture. At the same
time, we obtain a nice description of the Rho-corrected derivative associated to
a Weyl structure, that was first introduced in [10], see Section 5.1.9 of [16] for a
discussion. The Rho-corrected derivative comes from a principal connection on G

determined by an equivariant section � W G0 ! G . One takes the component of !
in p along the image of � and extends it equivariantly to a principal connection. The
name "Rho-corrected derivative" comes from the explicit formula of this derivative
in terms of Weyl connection an the Rho-tensor. To obtain our description, we first
observe that the pullback operation from part (3) of Theorem 2.5 clearly extends to
differential forms with values in a natural vector bundle. Let V be a representation of
P with corresponding natural bundles VM !M and VA! A. Then one can pull
back a VA-valued k form ' on A along a section s WM ! A to a gr.VM/-valued
k-form s�' on M in an obvious way.

Theorem 2.7. Let V be a representation of P and let VM ! M and VA ! A

be the corresponding natural bundles. For � 2 �.VM/ consider the natural lift
Q� 2 �.VA/. For a smooth section s WM ! A let rs be the Weyl connection of the
Weyl structure determined by s. Let � 2 X.M/ be a vector field with natural lift
Q� 2 �.L�/.
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(1) The pullback s�D Q� 2 �1.M; gr.VM// of D Q� 2 �1.A;VA/ coincides
with the image of rs� 2 �1.M;VM/ under the isomorphism VM ! gr.VM/

induced by s as in Theorem 2.5.
(2) The pullback s�.D�

Q�
Q�/ 2 �.gr.VM// coincides with the image of the Rho-

corrected derivative rP
�
� 2 �.VM/ under the isomorphism induced by s as in

Theorem 2.5.

Proof. Let Ns W G0 ! G be the G0-equivariant section corresponding to s. For a
point x 2 M , an element u 2 G with p.u/ D x lies in the image of Ns if and only
if u projects to s.x/ 2 A. Assuming this, put u0 D q.u/ where q W G ! G0 is the
projection, so u D Ns.u0/. To compute rs , we need the horizontal lift O� 2 X.G0/

of � for the principal connection Ns�!0. This is characterized by the fact that O�.u0/
projects onto �.x/ and that !.u/.Tu0

Ns � O�.u0// has vanishing g0-component. But
by construction Tu0

Ns � O�.u0/ projects onto Txs � �.x/ and so vanishing of the g0-
component implies that this is the horizontal lift of Txs � �.x/ in u corresponding to
the principal connection !0 that induces D. From this, (1) follows immediately.

The argument for (2) is closely similar. By definition, Q�.s.x// is the unique
tangent vector that lies in L� and projects onto �.x/. The D-horizontal lift of
this tangent vector in u, by construction, is mapped to g� by ! and projects onto
�.x/ 2 TxM . But this is exactly the characterizing property of the horizontal lift
with respect to the principal connection  Ns used in Section 5.1.9 of [16] to define the
Rho-corrected derivative. Thus the restriction of the G0-equivariant function G !

V representing D�
Q�
Q� to Ns.G0/ coincides with the restriction of the P -equivariant

function representing rP
�
� and the claim follows from Theorem 2.5. □

2.6. The universal Rho-tensor

Using the pullback of bundle valued forms, we can also describe the Rho tensor in
our picture. Recall that we use the convention of [15] and [16] for Rho tensors in
the setting of general parabolic geometries, which differ by sign from the standard
conventions for projective and conformal structures.

Proposition 2.8. Let us view the projection TA! LC as P 2 �1.A;LC/. Then
for each smooth section s W M ! A, the pullback s�P 2 �1.M; gr.T �M//

coincides with the Rho-tensor of the Weyl structure determined by s as defined in
Section 5.1.2 of [16].

Proof. Take a point x 2 M , a tangent vector � 2 TxM and consider Txs � � 2
Ts.x/A. Choose a point u 2 G over s.x/ and consider its image u0 D q.u/ 2

G0. Since u projects to s.x/, it lies in the image of the G0-equivariant section
Ns W G0 ! G determined by s, so u D Ns.u0/. Taking a tangent vector O� 2 Tu0

G0,
the tangent vector Tu0

Ns � O� 2 TuG , by construction, projects onto Txs � � 2 Ts.x/A.
But then, by definition, the LC component of Txs � � is obtained by projecting
!.u/�1.!C.Tu0

Ns � O�// to Ts.x/A, where !C denotes the pC-component of the
Cartan connection !. But the Rho-tensor of Ns is defined as the gr.T �M/-valued
form induced by theG0-equivariant form Ns�!C, which completes the argument. □
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Definition 2.9. The form P 2 �1.A;LC/ defined by the projection TA! LC is
called the universal Rho-tensor of the parabolic geometry .p W G !M;!/.

2.7. Curvature and torsion quantities

The curvature K 2 �2.G ; g/ of the Cartan connection ! is defined by K.�; �/ D
d!.�; �/C Œ!.�/; !.�/� for �; � 2 X.G /. Since K is horizontal and P -equivariant,
it can be interpreted as � 2 �2.M;AM/, where AM D G �P g is the adjoint
tractor bundle. In the same way, we can interpret it as a two-form on A with values
in the associated bundle G �G0

g. Since K is horizontal over M , it follows that
this two form vanishes upon insertion of one tangent vector from LC � TA. In
view of the G0-invariant decomposition g D g� ˚ g0 ˚ pC we can decompose
that two-form further. To do this, we denote by End0.TA/ the associated bundle
G �G0

g0. Via the adjoint action, this can naturally be viewed as a subbundle of
L.TA; TA/.

Definition 2.10. The components T 2 �2.A;L�/, W 2 �2.A;End0.TA// and
Y 2 �2.A;LC/ of the two form onA induced byK are called the universal torsion,
the universal Weyl curvature and the universal Cotton-York tensor of the parabolic
geometry .p W G !M;!/.

The following result follows directly from the definitions.

Proposition 2.11. For any smooth section s W M ! A, the pullbacks s�T 2
�2.M; gr.TM//, s�W 2 �2.M;End0.TM// and s�Y 2 �2.M; gr.T �M// cor-
respond to the components of the Cartan curvature � 2 �2.M;AM/ under the
isomorphism AM Š gr.AM/ Š gr.TM/˚ End0.TM/˚ gr.T �M/ induced by
the Weyl structure determined by s.

These quantities are related to data associated to the Weyl structure determined
by s in Section 5.2.9 of [16] and these results can be easily recovered in the current
context.

On the level ofA, the best way to interpret the components of the Cartan curvature
is via the torsion and curvature of the canonical connection D. This interpretation
will also be crucial for the analysis of the intrinsic geometric structure on A in
Section 3 below. To formulate the result, we need a bit more notation. The Lie
bracket is a G-equivariant, skew symmetric bilinear map g � g! g. Now we can
restrict this to entries from g� ˚ pC and then decompose the values according to
g D .g�˚pC/˚g0, and the result will still beG0-equivariant. The first component
induces a two-form on A with values in TA which we denote by f ; g. Similarly,
the g0-component of the bracket defines a two-form f ; g0 on A with values in
End0.TA/. Using this, we formulate

Theorem 2.12. Let A ! M be the bundle of Weyl structures associated to a
parabolic geometry, and let D be the canonical connection on TA. Let � 2
�2.A; TA/ be the torsion and � 2 �2.A;L.TA; TA// be the curvature of D. Then
we have:

(1) The TA-valued two form � C f ; g vanishes upon insertion of one section
of LC. On ƒ2L�, its components in L� and LC are the tensors T and Y from
Definition 2.10, respectively.
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(2) The curvature � has values in End0.TA/ � L.TA; TA/. Moreover, �Cf ; g0
vanishes upon insertion of one section of LC and coincides with the tensor W from
Definition 2.10 on ƒ2L�.

Proof. This follows from well known results on the curvature and torsion of the
affine connection induced by a reductive Cartan geometry. For � 2 X.A/, let
�h 2 X.G / be the horizontal lift. Then !.�h/ W G ! .g� ˚ pC/ is the equivariant
function corresponding to � . Taking a second field �, the bracket Œ�h; �h� lifts Œ�; ��
so !˙.Œ�h; �h�/ is the equivariant function representing Œ�; ��.

(1) From these considerations and the definition of the exterior derivative, it
follows readily that d!˙.�h; �h/ is the equivariant function representing �.�; �/.
On the other hand, the component of Œ!.�h/; !.�h/� in g� ˚ pC of course repre-
sents f�; �g, so the claim follows from the definition of the curvature of a Cartan
connection.

(2) It is also well known that �!0.Œ�h; �h�/ is the function representing �.�; �/.
Since the g0-component of Œ!.�h/; !.�h/� clearly represents f�; �g0, the result
again follows from the definition of the Cartan curvature. □

3. The natural almost bi-Lagrangian structure

From here on, we take a different point of view. We study the geometry on the
total space of the bundle of Weyl structures associated to a parabolic geometry
from an intrinsic point of view, using the relation to parabolic geometries and Weyl
structures as technical input. We shall see below that these structures become rather
exotic in the case of general gradings, so we will restrict to parabolic geometries
associated to j1j-gradings soon.

3.1. The almost bi-Lagrangian structure and torsion freeness

Consider a parabolic geometry .p W G ! M;!/ of some type .G; P / and let � W
A!M the associated bundle of Weyl structures. As we have noted in Section 2.2,
the tangent bundle TA decomposes as L� ˚ LC, where L� D G �G0

g� and
LC D G �G0

pC. It is also well known that g� and pC are dual as representations
of G0 via the restriction of the Killing form of g. Thus we obtain a non-degenerate
pairing B mapping L� � LC to the trivial real line bundle M � R. This pairing
can be extended as either a skew symmetric or a symmetric bilinear bundle map
on TA, thus defining � 2 �2.A/ and h 2 �.S2T �A/. By construction, for each
y 2 A both values �.y/ and h.y/ are non-degenerate bilinear forms on TyA for
which LCy and L�y are isotropic. The resulting structure .�;LC; L�/ is called an
almost bi-Lagrangian structure.

In particular, � 2 �2.A/ is an almost symplectic structure and an obvious first
question is when this structure is symplectic, i.e. when d� D 0.

Theorem 3.1. Let .p W G ! M;!/ be a parabolic geometry of type .G; P / and
� W A ! M its associated bundle of Weyl structures. Then the natural 2-form
� 2 �2.A/ is closed if and only if .G; P / corresponds to a j1j-grading and the
Cartan geometry .p W G !M;!/ is torsion-free.
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Proof. Let D be the canonical connection on TA from Section 2.3. Since � is
induced by a G0-invariant pairing on g� ˚ gC it satisfies D� D 0. If D were
torsion-free, then d� would coincide with the complete alternation of D� and
thus would vanish, too. In the presence of torsion, there still is a relation as follows.
Expanding D� D 0 by inserting vector fields �; �; � 2 X.A/, we obtain

0 D � ��.�; �/ ��.D��; �/ ��.�;D��/:

Now one takes the sum of the right hand side over all cyclic permutations of the
arguments and uses skew symmetry of � to bring all derivatives of vector fields
into the first component. Then one may use the definition of the torsion � of D to
rewrite D�� �D�� as Œ�; ��C �.�; �/ and similarly for other combinations of the
fields. Then the terms in which one field differentiates the value of � together with
the terms involving a Lie bracket add up to the exterior derivative. One concludes
that D� D 0 implies

d�.�; �; �/ D
P

cycl�.�.�; �/; �/;

where in the right hand side we have the sum over all cyclic permutations of the
arguments. Now let us assume that .G; P / corresponds to a jkj-grading with
k > 1. Then L� and LC decompose into direct sums of subbundles according
to the grading of g� and pC, respectively. Now we take � 2 L� of degree �1,
� 2 LC of degree i > 1 and � 2 LC of degree i � 1. Then by Theorem 2.12, �
coincides with f ; g on any two of these three fields. The restriction of d� to the
subbundles corresponding to these three degrees is induced by the trilinear map
g�1 � gi � gi�1 ! R given by .X; Y;Z/ 7!

P
cyclB.ŒX; Y �; Z/, where B denotes

the Killing form of g. But B.ŒX; Y �; Z/ is already totally skew, so d� D 0 would
imply that B.ŒX; Y �; Z/ D 0 for all elements of the given homogeneities. But
non-degeneracy of B shows that B.ŒX; Y �; Z/ D 0 for all Z implies ŒX; Y � D 0

while for Y 2 gi , the equation ŒX; Y � D 0 for all X 2 g�1 implies Y D 0, see
Proposition 3.1.2 in [16].

Thus we may assume from now on that .G; P / corresponds to a j1j-grading. In
this case, the bracket f ; g is identically zero, so by Theorem 2.12, � vanishes upon
insertion of one element from LC. Hence we see that d� vanishes upon insertion
of two elements of LC. Decomposing ƒ3T �A according to TA D L� ˚ LC, the
only potentially non-zero components of d� thus are the ones in ƒ3.L�/� and in
ƒ2.L�/� ˝ .LC/�.

Now if �; � 2 �.L�/ and � 2 �.LC/, then we simply obtain d�.�; �; �/ D
�.T .�; �/; �/, where T is defined in Definition 2.10. Non-degeneracy of � shows
that this vanishes for all �; �; � if and only if T D 0. This shows that vanishing
of T is a necessary condition for � being closed. In the case of a j1j-grading, the
pullback of T along a Weyl structure as in Proposition 2.11 is independent of the
Weyl structure and gives the torsion of the Cartan geometry .p W G !M;!/.

To complete the proof, we thus have to show that (still in the case of a j1j-
grading) vanishing of T implies that the component of d� in ƒ3.L�/� vanishes
identically. As above, Theorem 2.12 shows that this component is given by the sum
of �.Y.�; �/; �/ over all cyclic permutations of its arguments. But by construction,
this is simply the complete alternation of Y , viewed as a section of ƒ2LC ˝ LC

via the identification .L�/� Š LC. In terms of the Cartan geometry .p W G !M/,
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it thus suffices to show that the component �C of the Cartan curvature in pC always
has trivial complete alternation.

To do this, we first observe that for a j1j-graded Lie algebra g, the subalgebra g0
always splits into its center z.g0/, which has dimension one, and a semisimple part
gss0 . For a torsion-free geometry, the component �0 of � with values in g0 is the
lowest non-vanishing homogeneous component of �, which implies that its values
have to lie in gss0 , compare with Theorem 4.1.1 in [16]. Thus we conclude that,
viewed as a function G ! g, � has values in the subspace gss0 ˚ g1.

Now we can apply the Bianchi identity in the form of equation (1.25) in Proposi-
tion 1.5.9 of [16]. This contains four terms, three of which are evaluations of the
function � or its derivative along some vector field, so these have values in gss0 ˚ g1,
too. Formulated in terms of functions, the Bianchi identity thus implies that for
X1; X2; X3 the cyclic sum over the arguments of ŒX1; �.!�1.X2/; !�1.X3//� has
trivial component in z.g0/. Now we can replace the Xi by their components in
g� without changing the g0-component of ŒX1; �.!�1.X2/; !�1.X3//�, which in
addition depends only on the g1-component of �. Now it is well known that for
X 2 g�1 and Z 2 g1, the component of ŒX;Z� in z.g0/ is a non-zero multiple
of B.X;Z/, where B denotes the Killing form. But this exactly shows that, up
to a non-zero factor, the z.g0/-component of

P
cyclŒX1; �.!

�1.X2/; !
�1.X3//�

represents the action of the complete alternation of �C on the three vector fields
corresponding to the Xi . Thus this complete alternation vanishes identically. □

Remark 3.2. (1) The failure of closedness of � for jkj-gradings with k > 1 can be
described more precisely. The map .X; Y;Z/ 7! B.ŒX; Y �; Z/ that shows up in the
proof defines a G-invariant element in ƒ3g� and hence a bi-invariant 3-form on G.
Restricting this to ƒ3.g� ˚ pC/

�, one obtains a G0-invariant trilinear form, which
is non-zero provided that k > 1. This in turn induces a natural 3-form on each
manifold endowed with a Cartan Geometry of type .G;G0/. On a bundle of Weyl
structures, the proof of Theorem 3.1 shows that this form always is a component of
d�.

(2) The parabolic geometries corresponding to j1j-gradings form a very inter-
esting class of structures. For a j1j-grading, the subalgebras g� and pC become
Abelian, whence the name “Abelian parabolic geometries” is sometimes used for
these structures. The classification of j1j-gradings of simple Lie algebras is well
known from the theory of Hermitian symmetric spaces, which motivates the more
common name “AHS structures” where AHS is shorthand for “almost Hermitian
symmetric”.

Suppose that .G; P / corresponds to a j1j-grading on g. As noted in Section 2.1,
the underlying structure p0 W G0 ! M of a Cartan geometry .p W G ! M/

simply becomes a reduction of the linear frame bundle of M to the structure group
G0 � GL.g�1/. Thus AHS structures are a special class of G-structures, whose
relevance is explained by the classification results by S. Kobayashi and T. Nagano
in [24]. They prove that these are the only structures for which the group acts
irreducibly, and which have the property that any automorphism is determined by
a finite jet in a point but not by the one-jet in a point. In fact, automorphisms are
always determined by the two-jet in a point and the equivalent canonical Cartan
geometry of type .G; P / is the most effective description for these structures.
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The torsion-freeness condition that shows up in Theorem 3.1 has a natural in-
terpretation in the language of G0-structures. As noted in the proof, the torsion
T associated to a Weyl structure in this case is independent of the Weyl struc-
ture. It turns out that this coincides with the intrinsic torsion of the G0-structure
(i.e. the component of the torsion that is independent of the choice of connection).
Thus torsion-freeness of the Cartan geometry corresponds to the usual notion of
integrability in the language of G0-structures.

(3) For some types of AHS-structures, torsion-freeness implies local flatness.
Locally flat structures can be equivalently be characterized as being obtained from
local charts with values in the homogeneous model G=P , for which the transition
functions are given by restrictions of left actions of elements of g. This case anyway
plays a very important role in the results we are going to prove, so our results are
also relevant to these types of AHS structures.

3.2. Local frames

From this point on, we restrict the discussion to torsion-free geometries of some
type .G; P / that corresponds to a j1j-grading of g, so that by Theorem 3.1 �
defines a symplectic structure on A. Recall from Section 2.4 that any vector field
� 2 X.M/ determines a section Q� 2 �.L�/, and since g� is a completely reducible
representation in the j1j-graded case, we get DC Q� D 0. Similarly, a one-form
˛ 2 �1.M/ defines a section Q̨ 2 �.LC/ such that DC Q̨ D 0. We further know
that L� Š ��TM and LC D ��T �M . This implies that starting with local frames
for TM and T �M defined on some open set U �M , the lifts form local frames for
L˙ defined on ��1.U /, so together, these form a local frame for TA. One may in
particular use dual local frames for TM and T �M in which case the resulting local
frame for TA is nicely adapted to the almost bi-Lagrangian structure and thus both
to � and to h. As a preparation for the following computations, we next compute
the Lie brackets of such sections.

Proposition 3.3. Consider a torsion-free AHS structure .p W G ! M;!/ and let
� W A!M be the corresponding bundle of Weyl structures. Let �; � 2 X.M/ be
vector fields and ˛; ˇ 2 �1.M/ be one-forms onM and consider the corresponding
sections Q�; Q� 2 �.L�/ and Q̨ ; Q̌ 2 �.LC/.

Then for the Lie brackets on A, we get Œ Q̨ ; Q̌� D 0 and Œ Q�; Q̨ � D DQ� Q̨ 2 �.L
C/.

Finally, the L�-component of Œ Q�; Q�� coincides with eŒ�; ��, while its LC-component
coincides with �Y. Q�; Q�/, see Definition 2.10.

Proof. By definition of the torsion

(3.1) �.X;Z/ D DXZ �DZX � ŒX;Z�

for all X;Z 2 X.A/. If at least one of the two fields is a section of LC, then the
left hand side of (3.1) vanishes by Theorem 2.12. Moreover, all the sections coming
from M are parallel in LC-directions. This immediately shows that Œ Q̨ ; Q̌� D 0

and 0 D DQ� Q̨ � Œ
Q�; Q̨ �. In view of torsion-freeness, Theorem 2.12 further tells

us that �. Q�; Q�/ D Y. Q�; Q�/ 2 �.LC/. Inserting X D Q� and Z D Q� into the right
hand side of (3.1), the first two terms are sections of L�, so the claim about the
LC-component of Œ Q�; Q�� follows. Finally, since Q� and Q� are lifts to A of � and �, the
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bracket Œ Q�; Q�� 2 X.A/ is a lift of Œ�; ��. Since eŒ�; �� is the unique section of L� that
projects onto Œ�; ��, it has to coincide with the L�-component of that lift. □

In particular, we see that, while LC always defines an involutive distribution,
L� is only involutive if the curvature component Y from Definition 2.10 vanishes
identically. From the interpretation via the Cartan curvature, one easily concludes
that this is equivalent to local vanishing of the Cartan curvature. Thus our structure
is bi-Lagrangian (in the sense that both subbundles L˙ are integrable) if and only if
the initial parabolic geometry is locally flat.

3.3. The canonical metric

We next study the pseudo-Riemannian metric h induced on A. By definition, the
subbundles L˙ are isotropic for h, so this metric always has split signature .n; n/,
where n D dim.M/. Our main next aim will be to prove that the metric h is always
Einstein. As a first step in this direction, consider the canonical connection D and
its curvature � 2 �2.A;End0.TA// as described in Section 2.7.

Lemma 3.4. The Ricci-type contraction of � is a non-zero multiple of h.

Proof. By Theorem 2.12, �C f ; g0 vanishes upon insertion of one section of LC

and coincides with W on ƒ2.L�/�. Decomposing ƒ2TA� according to TA D
LC˚L�, we conclude that the component of � inƒ2.LC/� vanishes, its component
in .L�/�˝.LC/� is induced by�f ; g0, and the component inƒ2.L�/� is induced
by W . On the other hand, End0.TA/ D G �G0

g0, so this is a subbundle of
..L�/� ˝ L�/˚ ..LC/� ˝ LC/ � TA� ˝ TA. Thus we conclude that the Ricci-
type contraction of � vanishes on LC �LC, while its components on L� �LC and
L� �L� are induced by the Ricci-type contractions of �f ; g0 and W , respectively.
By Proposition 2.11, the pullback ofW along any section s WM ! A represents the
Weyl curvature of the Weyl structure determined by s. In the torsion-free case, this
is well known to have values in an irreducible representation of G0 that occurs with
multiplicity one in ƒ�g�� ˝ g, which implies that any contraction of W vanishes
identically.

Hence we see that the Ricci type contraction of � has values in .L�/� ˝ .LC/�

and is induced by the Ricci type contraction of �f ; g0, so this is a natural bundle
map, and we can compute it on the inducing representations. Take a basis feig of
g�1 and let feig be the dual basis of g�

�1 Š g1, which means that for the Killing
form B , we get B.ei ; ej / D ı

j
i . Now we have to view the g0 component of the

bracket Œ ; � in g as a map sending .g�˚ pC/
2 to an endomorphism of g�˚ pC via

the adjoint action. Hence forX; Y 2 g�1 andZ;W 2 g1, the Ricci type contraction
sends

�
X
Z

�
and

�
Y
W

�
toP

i B
����

X
Z

�
;
�
ei

0

��
;
�
Y
W

��
;
�
0
ei

�
/C

P
i B
����

X
Z

�
;
�
0
ei

��
;
�
Y
W

��
;
�
ei

0

��
:

Expanding the first sum using invariance of the Killing form and the fact that g�1 is
abelian, we obtainP

i B.ŒŒZ; ei �; Y �; e
i / D

P
i B.Z; Œei ; ŒY; e

i ��/ D
P
i B.Z; ŒY; Œei ; e

i ��/;

and in the same way the second sum gives
P
i B.ŒX; Œei ; e

i ��; W /. But the elementP
i Œei ; e

i � 2 g0 is obtained from the identity map in g�1˝g�
�1 via the isomorphism
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to g�1 ˝ g1 and the bracket in g. Since these both are g0-equivariant,
P
i Œei ; e

i �

is g0-invariant and thus contained in the center of g0. In the j1j-graded case, this
center is spanned by the grading element E. In addition, B.E;

P
i Œei ; e

i �/ DP
i B.ŒE; ei �; e

i / D � dim.g�1/, so
P
i Œei ; e

i � is a non-zero multiple of E. Hence
the whole contraction gives a non-zero multiple ofB.Z; Y /CB.X;W / D h.

�
X
Z

�
;
�
Y
W

�
/.

□

Now by construction, the canonical connection D satisfies Dh D 0, so D is
metric for h. This implies that the Levi-Civita connection r of h can be computed
from D and its torsion � . Indeed, we claim that for �; �; � 2 X.A/, h.r��; �/ is
given by

(3.2) h.D��; �/ �
1
2
h.�.�; �/; �/C 1

2
h.�.�; �/; �/C 1

2
h.�.�; �/; �/:

This evidently defines a linear connection r on TA. Moreover, the last three terms
in (3.2) are visibly skew symmetric in � and �, whence the fact thatD is metric with
respect to h implies that r is metric with respect to h, too. On the other hand, since
the last two terms in (3.2) are symmetric in � and �, and � is the torsion of D, one
immediately verifies that r is torsion-free. Let us write C 2 �.˝2T �A˝ TA/ for
the contorsion tensor between r and D, so C.�; �/ D r���D�� and the last three
terms in (3.2) explicitly express h.C.�; �/; �/. Using this, we prove the following
result

Theorem 3.5. For any torsion-free AHS structure, the pseudo-Riemannian metric h
induced by the canonical almost bi-Lagrangian structure on the bundle A of Weyl
structures is an Einstein metric with non-zero scalar curvature.

Proof. Theorem 2.12 in the torsion-free case shows that � vanishes upon insertion
of one section of LC and has values in LC. Thus equation (3.2) shows that
h.C.�; �/; �/ vanishes if one of the three fields is a section of LC. This shows that
the only non-zero component of C is the one mapping L� � L� to LC. Now it is
standard how to compute the curvature of r from C and the curvature � of D via
differentiating the equation defining C . The result contains terms in which C is
differentiated as well as terms in which values of C are inserted into C . From the
form of C we have just deduced, it follows that the latter terms vanish identically.

Using this, one computes that for �; �; � 2 X.A/ the difference R.�; �/.�/ �
�.�; �/.�/ is given by

(3.3) D�.C.�; �// �D�.C.�; �//C C.�;D��/ � C.�;D��/ � C.Œ�; ��; �/:

(This is just the covariant exterior derivative of C with respect to D evaluated on
� and � and then applied to �.) In view of Lemma 3.4, it suffices to prove that the
Ricci-type contraction of this expression vanishes. To compute this contraction,
we leave � and � as entries, insert the elements of a local frame of TA for � and
hook the result into h together with the elements of the dual frame. First of all, (3.3)
visibly vanishes for � 2 �.LC/. If we insert for � an element of a frame for L�,
then the element of the dual frame will sit in LC. Since C has values in LC, these
summands do not contribute to the contraction. Thus we only have to take into
account the case that we insert elements of a frame for LC for �, and then the first
and fourth term of (3.3) visibly vanish. The remaining three terms vanish if � is a
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section of LC, so what we have to compute isP
i h
�
�DC

ei .C.�; �//C C.�;D
C

ei �/ � C.Œ�; e
i �; �/; ei

�
for a smooth local frame feig for LC with dual frame feig for L� and local sections
�; � 2 �.L�/. Now we can take � and � and the local frames to be obtained from
vector fields respectively one-forms on M . Then DC

ei � D 0, while Œ�; ei � 2 �.LC/
by Proposition 3.3 and thus C.Œ�; ei �; �/ D 0.

Thus we are left with computing
P
i h.D

C

ei .C.�; �//; ei / with the frames, � and
� all coming from M . In particular, ei is parallel for DC so since D is metric for
h, we may rewrite this as

P
i e
i � h.C.�; �/; ei /. We can then insert the formula

for h.C.�; �/; ei / resulting from (3.2), taking into account that on entries from L�

the torsion � is determined by the tensor Y from Definition 2.10. Viewing Y as a
section of ƒ2.L�/� ˝ .L�/�, this leads toP

i e
i � h.C.�; �/; ei / D

1
2

P
i e
i � .�Y.�; �; ei /C Y.�; ei ; �/C Y.�; ei ; �//:

From the proof of Theorem 3.1, we know that the complete alternation of Y vanishes,
which allows us to rewrite this as

P
i e
i �Y.�; ei ; �/. Under the standing assumption

that all sections come from M , they are parallel for DC, so we can complete the
proof by showing that

P
i .D
C

eiY /.�; ei ; �/ D 0.
Now by definition, Y is a component of the Cartan curvature, which descends to

a well defined section of the bundle ƒ2T �M ˝AM , where AM D G �P g. By
torsion freeness, the full Cartan curvature has the form .0;W; Y / with respect to the
decomposition g D g�1 ˚ g0 ˚ g1. Hence by Theorem 2.5, we get

DC' .0;W; Y / D .0;D
C
' W;D

C
' ; Y / D �' � .0;W; Y /;

and the action � is induced by the Lie bracket on g. Since this bracket vanishes
on g1 � g1 and defines the action of g0 on g˙1, we conclude that DCW D 0

and DC' Y D W.'/, where we view W as an section of ƒ2.L��/� ˝ End.LC/ Š
ƒ2.L��/�˝.L�/�˝.LC/� in the right hand side. But this implies that

P
i .D
C

eiY /.�; ei ; �/

is given by evaluating a trace of W on � and � and thus vanishes. □

Remark 3.6. In the special case of a projective structure on a surface†, the resulting
Einstein metric on the four-manifold A is also anti-self-dual, see [19] and also [8].

Remark 3.7. The automorphisms of a projective structure on a smooth manifold
M lift to become isometric symplectomorphisms of .A;�; h/, see [19]. For back-
ground about automorphisms of a parabolic geometry, see [1, 16, 20].

Remark 3.8. A pair .h;�/, consisting of a split-signature metric h and a symplectic
form � that are related by an endomorphism which squares to become the identity
map, is also known as an almost para-Kähler structure. Here, following [6], we
refer to such a pair, or rather its associated triple .�;LC; L�/, as an almost bi-
Lagrangian structure.

3.4. Geometry of Weyl structures

Viewed as a section of � W A! M , any Weyl structure defines an embedding of
M into A, and we can now study this embedding via submanifold geometry related
to the almost bi-Lagrangian structure. In particular, we can pull back the two-form
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� and the pseudo-Riemannian metric to M along s, and this naturally leads to the
following definitions.

Definition 3.9. Let .p W G ! M;!/ be a torsion-free AHS structure and let
s WM ! A be a smooth section.

(1) The Weyl structure corresponding to s is called Lagrangian if and only if
s�� D 0 and thus s.M/ � A is a Lagrangian submanifold.

(2) The Weyl structure corresponding to s is called non-degenerate if and only if
s�h 2 �.S2T �M/ is non-degenerate and thus defines a pseudo-Riemannian metric
on M .

These properties can easily be characterized in terms of the Rho tensor.

Proposition 3.10. A Weyl structure is Lagrangian if and only if its Rho tensor is
symmetric and non-degenerate if and only if the symmetric part of its Rho tensor is
non-degenerate.

Proof. For a point x 2 M and a tangent vector � 2 TxM consider Txs � � 2
Ts.x/.A/. Since this is a lift of �, its L�-component has to coincide with Q�.s.x//.
On the other hand, by Proposition 2.8, the LC-component of Txs � � corresponds to
P.x/.�/ 2 T �xM . Pulling back the pairing between L� and LC, one thus obtains
the map .�; �/ 7! P.x/.�/.�/ and thus the result follows from the definitions of �
and h. □

Remark 3.11. (1) For any type of parabolic geometry, there are natural line bundles
called bundles of scales, an example in the AHS-case is provided by the bundle EM

in Theorem 4.2 below. If EM is any bundle of scales on M , then mapping a Weyl
structure to the induced Weyl connection on EM induces a bijective correspondence
between Weyl structures and linear connections on EM . Fixing EM , one calls a
Weyl structure closed if the corresponding linear connection on EM is flat and exact
if in addition there is a global parallel section of EM , see [15] and Section 5.1 of
[16]. For general types of geometries there is a larger freedom of choice of bundles
of scales, but for AHS-structures all bundles of scales lead to the same subclasses
of closed and exact Weyl structures.

Together with the general theory of Weyl structures, Proposition 3.10 implies
that, on a torsion-free AHS-structure, a Weyl structure is Lagrangian if and only
if it is closed. This follows from the relation between curvature and torsion of a
Weyl connection and the Cartan curvature as discussed in Example 5.2.3 of [16] in
the setting of AHS structures. By Theorem 5.2.3 of that reference, the curvature
R 2 �2.M;G �g g0/ of the Weyl connection corresponding to s 2 �.A/ can be
computed as s�W C @s�P for the quantities from Proposition 2.11 and a certain
natural bundle map @. For the action on a bundle of scales, the component of R
with values in the center z.g0/ is relevant. For a torsion free geometry, W is the
lowest non-zero component of the Cartan curvature and hence by general results
has values in an irreducible subrepresentation which cannot meet this center. Hence
the curvature of the Weyl connection is only induced by @s�P, and the component
of this in z.g0/ is immediately seen to be the skew part of the Rho tensor up to a
non-zero factor.
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This result nicely corresponds to the fact that for the canonical symplectic struc-
ture on any cotangent bundle T �N , the image of a one-form ˛ 2 �1.N / in T �N
is a Lagrangian submanifold if and only if d˛ D 0.

(2) In the case of an AHS-structure, the cotangent bundle T �M coincides with
the associated graded bundle, so Proposition 2.3 shows that a Weyl structure s
determines a diffeomorphism 's W T

�M ! A. Now we can use this to pull
back the geometric structures on A to T �M and in particular, in the torsion-free
case, compare the pullback of the symplectic form � 2 �2.A/ to the canonical
symplectic structure on T �M . Recall that the diffeomorphism 's is induced by
ˆs W G0 � pC ! G , ˆs.u0; Z/ D �.u0/ � exp.Z/, where � W G0 ! G is the
equivariant section determined by s.

Equivariancy of the Cartan connection ! 2 �1.G ; g/ then implies that the
pullback ˆ�s! can be easily expressed explicitly in terms of ��!. Denoting by
q W G0 � pC ! T �M the canonical projection, the definition of � in Section 3.1
shows that q�'�s� D ˆ�s� sends tangent vectors �; � to the alternation of the
pairing between .ˆ�s!/�.�/ 2 g�1 and .ˆ�s!/C.�/ 2 g1. On the other hand, it
is easy to explicitly describe q�˛ 2 �1.G0 � pC/, where ˛ 2 �1.T �M/ is the
canonical one-form. From this, one can explicitly compute the pullback �q�d˛ of
the canonical symplectic form on T �M and show that it equals the sum of ˆ�s�
and the pullback of the alternation of the Rho-tensor. In particular, generalizing
a result from [28] in the projective case, we conclude that 's W T �M ! A is
a symplectomorphism if and only if the Weyl-structure s is Lagrangian. Indeed,
it turns out that also the split-signature metric '�s h on T �M can be computed
explicitly in terms of the underlying AHS-structure. All this will be taken up in
more detail elsewhere.

To start the geometric study of Lagrangian Weyl structures, we can characterize
when s has the property that the submanifold s.M/ � A is totally geodesic.

Theorem 3.12. Let .p W G !M;!/ be a torsion-free AHS structure and � W A!
M its bundle of Weyl structures. Let s WM ! A be a smooth section corresponding
to a Lagrangian Weyl structure, let rs denote the corresponding Weyl connections
and Ps the corresponding Rho-tensor. Then the following conditions are equivalent:

(1) The submanifold s.M/ � A is totally geodesic for the canonical connection
D.

(2) The submanifold s.M/ � A is totally geodesic for the Levi-Civita connection
of h.

(3) rsPs D 0

Proof. We will use abstract index notation to carry out the computations and denote
the Rho tensor of s just by P, so this has the form Pij and is symmetric by assump-
tion. Since for each y 2 A and x WD �.y/ 2M , we can identify L�y with TxM and
LCy with T �xM , we can use the index notation also on A, but here tangent vectors
have the form .� i ; ˛j /. In this language the proof of Proposition 3.10 shows that for
x 2 M the tangent space Ts.x/s.M/ consists of all pairs of the form .� i ;Pja�a/.
The condition that s.M/ is totally geodesic with respect to D means that for vector
field .�; ˛/ on A that is tangent to s.M/ along s.M/, also the covariant derivative
in directions tangent to s.M/ is tangent to s.M/.
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In particular, for a vector field � 2 X.M/, we know from above that .e�j ; APkb�b/ 2
X.A/ is tangent to s.M/ along s.M/. Since these fields are parallel forDC, we see
that s.M/ is totally geodesic forD if and only if all derivatives with respect toD of
that field are tangent to s.M/ along s.M/. But this can be checked by pulling back

the components ofD.e�j ; APkb�b/ along s, which by Theorem 2.7 leads to rsi �
j and

(3.4) r
s
i Pka�

a
D �arsi Pka C Pkarsi �

a;

respectively. So evidently, the result is tangent to s.M/ if and only if �arsi Pka D 0
and since this has to hold for each �, we conclude that (1) is equivalent to (3).

To deal with (2), we use the information on the contorsion tensor C from Sec-
tion 3.3. As observed in the proof of Theorem 3.5, the only non-zero component

of C maps L� � L� to LC. This means that .e�j ; APkb�b/ is also parallel in LC-
directions for the Levi-Civita connection, so as above, we can use the pull back of
the full derivative along s and the result has to be tangent to s.M/. We write the
pullback of C along s as Cijk using the convention that C.�; �/k D � i�jCijk . Now
formula (3.2) from Section 3.3 expresses C in terms of the torsion � of D (with h
just playing the role of identifying LC with the dual of L�) and we know that the
torsion corresponds to the Cartan curvature quantity Y , see Theorem 2.12. Writing
the pullback of this along s in abstract index notion as Yijk , we conclude form
formula (3.2) that Cijk D 1

2
.�Yijk C Yikj C Yjki /. The pullback of the derivative

along s again has first component rsi �
j but for the second component, we have to

add Ciak�a to the right hand side of (3.4).
But it is a well known fact (see Theorem 5.2.3 of [16]) that the pullback of Y along

s is given by the covariant exterior derivative of the Rho-tensor of s and since rs is
torsion-free, this is expressed in abstract index notation as Yijk D rsi Pjk �r

s
jPik .

Inserting this into the formula for Cijk , we immediately conclude that we have to
add �arsaPik � �arskPia to (3.4). As above, this implies that (2) is equivalent to

(3.5) r
s
i Pka Cr

s
aPik � rskPia D 0:

Of course, (3.5) is satisfied if rsP D 0. Conversely, if (3.5) holds, then summing
over all cyclic permutations of the indices shows that the total symmetrization of
rsP has to vanish. But subtracting three times this total symmetrization from the
left hand side of (3.5), one obtains �2rs

k
Pia, so this has to vanish, too. □

The result of Theorem 3.12 is particularly interesting if s is non-degenerate. By
Proposition 3.10 this implies that Ps defines a pseudo-Riemannian metric onM and
since rs is torsion-free, rsPs D 0 implies that rs is the Levi-Civita connection
of Ps . On the other hand, Ps is always related to the Ricci-type contraction of the
curvature of rs , see Section 4.1.1 of [16]. In particular, for projective structures,
symmetry of Ps implies that it is a non-zero multiple of the Ricci curvature of rs ,
see [2], so in this case Ps defines an Einstein metric on M . The condition that a
projective structure contains the Levi-Civita connection of an Einstein metric can
be expressed as a reduction of projective holonomy, see [12] and [11].

For a non-degenerate Lagrangian Weyl structure s, there is a well defined second
fundamental form of s.M/ with respect to any linear connection on TA which
is metric for h. Extending the result of Theorem 3.12 in this case, we can next
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explicitly compute the second fundamental forms for D and for the Levi-Civita
connection. To formulate the result, we use abstract index notation as in the proof
of Theorem 3.12.

Fix the section s W M ! A corresponding to a non-degenerate, Lagrangian
Weyl structure. By non-degeneracy, the Rho tensor Pij of s admits an inverse
Pij 2 �.S2TM/ which is characterized by PijPjk D ıi

k
. In the proof of The-

orem 3.12, we have seen that Ts.x/s.M/ is spanned by all elements of the form
.�i ;Pka�a/ with �i 2 TxM . The definition of h readily implies that the normal
space T?

s.x/
s.M/ consists of all pairs of the form .�i ;�Pjk�k/, so we can identify

both the tangent and the normal space in s.x/ with TxM via projection to the first
component. Correspondingly, the second fundamental form of s.M/ (with respect
to any connection on TA which is metric for h) can be viewed as a

�
1
2

�
-tensor field

on M . We denote the second fundamental form of s WM ! .A; h/ with respect to
D by IIsD and with respect to the Levi-Civita connection of h by IIs

h
.

Theorem 3.13. Let .p W G !M;!/ be a torsion-free AHS-structure with bundle
of Weyl structures � W A!M . Let s WM ! A be a non-degenerate, Lagrangian
Weyl structure with Weyl connection rs and Rho-tensor P 2 �.S2T �M/, then

IIsD D �
1
2
Pkarsi Pja and IIsh D �

1
2
Pka.rsi Pja Cr

s
jPia � rsaPij /:

Proof. We only have to project the derivatives computed in the proof of Theo-
rem 3.12 to the normal space. From the description of tangent and normal spaces,
it follows readily that projecting .� i ; ˛j / to the normal space and taking the L�-
component of the result, one obtains 1

2
.� i �Pia˛a/. Using this, the formulae follow

directly from the the proof of Theorem 3.12. □

4. Relations to non-linear invariant PDE

We conclude this article by discussing a relation between the geometry on the bundle
A of Weyl structures and non-linear invariant PDE associated to AHS structures.
We will mainly consider the prototypical example of a projectively invariant PDE
of Monge-Ampère type. We briefly discuss analogs of this and other invariant
non-linear PDE for specific types of AHS structures, but this will be taken up in
detail elsewhere.

4.1. A tractorial description of A

We start by deriving an alternative description of the bundle A ! M of Weyl
structures associated to an AHS structure .p W G !M;!/ based on tractor bundles.
As mentioned in Section 2.4, these are bundles associated to representations of P
that are restrictions of representations of G. An important feature of these bundles
is that they inherit canonical linear connections from the Cartan connection !.
Together with some algebraic ingredients, these form the basis for the machinery
of BGG sequences that was developed in [17] and [9], which will provide input
to some of the further developments. We have also met the canonical invariant
filtration on representations of P in Section 2.4 and the corresponding filtration of
associated bundles by smooth subbundles. For representations of G, these admit a
simpler description, that we derive first. In most of the examples we need below,
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this description is rather obvious, so readers not interested in representation theory
aspects can safely skip the proof of this result.

Recall that for any jkj-grading on g, there is a unique grading element E, such
that for i D �k; : : : ; k the subspace gi is the eigenspace with eigenvalue i for the
adjoint action of E. In particular, E has to lie in the center of the subalgebra g0. In
the case of a j1j-grading, this center has dimension 1 and thus is spanned by E.

Lemma 4.1. Consider a Lie group G with simple Lie algebra g that is endowed
with a j1j-grading with grading element E, and let G0 � P � G be subgroups
associated to this grading. Let V be a representation of G which is irreducible as a
representation of g. Then there is aG0-invariant decomposition V D V0˚� � �˚VN
such that

� Each Vj is an eigenspace of E.
� For i 2 f�1; 0; 1g and each j , we have gi � Vj � ViCj .
� For each j > 0, restriction of the representation defines a surjection
g1 ˝ Vj�1 ! Vj .
� The canonical P -invariant filtration on V is given by V j D ˚`�jV`.

Proof. Note first that the j1j-grading of g induces a j1j-grading on the complexifi-
cation gC of g, which has the same grading element E as g. It is also well known
that there is a Cartan subalgebra of gC that contains E. Complexifying V and g if
necessary and then passing back to the E-invariant subspace V , we conclude that E
acts diagonalizably on V . Denoting the �-eigenspace for E in V by V�, it follows
readily that gi � V� � V�Ci for i 2 f�1; 0; 1g. Now take an eigenvalue �0 with
minimal real part, let N be the smallest positive integer such that �0CN C 1 is not
an eigenvalue of E and put Vj WD V�0Cj for j D 0; : : : ; N . Then, by construction,
g�1 acts trivially on V0, g1 acts trivially on VN , and each Vj is g0-invariant. This
shows that V0 ˚ � � � ˚ VN is g-invariant and hence has to coincide with V by
irreducibility.

By definition, the adjoint action of each element g0 2 G0 preserves the grading
of g, which easily implies that Ad.g0/.E/ acts on gi by multiplication by i for i 2
f�1; 0; 1g. This means that Ad.g0/.E/�E lies in the center of g, so Ad.g0/.E/ D
E. But then for v 2 V , we can compute E �g0 � v as Ad.g0/.E/ �g0 � v D g0 �E � v.
This shows that each Vj is G0-invariant and it only remains to prove the last two
claimed properties of the decomposition.

We put QV0 WD V0 and for j > 0, we inductively define QVj as the image of the
map g1 ˝ QVj�1 ! Vj . Then, by construction, each QVj is a g0-invariant subspace
of Vj , so QV WD ˚NjD0 QVj � V is invariant under the actions of g0 and g1. But for
X 2 g�1 and Z 2 g1, we have ŒX;Z� 2 g0 and for v 2 V we get

X �Z � v D Z �X � v C ŒZ;X� � v:

This inductively shows that QV is invariant under the action of g�1. Thus it is g-
invariant and hence has to coincide with V by irreducibility, so it remains to verify
the claimed description of the canonical P -invariant filtration.

To do this, we first claim that an element v 2 V such that Z � v D 0 for all
Z 2 g1 has to be contained in VN . It suffices to prove this for the complexification,
so we may assume that both g and V are complex and so there is a highest weight
vector v0 2 V which is unique up to scale by irreducibility. It is then well known
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that V is spanned by vectors obtained from v0 by the iterated action of elements in
negative root spaces of g. Since on such elements E has non-positive eigenvalues,
we conclude that v0 2 VN . Now assume that for some j < N , the space W WD
fv 2 Vj W g1 � v D f0gg is non-trivial. Then, by construction, this is a g0-invariant
subspace of Vj on which the center of g0 acts by a scalar, so it must contain a
vector that is annihilated by all elements in positive root spaces of g0. But since any
positive root space of g either is a positive root space of g0 or is contained in g1,
this has to be a highest weight vector for g, which contradicts uniqueness of v0 up
to scale.

Having proved the claim, we can first interpret it as showing that VN D VN .
From this the description of the P -invariant filtration follows by backwards in-
duction: Suppose that that we have shown that VN�j D VN�j ˚ � � � ˚ VN and
let w 2 V be such that for all Z 2 g1, we have Z � w 2 VN�j . Decomposing
w D w0 C � � � C wN , we conclude that for all i < N � j � 1 we must have
Z � wi D 0 and hence w 2 VN�j�1 ˚ � � � ˚ VN . Together with the obvious
fact that˚`�N�j�1V` � VN�j�1, this implies the description of the P -invariant
filtration. □

Using this, we can now prove an alternative description of the bundle of Weyl
structures that, as we shall see in the examples below, generalizes the construction
of [19].

Theorem 4.2. Suppose that .G; P / corresponds to a j1j-grading of the Lie algebra
g of G. Let V be a representation of G, which is non-trivial and irreducible as
a representation of g, with natural P -invariant filtration fV j W j D 0; : : : ; N g

such that V=V 1 has real dimension 1. For a parabolic geometry .p W G !M;!/

of type .G; P / let VM be the tractor bundle induced by V , VjM the subbundle
corresponding to V j , and define EM to be the real line bundle VM=V1M .

Then the bundle A!M of Weyl structures can be naturally identified with the
open subbundle in the projectivization P .VM=V2M/ formed by all lines that are
transversal to the subbundle V1M=V2M of hyperplanes. This in turn leads to an
identification of A!M with the bundle of all linear connections on the line bundle
EM !M .

Proof. By assumption V 1 � V is a P -invariant hyperplane, so this descends to
a P -invariant hyperplane V 1=V 2 in V=V 2. Passing to the projectivization, the
complement of this hyperplane is a P -invariant open subset U � P .V=V 2/ and
hence defines a natural open subbundle in the associated bundle P .VM=V2M/.

Now take the decomposition V D ˚NjD0Vj from Lemma 4.1. Then V0 is a
line in V transversal to V 1 and hence defines a point `0 2 U . We claim that
the P -orbit of `0 is all of U , while its stabilizer subgroup in P coincides with
G0. This shows that U Š P=G0 and thus implies the first claimed description of
A! M . As observed in Section 2.4, an element g 2 P can be written uniquely
as exp.Z/g0 for g0 2 G0 and Z 2 g1. We know that V0 is G0-invariant, so for
w 2 `0 we get g0 � w D aw for some nonzero element a 2 R. On the other hand,
exp.Z/ � w D w CZ � w C 1

2
Z �Z � w C : : : , and all but the first two summands

lie in V 2. This shows that the action of exp.Z/g0 sends `0 to the line in V=V 2

spanned by wCZ �wCV 2. But from Lemma 4.1, we know that the action defines
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a surjection g1 ˝ V0 ! V1, which shows that P � `0 D U . On the other hand, it
is well known that g1 is an irreducible representation of g0. Thus also g1 ˝ V0 is
irreducible, so Z � w D 0 if and only Z D 0, which shows that the stabilizer of `0
in P coincides with G0.

For the second description, we need some input from the machinery of BGG
sequences. There is a natural invariant differential operator S W �.EM/! �.VM/

which splits the tensorial map �.VM/ ! �.EM/ induced by the quotient pro-
jection VM ! EM . It turns out that the operator �.EM/ ! �.VM=V iC1M/

induced by S has order i , so there is an induced vector bundle map from the jet
prolongation J iEM to VM=V iC1M . As proved in [5], the representation V deter-
mines an integer i0 such that this is an isomorphism for all i � i0. For a non-trivial
representation i0 � 1, so we conclude that J 1EM Š VM=V2M . Since S splits
the tensorial projection, we see that, in a point x 2M , the hyperplane V1xM=V

2
xM

corresponds to the jets of sections vanishing in x. Thus lines in VM=V2M that are
transversal to V1M=V2M exactly correspond to lines in J 1EM that are transversal
to the kernel of the natural projection to EM . Choosing such a line is equivalent to
choosing a splitting of this projection and thus of the jet exact sequence for J 1EM .
It is well known that the choice of such a splitting is equivalent to the choice of a
linear connection on EM . □

Example 4.3. (1) Oriented projective structures. For n � 2, put G WD SL.nC
1;R/ and let P be the stabilizer of the ray in RnC1 spanned by the first element
e0 in the standard basis. Taking the complementary hyperplane spanned by the
remaining basis vectors, one obtains a j1j-grading on the Lie algebra g of G by
decomposing into blocks of sizes 1 and n as in

� g0 g1
g�1 g0

�
. The subgroup G0 � P is

then easily seen to consist of all block diagonal matrices in P .
Now we define V WD R.nC1/�, the dual of the standard representation of G. In

terms of the dual of the standard basis, this decomposes as the sum of V0 WD R � e�0
and V1 spanned by the remaining basis vectors. All properties claimed in Lemma 4.1
are obviously satisfied in this case. The tractor bundle VM corresponding to V is
usually called the (standard) cotractor bundle T �M and the line bundle EM is the
bundle E.1/ of projective 1-densities. Since V 2 D f0g in this case, Theorem 4.2
realizes A as an open subbundle in P .T �M/, and this is exactly the construction
from [19]. In fact, it is well known that T �M Š J 1E.1/ in this case, this is even
used as a definition in [2].

More generally, for k � 2, we can take V to be the symmetric power SkR.nC1/�.
This visibly decomposes as V0 ˚ � � � ˚ Vk , where Vi is spanned by the symmetric
products of .e�0 /

k�i with i other basis elements. This corresponds to the tractor
bundle SkT �M , while the quotient V=V 1 induces the kth power of E.1/, which is
usually denoted by E.k/ and called the bundle of projective k-densities. Again, all
properties claimed in Lemma 4.1 are obviously satisfied.

(2) Conformal structures. For pC q D n � 3, we put G WD SO.pC 1; qC 1/
and we take a basis e0; : : : ; enC1 for the standard representation RnC2 of G such
that the non-trivial inner products are he0; enC1i D 1, and hei ; ei i D 1 for 1 � i �
p and hei ; ei i D �1 for pC 1 � i � n. Splitting matrices into blocks of sizes 1, n,

and 1 defines a j1j-grading of g according to
�

g0 g1 0
g�1 g0 �

0 � �

�
, where entries marked by �
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are determined by other entries of the matrix. Again G0 turns out to consist of block
diagonal matrices and is isomorphic to the conformal group CO.p C 1; q C 1/
via the adjoint action on g�1. In view of Remark 3.2 we conclude that a parabolic
geometry of type .G; P / on a manifold M is equivalent to a conformal structure.

The standard representation V ofG now decomposes as V D V0˚V1˚V2, with
the subspaces spanned by e0, fe1; : : : ; eng, and enC1, respectively. This induces
the standard tractor bundle T M on conformal manifolds, and the bundle induced
by V=V 1 is the bundle EŒ1� of conformal 1-densities. Hence Theorem 4.2 in this
case realizes A as an open subbundle of the projectivization of the quotient of T M

by its smallest filtration component. Again, it is well known that this quotient is
isomorphic to J 1EŒ1�.

Alternatively, for k � 2, we can take V to be the trace-free part Sk0RnC2 in the
symmetric power of the standard representation. This leads to the bundle Sk0 T M

and the line bundle EŒk� of conformal densities of weight k. Here the decomposition
from Lemma 4.1 becomes a bit more complicated, since the individual pieces Vj
are not irreducible representations of G0 in general. Still the properties claimed in
Lemma 4.1 are obvious via the construction from the decomposition of the standard
representation.

(3) Almost Grassmannian structures. Here we choose integers 2 � p � q,
put n D p C q, take G WD SL.n;R/ and P � G the stabilizer of the subspace
spanned by the first p vectors of the standard basis of the standard representation
Rn of G. Fixing the complementary subspace spanned by the remaining q vectors
in that basis, one obtains a decomposition of the Lie algebra g of G into blocks
of sizes p and q, which defines a j1j-grading as in the projective case. Then G0
again turns out to consist of block diagonal matrices and hence is isomorphic to
S.GL.p;R/ � GL.q;R//, while g�1 can be identified with the space of q � p-
matrices endowed with the action of G0 defined by matrix multiplication from both
sides.

Hence the corresponding geometries exist in dimension pq and they are essen-
tially given by an identification of the tangent bundle with a tensor product of two
auxiliary bundles of rank p and q, respectively, see Section 4.1.3 of [16]. There it
is also shown that for these types of structures the Cartan curvature has two funda-
mental components, but their nature depends on p and q. For p D q D 2, such a
structure is equivalent to a split-signature conformal structure, so we will not discuss
this case here. If p D 2 and q > 2, then one of these quantities is the intrinsic
torsion of the structure, but the second is a curvature, so this is a case in which there
are non-flat, torsion-free examples. For p > 3, the intrinsic torsion splits into two
components, and torsion-freeness of a geometry implies local flatness.

The basic choice of a representation V that Theorem 4.2 can be applied to is
given by ƒpRn�, the pth exterior power of the dual of the standard representation.
This decomposes as V D V0 ˚ � � � ˚ Vp , where Vj is spanned by wedge products
of elements of the dual of the standard basis that contain p � j factors from
fe�1 ; : : : ; e

�
pg. The properties claimed in Lemma 4.1 can be easily deduced from the

construction from the dual of the standard representation.
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4.2. The projective Monge-Ampère equation

This is the prototypical example of the non-linear PDE that we want to study. In
the setting of projective geometry, we have met the density bundles E.k/ for k > 0
in Example 4.3. We define E.�k/ to be the line bundle dual to E.k/ and use the
convention that adding “.k/” to the name of a bundle indicates a tensor product
with E.k/ for k 2 Z. The first step towards the construction of the projective
Monge-Ampère equation is that there is a projectively invariant, linear, second order
differential operator H W �.E.1//! �.S2T �M.1// called the projective Hessian.
Indeed, this is the first operator in the BGG sequence determined by the standard
cotractor bundle, see [13].

Now for a section � 2 �.E.1//,H.�/ defines a symmetric bilinear form on each
tangent space of M , and such a form has a well defined determinant. In projective
geometry, this determinant admits an interpretation as a density as follows. In the
setting of part (1) of Example 4.3, the top exterior power ƒnC1R.nC1/� is a trivial
representation, which implies that the bundleƒnC1T �M is canonically trivial. Iden-
tifying T �M with J 1E.1/, the jet exact sequence 0 ! T �M.1/ ! J 1E.1/ !

E.1/! 0 implies thatƒnC1T �M Š ƒnT �M.nC 1/, soƒnT �M Š E.�n� 1/.
This isomorphism can be encoded as a tautological section of ƒnTM.�n � 1/. To
form the determinant of H.�/, one now takes the tensor product of two copies of
this canonical section and of n copies of H.�/ and forms the unique (potentially)
non-trivial complete contraction of the result (so the two indices of each copy of
H.�/ have to be contracted into different copies of the tautological form). This
shows that det.H.�// can be naturally interpreted as a section of E.�n � 2/.

Assuming that � 2 �.E.1// is nowhere vanishing, we can form �k 2 �.E.k//

for any k 2 Z, and hence

(4.1) det.H.�// D ˙��n�2

is a projectively invariant, fully non-linear PDE on nowhere vanishing sections of
E.1/. Observe that multiplying � by a constant, the two sides of the equation scale
by different powers of the constant, so allowing a constant factor instead of just a
sign in the right hand side of the equation would only be a trivial modification.

4.3. Interpretation in terms of Weyl structures

Let us first observe that a nowhere vanishing section � 2 E.1/ uniquely determines
a Weyl structure. In the language of Theorem 4.2 this can be either described as
the structure corresponding to the flat connection on E.1/ determined by � or as
the one corresponding to the line in T �M spanned by S.�/, where S denotes the
BGG splitting operator. From either interpretation it is clear that this Weyl structure
remains unchanged if � is multiplied by a non-zero constant. Alternatively, one can
easily verify that any projective class on M contains a unique connection such that
� is parallel for the induced connection on E.1/.

To deal with non-flat cases in the following theorem, we use a concept of
mean curvature tailored to the case of connections compatible with an almost
bi-Lagrangian structure that was introduced in [18]. That article uses the terminol-
ogy of (almost) para-Kähler structures, which is slightly different from ours, but it
is easy to translate between the two.
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Theorem 4.4. Let M be an oriented smooth manifold of dimension n which is en-
dowed with a projective structure. Let � 2 �.E.1// be a nowhere-vanishing section
and let us denote by r� the Weyl connections of the Weyl structure determined by �
and by P� its Rho tensor. Then we have:

(1) An appropriate constant multiple of � satisfies (4.1) if and only ifr� .det.P� // D
0 and det.P� / is nowhere vanishing.

(2) The Weyl structure determined by � is always Lagrangian. IfM is projectively
flat, then an appropriate constant multiple of � satisfies (4.1) if and only if this Weyl
structure is non-degenerate and the image of the corresponding section s WM ! A

is a minimal submanifold. This extends to curved projective structures provided that
minimality of s.M/ is defined as vanishing of the mean curvature form associated
to the canonical connection D via the definition in [18, p. 120].

Proof. It is well known how to decompose the curvature of a linear connection
on TM into the projective Weyl curvature and the Rho-tensor, see Section 3.1 of
[2] (taking into account the sign conventions mentioned in Section 2.6). It is also
shown there that the Bianchi identity shows that the skew part of the Rho tensor is a
non-zero multiple of the trace of the curvature tensor, which describes the action of
the curvature on the top exterior power of the tangent bundle and thus on density
bundles. This readily implies that P� is symmetric, so the Weyl structure defined
by � is Lagrangian by Proposition 3.10.

(1) It is well known that the projective Hessian in terms of a linear connection
r in the projective class and its Rho tensor P is given by the symmetrization of
r2� � P� , see Section 3.2 of [13]. (The different sign is caused by different sign
conventions for the Rho-tensor.) But by definition r�� D 0 and P� is symmetric,
so we conclude that H.�/ D �P�� and hence det.H.�// D .�1/n�n det.P� /.
Now for each k ¤ 0, the sections of E.k/ that are parallel for r� are exactly the
constant multiples of �k , so (1) follows readily.

(2) Since P� is symmetric, det.P� / is nowhere vanishing if and only if P�

is non-degenerate. By Proposition 3.10, this is equivalent to non-degeneracy of
the Weyl structure determined by � , and we assume this from now on. Let us
write det.P� / in terms of the tautological section � of ƒnTM.�n � 1/ as above as
C.� ˝ � ˝ .P� /˝

n

/, where C denotes the appropriate contraction. Applying r�

to this, we observe that C and � are projectively invariant bundle maps and thus
parallel for any Weyl connection. Thus we conclude that

r
� det.P� / D .n � 1/C

�
� ˝ � ˝ .P� /˝

n�1

˝r
�P�

�
:

Here we have used that the contraction is symmetric in the bilinear forms we enter
and in the right hand side the form index of r� remains uncontracted. Since we
assume that P� is invertible, linear algebra tells us that contracting two copies
of � with .P� /˝

n�1

gives det.P� /ˆ, where ˆ 2 �.S2TM/ is the inverse of
P� . Returning to the abstract index notation used in Theorem 3.13 and writing
r and P instead of r� and P� , we conclude that r det.P/ D 0 is equivalent to
0 D PabriPab .

On the other hand, we know the second fundamental form of s.M/ � A from
Theorem 3.13. To determine the mean curvature, we have to contract an inverse
metric into this expression, and we already know that this inverse metric is just Pij .
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Vanishing or non-vanishing of the result is independent of the final contraction with
Pkc . Thus we conclude that s.M/ � A is minimal if and only if

(4.2) 0 D Pab.2raPbi � riPab/:

In the proof of Theorem 3.13, we have also noted that the Cotton-York tensor is
given by the alternation of riPjk in the first two indices. It is well known that this
vanishes for projectively flat structures (see [2]) and hence in the projectively flat
case, riPjk is completely symmetric. Using this, the claim in the projectively flat
case follows immediately.

In the non-flat case, we first have to determine the map ' from Lemma 4 of [18].
In our notation, the map P used there is given by P jL˙ D ˙ id. Using this, the
beginning of the proof of Theorem 3.12 readily shows that, in the notation used
there, for � 2 TxM Š L�s.x/, we get '.� i / D .� i ;�Pja�a/. Now we can combine

this with the formula for IID from Theorem 3.13, which describes the operator bA
used in [18]. This easily shows that, up to a non-zero factor, that the operatorbh
from [18] is given bybh.� i ; �j ; �k/ D � i�j �kPiaPabrsjPkb:

By definition, the mean curvature form bH from [18] is the trace over the first and
third entry of this. Thus we have to contractbhijk with Pik , which again leads to
PabrsjPab . □

Remark 4.5. In the special case of a two-dimensional projective structure the
minimality condition (4.2) was previously obtained in [28, Theorem 4.4].

A deep relation between solutions of the projective Monge-Ampère equation and
properly convex projective structures was established in the works [25] by Labourie
and [26] by Loftin. Recall that a projective manifold .M; Œr�/ is called properly
convex if it arises as a quotient of a properly convex open set QM � RPn by a group
� of projective transformations which acts discretely and properly discontinuously.
The projective line segments contained in QM project to M to become the geodesics
of Œr�. Therefore, locally, the geodesics of a properly convex projective structure
Œr� can be mapped diffeomorphically to segments of straight lines, that is, Œr� is
locally flat. Combining the work of Labourie and Loftin with Theorem 4.4, we
obtain:

Corollary 4.6. Let .M; Œr�/ be a closed oriented locally flat projective manifold.
Then Œr� is properly convex if and only if Œr� arises from a minimal Lagrangian
Weyl structure whose Rho tensor is positive definite.

Proof. Suppose that the flat projective structure Œr� arises from a minimal La-
grangian Weyl structure s whose Rho tensor Ps is positive definite. Since s is
Lagrangian, Ps is a constant negative multiple of the Ricci tensor of the Weyl
connection rs , see [2], and taking into account the sign issue mentioned in Sec-
tion 2.6. By Theorem 3.13, the nowhere vanishing density det.Ps/ is preserved by
rs , whence an appropriate power defines a volume density that is parallel for rs .
Finally, projective flatness implies that the pair .rs;Ps/ satisfies the hypothesis of
Theorem 3.2.1 of [25], which then implies that Œr� is properly convex.
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Conversely, suppose that Œr� is properly convex. By [26, Theorem 4] there
is a solution � to the projective Monge-Ampère equation with right hand side
.�1/nC2�nC2 and such that � is negative for the natural orientation on E.1/. By
Theorem 4.4, Œr� arises from a minimal Lagrangian Weyl structure. Since the
Hessian of � is positive definite, so is the Rho tensor. □

Remark 4.7. Existence and uniqueness of minimal Lagrangian Weyl structures for
a given torsion-free AHS structure is an interesting fully non-linear PDE problem.
In the special case of projective surfaces, some partial results regarding uniqueness
have been obtained in [27] and [30]. See also [31] for a connection to dynamical
systems and [29] for a related variational problem on the space of conformal
structures.

4.4. Invariant non-linear PDE for other AHS structures

We conclude this article with some remarks on analogs of the projective Monge-
Ampère equation for other AHS structures. The first observation is that a small
representation theoretic condition is sufficient to obtain an analog of the projectively
invariant Hessian, which again is closely related to the Rho tensor.

To formulate this, we need a bit of background. Suppose that .G; P / corresponds
to a j1j-grading of G and let G0 � P be the subgroup determined by the grading.
Then this naturally acts on each gi , and there is an induced representation on
S2g1. We can decompose this representation into irreducibles and there is a unique
component whose highest weight is twice the highest weight of g1. This is called
the Cartan square of g1 and denoted by }2g1. It comes with a canonical G0-
equivariant projection � W ˝2g1 ! }2g1. For any parabolic geometry of type
.G; P /, this induces a natural subbundle }2T �M � S2T �M and a natural bundle
map � W ˝2T �M ! }2T �M .

Proposition 4.8. Suppose that .G; P / corresponds to a j1j-grading on the simple
Lie algebra g of G. Suppose further, that there is a representation V of G satisfying
the assumptions of Theorem 4.2 whose complexification is a fundamental repre-
sentation of the complexification of g, and let EM denote the natural line bundle
induced by V=V 1.

(1) There is an invariant differential operator H W �.EM/ ! �.}2T �M ˝

EM/ of second order.
(2) For a nowhere vanishing section � 2 �.EM/, let P� be the Rho tensor of

the Weyl structure determined by � . Then H.�/ is a non-zero multiple of �.P� /� ,
where � is the projection to the Cartan square.

Proof. (1) The representation V induces a tractor bundle on parabolic geometries
of type .G; P / to which the construction of BGG sequences can be applied. The
first operator H in the resulting sequence is defined on �.EM/. Now the condition
that dim.V=V 1/ D 1 implies that the complexification of V is the fundamental
representation corresponding to the simple root that induces the j1j-grading that
defines p. Since the complexification of V is a fundamental representation, the
results of [5] show that the first operator in the BGG sequence has order two and
the target space claimed in (1).
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(2) It is also known in general (see [14] or [10]) how to write out H in terms of
a Weyl structure with Weyl connection rs and Rho tensor Ps: For � 2 �.EM/,
one then has to form r2� � Ps� , symmetrize and then project to the Cartan square.
But if s is the Weyl structure determined by � , then by definition rs� D 0 and
Ps D P� , which implies the claim. □

Observe that Example 4.3 provides representations V that satisfy the assumptions
of the proposition for conformal and for almost Grassmannian structures. Hence for
these two geometries an invariant Hessian is available. It is worth mentioning that,
for conformal structures, �.P� / is the trace-free part of P� .

It is also a general fact that the top-exterior power of T �M is isomorphic to a pos-
itive, integral power of the dual E�M of EM : By definition, the grading element E
acts by multiplication by dim.g1/ on the top exterior power of g1, which represents
the top exterior power of T �M . On the other hand, the construction implies that a
generator of V0 � V will be a lowest weight vector of the complexification of V ,
so E acts by a negative number on this. The fact that we deal with a fundamental
representation implies that dim.g�1/ is an integral multiple of that number. As in
the projective case, this can be phrased as the existence of a tautological section,
which can then be used together with copies of H.�/ to obtain a section of a line
bundle, which can be trivial, a tensor power of E or a tensor power of E�. In any
case, a nowhere vanishing section of E determines a canonical section of that bundle
(which is the constant 1 in the trivial case), so there is an invariant version of the
Monge-Ampère equation. In view of part (2) of Proposition 4.8, for these equations
there is always an analog of part (1) of Theorem 4.4.

For some of the structures, there are additional natural sections that can be used
together with powers of H.�/ to construct other non-linear invariant operators, for
example, the conformal metric for conformal structures and partial (density valued)
volume forms for Grassmannian structures. Again part (2) of Proposition 4.8 shows
that all these equations can be phrased as equations on P� , so there should be
a relation to submanifold geometry of Weyl structures in the style of part (2) of
Theorem 4.4. All this will be taken up in detail elsewhere.
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[11] A. ČAP, A. R. GOVER, M. HAMMERL, Holonomy reductions of Cartan geometries and curved
orbit decompositions, Duke Math. J. 163 (2014), 1035–1070. MR 3189437 25
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