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Metrisability of Projective Surfaces and
Pseudo-Holomorphic Curves

THOMAS METTLER

ABSTRACT. We show that the metrisability of an oriented projective surface is
equivalent to the existence of pseudo-holomorphic curves. A projective structure
p and a volume form � on an oriented surfaceM equip the total space of a certain
disk bundle Z ! M with a pair .Jp; Jp;� / of almost complex structures. A
conformal structure onM corresponds to a section ofZ !M and p is metrisable
by the metric g if and only if Œg� WM ! Z is a pseudo-holomorphic curve with
respect to Jp and Jp;dAg :

1. Introduction

A projective structure on a smooth manifold consists of an equivalence class p of
torsion-free connections on its tangent bundle, where two such connections are
called equivalent if they have the same geodesics up to parametrisation. A projective
structure p is called metrisable if it contains the Levi-Civita connection of some
Riemannian metric. The problem of (locally) characterising the projective structures
that are metrisable was first studied in the work of R. Liouville [17] in 1889, but
was solved only relatively recently by Bryant, Dunajski and Eastwood for the case
of two dimensions [2]. Since then, there has been renewed interest in the problem,
see [5, 6, 8, 10, 11, 13, 14, 25, 27] for related recent work.

The purpose of this short note is to show that in the case of an oriented projective
surface .M; p/; the metrisability of p is equivalent to the existence of certain pseudo-
holomorphic curves.

An orientation compatible complex structure on M corresponds to a section of
the bundle � W Z !M whose fibre at x 2M consists of the orientation compatible
linear complex structures on TxM: The choice of a torsion-free connection r on
TM equipsZ with an almost complex structure J [7, 26]. Namely, at j 2 Z we lift
j horizontally and take a natural complex structure on each fibre vertically. It turns
out that J is always integrable and does only depend on the projective equivalence
class p of r; we thus denote it by Jp: Reversing the orientation on each fibre yields
another almost complex structure J which is however never integrable and is not
projectively invariant. Fixing a volume form � on the projective surface .M; p/
determines a unique representative connection �r 2 p which preserves �: We will
write Jp;� for the non-integrable almost complex structure arising from �r 2 p:

The choice of a conformal structure Œg� on an oriented surface M defines an
orientation compatible complex structure by rotating a tangent vector counter-
clockwise by �=2 with respect to Œg�: Thus, we may think of a conformal structure
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as a section Œg� W M ! Z: Denoting the area form of a Riemannian metric g by
dAg ; we show:

Theorem 1.1. An oriented projective surface .M; p/ is metrisable by the metric
g on M if and only if Œg� W M ! .Z; Jp/ is a holomorphic curve and Œg� W M !
.Z; Jp;dAg/ is a pseudo-holomorphic curve.

Applying a general existence result for pseudo-holomorphic curves [24, Theorem
III] it follows that locally we can always find a Riemannian metric g so that
Œg� W M ! .Z; Jp/ is a holomorphic curve or so that Œg� W M ! .Z; Jp;dAg/ is
a pseudo-holomorphic curve. The geometric significance of the existence of such
(pseudo-)holomorphic curves is given in Proposition 2.8 below.

The construction of the (integrable) almost complex structure Jp on Z given
in [7, 26] is adapted from the construction of an almost complex structure J on
the twistor space Y ! N of an oriented Riemannian 4-manifold .N; g/; see [1].
In the Riemannian setting the almost complex structure J is integrable if and only
if g is self-dual. In [12], Eells–Salamon observe that reversing the orientation on
each fibre of Y ! N associates another almost complex structure J on Y to .N; g/
which is never integrable. Thus, the non-integrable almost complex structure J used
here may be thought of as the affine analogue of the non-integrable almost complex
structure in oriented Riemannian 4-manifold geometry.
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2. Pseudo-Holomorphic Curves and Metrisability

Recall that the set of torsion-free connections on the tangent bundle of a surface
M is an affine space modelled on the smooth sections of the vector bundle V D
S2.T �M/ ˝ TM: We have a natural trace mapping tr W V ! T �M; given in
abstract index notation by Ai

jk
7! Ak

ik
; as well as an inclusion Sym W T �M ! V;

given by bi 7! ıij bk C ı
i
k
bj : The bundle V thus decomposes as V D V0 ˚ T �M;

where V0 denotes the trace-free part of V: We have (Cartan, Eisenhart, Weyl) – the
reader may also consult [9] for a modern reference:

Lemma 2.1. Two torsion-free connections r and r 0 on TM are projectively
equivalent if and only if there exists a 1-form � on M so that r � r 0 D Sym.�/:

This gives immediately:

Lemma 2.2. Let .M; p/ be an oriented projective surface and � a volume form on
M: Then there exists a unique representative connection �r 2 p preserving �:

Proof. Let r 2 p be a representative connection. Since � is a volume form there
exists a unique 1-form ˛ on M such that r� D ˛ ˝ �: An elementary computation
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shows that the connection r C Sym.�/ satisfies

.r C Sym.�// � D r� � 3� ˝ �;

for all � 2 �1.M/: Thus the connection �r D r C
1
3

Sym.˛/ preserves � and
clearly is the only connection in p doing so. □

We also have:

Lemma 2.3. Let ' 2 �.V0/ and r be a torsion-free connection on TM: Then
r C ' preserves a volume form � on M if and only if r preserves the volume form
�:

Proof. Since ' 2 �.V0/; an elementary computation shows that the connections
r and r C ' induce the same connection on the bundle ƒ2.T �M/ whose non-
vanishing sections are the volume forms. □

For our purposes it is convenient to construct the almost complex structures .J; J/
associated tor in terms of the connection form � on the oriented frame bundle ofM:
The oriented frame bundle F of the oriented surface M is the bundle � W F !M

whose fibre at x 2M consists of the linear isomorphisms u W R2 ! TxM that are
orientation preserving with respect to the standard orientation on R2 and the given
orientation on TxM: The group GLC.2;R/ acts transitively from the right on each
fibre by the rule Ra.u/ D u ı a for all a 2 GLC.2;R/; u 2 F and this action turns
� W F ! M into a principal right GLC.2;R/-bundle. The total space F carries
a tautological R2-valued 1-form ! defined by !u D u�1 ı � 0u and ! satisfies the
equivariance property

(2.1) R�a! D a
�1!

for all a 2 GLC.2;R/: We may embed GL.1;C/ as the subgroup of GLC.2;R/
consisting of matrices that commute with the standard linear complex structure on
R2: Note that may think of the oriented frame bundle � W F ! M as a principal
GL.1;C/-bundle over Z D F=GL.1;C/: We may describe an almost complex
structure on Z by describing the pullback of its .1;0/-forms to F: The pullback of a
1-form on Z to F is semi-basic for the projection � W F ! Z; that is, it vanishes
when evaluated on vector fields that are tangent to the fibres of �: For y 2 gl.2;R/
we denote by Yy the vector field on F that is generated by the flow Rexp.ty/: Clearly,
the vector fields Yy for y 2 gl.1;C/ span the vector fields on F that are tangent to
the fibres of �:

Let r be a torsion-free connection on TM with connection form � D .� ij / on
F: Recall that � satisfies the equivariance property

(2.2) R�a� D a
�1�a

for all a 2 GLC.2;R/ and the structure equations

(2.3)
d!i D �� ij ^ !

j ;

d� ij D ��
i
k ^ �

k
j C‚

i
j ;

where ‚ D .‚ij / denotes the curvature form of �: Since � is a principal connection
on F it also satisfies �.Yy/ D y for all y 2 gl.2;R/: Since the Lie algebra of
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GL.1;C/ is spanned by the matrices of the form�
z �w

w z

�
for .z; w/ 2 R2; the complex-valued 1-forms on F that are semi-basic for the
projection � W F ! Z are spanned by the forms ! D !1 C i!2 and

� D .�11 � �
2
2 /C i

�
�12 C �

2
1

�
and their complex conjugates. We now have:

Proposition 2.4. Let r be a torsion-free connection on TM with connection form
� D .� ij / on F: Then there exists a unique pair .J; J/ of almost complex structures
on Z whose .1;0/-forms pull back to become linear combinations of the forms
.!; �/ in the case of J and to .!; �/ in the case of J: Moreover, the almost complex
structure J is always integrable, whereas J is never integrable.

Proof. Writing

rei�
'

�
r cos� �r sin�
r sin� r cos�

�
for the elements of GL.1;C/; the equivariance property (2.1) of ! and (2.2) of �
implies

(2.4) .Rrei� /�! D
1

r
ei�! and .Rrei� /�� D e�2i��:

It follows that there exists a unique almost complex structure J on Z whose .1;0/-
forms pull back to F to become linear combinations of the forms !; �: Likewise
there exists a unique almost complex structure J on Z whose .1;0/-forms pull
back to F to become linear combinations of the forms !; �: Furthermore, simple
computations using the structure equations (2.3) imply that

0 D d� ^ ! ^ � D d! ^ ! ^ �:

Consequently, the Newlander-Nirenberg theorem [23] implies that J is integrable.
On the other hand, we get

d! ^ ! ^ � D
1

2
! ^ ! ^ � ^ �

so that J is never integrable. □

Remark 2.5. The equivariance properties (2.4) imply that the bundles

H D �0 fRe.�/ D 0; Im.�/ D 0g and V D �0fRe.!/ D 0; Im.!/ D 0g

are well-defined distributions on Z that are invariant with respect to J (and J).
Hence we have TZ D H ˚ V:

For the convenience of the reader, we also show [7, 26]:

Proposition 2.6. Suppose the torsion-free connections r and r 0 on TM are pro-
jectively equivalent, then they induce the same integrable almost complex structure
J on Z:
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Proof. The connections r and r 0 are projectively equivalent if and only if there
exists a 1-form � on M such that r 0 D r C Sym.�/: Writing � D .� ij / for the
connection form of r on F and ��� D xi!i for real-valued functions xi on F; the
connection form � 0 of r 0 becomes

� 0 D � C

�
2x1!

1 C x2!
2 x2!

1

x1!
2 x1!

1 C 2x2!
2

�
:

Consequently, we obtain

�0 D � C .x1!
1
� x2!

2/C i.x2!1 C x1!2/ D � C .x1 C ix2/!

which shows that the complex span of !; � is the same as the one of !; �0 and hence
the two integrable almost complex structures are the same. □

Remark 2.7. For a projective structure p on M we will write Jp for the integrable
almost complex structure defined by any representative connection r 2 p: For
a projective structure p and a volume form � on M we will write Jp;� for the
non-integrable almost complex structure defined by the representative connection
�r 2 p: Note that the non-integrable almost complex structure is not projectively
invariant.

Recall that a Weyl connection for a conformal structure Œg� is a torsion-free
connection Œg�r on TM which preserves Œg�: Fixing a Riemannian metric g 2 Œg�;
the Weyl connections for Œg� can be written as Œg�r D gr C g ˝ B � Sym.ˇ/ for
some 1-form ˇ on M and where B denotes the g-dual vector field to ˇ: In [20]
and in the language of thermostats in [22], it was observed that for every choice
of a conformal structure Œg� on a projective surface .M; p/; there exists a unique
Weyl connection Œg�r for Œg� and a unique 1-form ' 2 �.V0/ so that Œg�r C ' is
a representative connection of p: Moreover the endomorphism '.X/ is symmetric
with respect to Œg� for every vector field X on M: We call Œg�r the Weyl connection
determined by Œg�: Explicitly, if r is any representative connection of p; g 2 Œg�
and if we define a vector field B D 3

4
tr
�
g] ˝ .r � gr/0

�
; then

' D
�
r �

g
r � g ˝ B

�
0

and Œg�
r D

g
r C g ˝ B � Sym.ˇ/;

where A0 denotes the trace-free part of a tensor field A 2 �.S2.T �M/˝ TM/:

We refer the reader to [20, 22] for a proof that Œg�r and ' do satisfy the claimed
properties.

Proposition 2.8. Let .M; p/ be an oriented projective surface and g a Riemannian
metric on M: Then we have:

(i) p contains a Weyl connection for Œg� if and only if Œg� WM ! .Z; Jp/ is a
holomorphic curve;

(ii) the Weyl connection determined by Œg� is the Levi-Civita connection of g if
and only if Œg� WM ! .Z; Jp;dAg/ is a pseudo-holomorphic curve.

Remark 2.9. Here we say Œg� W M ! .Z; J/ is a (pseudo-)holomorphic curve
if the image † D Œg�.M/ � Z admits the structure of a (pseudo-)holomorphic
curve. By admitting the structure of (pseudo-)holomorphic curve, we mean that †
can be equipped with a complex structure J; so that the inclusion � W † ! Z is
.J; J/-linear, that is, satisfies J ı �0 D �0 ı J:
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As an immediate consequence, we obtain the Theorem 1.1:

Proof of Theorem 1.1. The projective structure p is metrisable by g if and only if
the Weyl connection determined by Œg� is the Levi-Civita connection of g and the
1-form ' vanishes identically. The claim follows by applying Proposition 2.8. □

For the proof of Proposition 2.8 we also need the following Lemma:

Lemma 2.10. Let .Z; J/ be an almost complex four-manifold and !; � 2 �1.Z;C/
a basis for the .1;0/-forms of Z: Suppose � W † ! Z is an immersed surface so
that ��.! ^ !/ is non-vanishing on †: Then † admits the structure of a pseudo-
holomorphic curve if and only if ��.! ^ �/ vanishes identically on †:

Proof. Since ��.! ^ !/ is non-vanishing on †; the forms ��! and ��! span the
complex-valued 1-forms on †: Recall that � W †! Z is .j; J/-linear if and only if
the pullback of every .1;0/-form on Z is a .1;0/-form on †; the claim follows. □

Proof of Proposition 2.8. Let g be a Riemannian metric on the oriented projective
surface .M; p/:Without losing generality we can assume that the projective structure
p arises from a connection of the form Œg�rC': The Weyl connection Œg�r satisfies

Œg�
rdAg D 2ˇ ˝ dAg

for some 1-form ˇ onM and hence can be written as Œg�r D grCg˝ˇ]�Sym.ˇ/:
Now suppose r 2 p preserves the volume form dAg of g: Then, by Lemma 2.3

it must be of the form

(2.5) r D
Œg�
r C ' C

2

3
Sym.ˇ/ D g

r C g ˝ ˇ] �
1

3
Sym.ˇ/C ':

Proposition 2.4 and Lemma 2.10 imply that the condition that Œg� WM ! Z defines
a pseudo-holomorphic curve with respect to Jp respectively Jp;dAg is equivalent to
the condition that on the pullback bundle Œg��F !M the form ! ^ �; respectively
! ^ � vanishes identically, where � is computed from the connection form of r and
where we think of F as fibering over Z: Keeping this in mind we now compute
the pullback of the forms � and � to Œg��F: Recall that the semi-basic 1-forms
on F are spanned by the components of !; hence there exist unique real-valued
functions gij D gj i on F so that ��g D gij!i ˝ !j : Likewise, there exist unique
real-valued functions bi on F so that ��ˇ D bi!i and unique real-valued function
Ai
jk
D Ai

kj
on F so that .��'/ij D A

i
jk
!k : The functions Ai

jk
satisfy furthermore

Ak
ki
D 0 and gikAkjl D gjkA

k
il

since ' takes values in the endomorphisms of TM
that are trace-free and symmetric with respect to g: The Levi-Civita connection
. ij / of g is the unique principal GLC.2;R/-connection on F that satisfies

d!i D � ij ^ !
j ;

dgij D gik 
k
j C gkj 

k
i :

The pullback bundle P WD Œg��F is cut out by the equations g11 D g22 and
g12 D 0: On P we have

0 D dg12 D g11 12 C g22 
2
1 D g11. 

1
2 C  

2
1 /;

0 D dg11 � dg22 D 2g11 11 � 2g22 
2
2 D g11. 

1
1 �  

2
2 /
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On P the condition gikAkjl D gjkA
k
il

implies A211 D �A
2
22 and A122 D �A

1
11:

Writing A111 D a1 and A222 D a2 and using (2.5), the connection form � of r thus
becomes

� D

�
 11 � 21
 21  11

�
C

�
b1!

1 b1!
2

b2!
1 b2!

2

�
�
1

3

�
2b1!

1 C b2!
2 b2!

1

b1!
2 b1!

1 C 2b2!
2

�
C

�
a1!

1 � a2!
2 �a2!

1 � a1!
2

�a2!
1 � a1!

2 �a1!
1 C a2!

2

�
Introducing the complex notation a D a1 C ia2 and b D 1

2
.b1 � ib2/; we obtain

from a simple calculation

� D .�11 � �
2
2 /C i.�12 C �

2
1 / D

4

3
b! C 2a!;

where we write ! D !1 C i!2:
Finally, since Œg� W M ! .Z; Jp/ is a holomorphic curve if and only if ! ^ �

vanishes identically on P; it follows that Œg� WM ! .Z; Jp/ is a holomorphic curve
if and only if

0 D ! ^ � D 2a! ^ !

which is equivalent to ' vanishing identically. This shows (i).
Likewise Œg� WM ! .Z; Jp;dAg/ is a pseudo-holomorphic curve if and only if

0 D ! ^ � D
4

3
b! ^ !

on P: This is equivalent to ˇ vanishing identically. This shows (ii). □

As a corollary we obtain:

Corollary 2.11. Let .M; p/ be a projective surface. Then locally p contains
(i) a Weyl connection Œg�r for some conformal structure Œg�;

(ii) a connection of the form Qgr C ' for some Riemannian metric Qg and some
' 2 �.V0/ with ' taking values in the endomorphisms that are Qg-symmetric.

Remark 2.12. The first statement of Proposition 2.8 and Corollary 2.11 was previ-
ously obtained in [19].

Proof of Corollary 2.11. We first consider the case (ii). We fix a volume form �

on M: We need to show that in a neighbourhood Ux of every point x 2 M there
exists a conformal structure Œg� which is a pseudo-holomorphic curve into the total
space of the bundle � W Z ! M; where we equip Z with the almost complex
structure Jp;� : Choose j 2 Z with �.j / D x: Recall from Remark 2.5 that the
subspace Hj � TjZ is invariant under Jp;� : Now [24, Theorem III] implies that
there exists a pseudo-holomorphic curve † � .Z; Jp;� / which contains j and
has Hj as its tangent space at j: Since Hj � TjZ is horizontal, the restriction
� 0j jHj W Hj ! TxM is an isomorphism. Therefore, the restriction of � to
† is a local diffeomorphism in some neighbourhood of j: Hence there exists a
neighbourhood Ux of x 2 M and a section Œg� W Ux ! Z so that Œg�.Ux/ �
†: Thus, Œg� W Ux ! .Z; Jp;� / is a pseudo-holomorphic curve in the sense of
Remark 2.9. Taking Qg to be the unique metric in Œg� with volume form � and
applying Proposition 2.8 shows the claim. The case (i) follows in the same fashion,
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except that [24] is not needed, as Jp is integrable and hence the construction of a
holomorphic curve realising a prescribed Jp-invariant tangent plane is an elementary
exercise. □

Remark 2.13. Locally we can always find a holomorphic curve Œg� WM ! .Z; Jp/;

but globally this is not always possible. A properly convex projective structure p on
a closed surfaceM with �.M/ < 0 admits a holomorphic curve Œg� WM ! .Z; Jp/

if and only if p is hyperbolic [22]. One would expect that a corresponding global non-
existence result should also hold in the pseudo-holomorphic setting for a suitable
class of projective surfaces.

Remark 2.14. If .M; p/ is a closed oriented projective surface of with �.M/ < 0;

then there exists at most one holomorphic curve Œg� WM ! .Z; Jp/; see [21].

Remark 2.15. Hitchin [15] gave a twistorial construction of (complex) two-di-
mensional holomorphic projective structures. In the holomorphic category such a
projective structure corresponds to a complex surface Z having a family of rational
curves with self-intersection number one. Denoting the canonical bundle of Z
by KZ ; such a holomorphic projective surface is metrisable if and only if K�2=3Z

admits a holomorphic section which intersects each rational curve in Z at two
points [2, 3, 16].

Remark 2.16. The notion of a projective structure also makes sense in the complex
setting and such structures are referred to as c-projective, see [4]. Correspondingly,
there is a Kähler metrisability problem of c-projective structures. Some obstructions
to Kähler metrisability of a (complex) two-dimensional c-projective structure have
been obtained in [18].

We conclude by describing the holomorphic curves for the standard projective
structure p0 on the 2-sphere whose geodesics are the great circles.

Example 2.17. Let S2 denote the sphere of radius 1 centred at the origin in R3 and
g its induced round metric of constant Gauss curvature 1 whose geodesics are the
great circles. We equip S2 with its standard orientation.

Recall that the unit tangent bundle � W T1S2 ! S2 of .S2; g/ carries a canonical
coframing .!1; !2;  /; where !1; !2 span the 1-forms on T1S2 that are semi-basic
for the projection � and  denotes the Levi-Civita connection form of g: The
1-forms .!1; !2;  / satisfy the structure equations

(2.6) d!1 D �!2 ^  and d!2 D � ^ !1 and d D �!1 ^ !2:

Let Og be a Riemannian metric on S2 and write �� Og D Ogij!i ˝ !j for unique
real-valued functions Ogij D Ogj i on T1S2: Phrased in modern language (c.f. [2])
and applied to the case of the 2-sphere, R. Liouville’s result [17] implies that if
the metrics Og and g have the same unparametrised geodesics then the functions
hij WD Ogij . Og11 Og22 � Og

2
12/
�2=3 satisfy the linear differential equations

(2.7)

dh11 D �2h1!2 C 2h12 ;

dh12 D h1!1 � h2!2 � .h11 � h22/ ;

dh22 D 2h2!1 � 2h12 ;
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for some smooth real-valued functions hi on T1S2: Conversely, a solution to (2.7)
on T1S2 satisfying h11h22 � h212 ¤ 0 gives a Riemannian metric Og on S2 with
�� Og D .hij .h11h22 � h

2
12/
�2/!i ˝ !j and that has the same unparametrised

geodesics as g:
Applying the exterior derivative to the above system of equations implies the

existence of a unique real-valued function h on T1S2 such that

dh1 D �h12!1 C .h11 C h/!2 C h2 ;

dh2 D �.h22 C h/!1 C h12!2 � h1 :

Taking yet another exterior derivative gives that

dh D �2h1!1 C 2h2!2:

Writing

# D

0@ 0 �!1 �!2
!1 0 � 

!2  0

1A and H D

0@ h h2 �h1
h2 �h22 h12
�h1 h12 �h11

1A
the above system of differential equations can be expressed as

dH C #H CH# t D 0:

The structure equations (2.6) imply that d# C # ^ # D 0; hence we may write
# D „�1d„ for some diffeomorphism „ W T1S

2 ! SO.3/: It follows that the
solutions are of the form H D „�1C.„�1/t for some constant symmetric 3-by-3
matrix C: In particular, taking C D AAt for some A 2 SL.3;R/; we obtain a
solution HA providing a metric OgA on S2 having the great circles as its geodesics.

Finally, in order to construct the holomorphic curve Œ OgA� W S2 ! Z from HA;

we interpret Z as an associated bundle to T1S2: We will only give a sketch of the
construction and refer the reader to [22, §4] for additional details. The orientation
and metric turn S2 into a Riemann surface and hence a conformal structure on S2

is given in terms of a Beltrami differential. Denoting the canonical bundle of S2

by KS2 ; a Beltrami differential is a section � of KS2 ˝K
�1
S2

satisfying j�.x/j < 1
for all x 2 S2; where j � j denotes the norm induced by the natural Hermitian
bundle metric on KS2 ˝ K

�1
S2
: The Riemannian metric g gives an isomorphism

KS2˝K
�1
S2
' K�2

S2
and thusZ may be identified with T1S2�S1 D; where S1 acts

by usual rotation on T1S2 and by z � ei� D ze�2i� on the open unit disk D � C: A
holomorphic curve Œ Og� W S2 ! Z is therefore represented by a map � W T1S2 ! D:

Explicitly, the conformal structure arising from a Riemannian metric Og on S2 is
represented by the map

� D
p � q C 2ir

p C q C 2
p
pq � r2

;

where we write �� Og D p!1˝!1C 2r!1 ı!2C q!2˝!2 for unique real-valued
functions p; q; r on T1S2: In our case, the holomorphic curve Œ OgA� W S2 ! Z is
thus represented by � with

p D
h11

.h11h22 � h
2
12/

2
; r D

h12

.h11h22 � h
2
12/

2
; q D

h22

.h11h22 � h
2
12/

2

and where the functions hij arise from HA as above.
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Remark 2.18. In the case of the standard projective structure on S2 the complex
surface .Z; Jp0/ is biholomorphic to CP2 n RP2 and moreover, the image of a
holomorphic curve Œg� W S2 ! Z is a smooth quadric, see [19]. Trying to explicitly
relate the holomorphic curve Œ OgA� to its image quadric does in general however not
seem to give manageable expressions.
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