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Extremal conformal structures on projective
surfaces

THOMAS METTLER

ABSTRACT. We introduce a new functional Ep on the space of conformal struc-
tures on an oriented projective manifold .M; p/. The non-negative quantity
Ep.Œg�/ measures how much p deviates from being defined by a Œg�-conformal
connection. In the case of a projective surface .†; p/, we canonically construct
an indefinite Kähler–Einstein structure .hp; �p/ on the total space Y of a fibre
bundle over † and show that a conformal structure Œg� is a critical point for Ep

if and only if a certain lift eŒg� W .†; Œg�/! .Y; hp/ is weakly conformal. In fact,
in the compact case Ep.Œg�/ is – up to a topological constant – just the Dirichlet
energy of eŒg�. As an application, we prove a novel characterisation of properly
convex projective structures among all flat projective structures. As a by-product,
we obtain a Gauss–Bonnet type identity for oriented projective surfaces.
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1. Introduction

A projective structure on an n-manifold M is an equivalence class p of torsion-
free connections on the tangent bundle TM , where two connections are called
projectively equivalent if they share the same unparametrised geodesics. A manifold
M equipped with a projective structure p will be called a projective manifold.
A conformal structure on M is an equivalence class Œg� of Riemannian metrics on
M , where two metrics are called conformally equivalent if they differ by a scale
factor. Naively, one might think of projective and conformal structures as formally
similar, since both arise by defining a notion of equivalence on a geometric structure.
However, the formal similarity is more substantial. For instance, Kobayashi has
shown [24] that both projective – and conformal structures admit a treatment as
Cartan geometries with j1j-graded Lie algebras. Here we exploit the fact that
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both structures give rise to affine subspaces modelled on �1.M/ of the infinite-
dimensional affine space A.M/ of torsion-free connections on M . Indeed, it is
a classical result due to Weyl [44] that two torsion-free connections on TM are
projectively equivalent if and only if their difference – thought of as a section of
S2.T �M/˝ TM – is pure trace. Consequently, the representative connections of
a projective structure p on M define an affine subspace Ap.M/ which is modelled
on �1.M/. Moreover, it follows from Koszul’s identity, that the torsion-free
connections preserving a conformal structure Œg� on M are of the form

g
r C g ˝ ˇ] � ˇ ˝ Id � Id˝ ˇ;

with g 2 Œg�, ˇ 2 �1.M/ and where gr denotes the Levi-Civita connection of
g. Hence, the space of torsion-free Œg�-conformal connections on TM is an affine
subspace AŒg�.M/ modelled on �1.M/ as well. It is an elementary computation
to check that if AŒg�.M/ and Ap.M/ intersect, then they do so in a unique point.
Therefore, we may ask if in general one can distinguish a point in Ap.M/ and a
point in AŒg�.M/ which are ‘as close as possible’. This is indeed the case. More
precisely, we show that the choice of a conformal structure Œg� on .M; p/ determines
a 1-form AŒg� on M with values in the endomorphisms of TM , as well as a unique
Œg�-conformal connection Œg�r 2 AŒg�.M/ so that Œg�r C AŒg� 2 Ap.M/. The
1-form AŒg� appeared previously in the work of Matveev & Trautman [35] and may
be thought of as the ‘difference’ between p and Œg�. In particular, if M is oriented,
we obtain a Diff.M/-invariant functional

F .p; Œg�/ D

Z
M

jAŒg�j
n
gd�g :

Fixing a projective structure p on M , we may consider the functional Ep D F .p; �/,
which is a functional on the space C.M/ of conformal structures on M only. It
is natural to study the infimum of Ep among all conformal structures on M , and
to ask whether there is actually a minimising conformal structure which achieves
this infimum. This infimum – which may be considered as a measure of how far p
deviates from being defined by a conformal connection – is a new global invariant
for oriented projective manifolds.

Of particular interest is the case of surfaces where Ep is just the square of the
L2-norm of AŒg� taken with respect to Œg� and this is the case that we study in detail
in this article. It turns out that in the surface case the functional Ep also arises from
a rather different viewpoint, which simplifies the computation of its variational
equations by using the technique of moving frames.

Inspired by the twistorial construction of holomorphic projective structures by
Hitchin [19], it was shown in [13], [42] how to construct a ‘twistor space‘ for smooth
projective structures. The choice of a projective structure p on an oriented surface
† induces a complex structure on the total space of the disk bundle Z ! † whose
sections are conformal structures on †. In this sense, Ep.Œg�/ can be interpreted as
measuring the failure of Œg�.†/ � Z to be a holomorphic curve in Z. We proceed
to show that p canonically defines an indefinite Kähler-Einstein structure .hp; �p/

on a certain submanifold Y of the projectivised holomorphic cotangent bundle
P .T �CZ

1;0/ of Z. Moreover, every conformal structure Œg� W †! Z admits a liftfŒg� W †! Y so that the variational equations can be expressed as follows:
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Theorem A. Let .†; p/ be an oriented projective surface. A conformal structure Œg�
on † is extremal for p if and only if fŒg� W .†; Œg�/! .Y; hp/ is weakly conformal.

Here we say that Œg� is extremal for p if it is a critical point of Ep with respect
to compactly supported variations. Moreover, by weakly conformal we mean that
there exists a smooth (and possibly vanishing) function f on † so that for some –
and hence any – representative metric g 2 Œg�, we have fŒg��hp D fg. In fact, in the
compact case Ep.Œg�/ is, up to the topological constant �2��.†/, just the Dirichlet
energy of fŒg�. As a consequence, we obtain an optimal lower bound:

Theorem B. Let .†; p/ be a compact oriented projective surface. Then for every
conformal structure Œg� W †! Z we have

1

2

Z
†

trgfŒg��hp d�g > �2��.†/;

with equality if and only if p is defined by a Œg�-conformal connection.

We then turn to the problem of finding non-trivial examples of projective struc-
tures for which Ep admits extremal conformal structures. The conformal connection
Œg�r determined by the choice of a conformal structure Œg� on .†; p/ may equival-
ently be thought of as a torsion-free connection ' on the principal GL.1;C/-bundle
of complex linear coframes of .†; Œg�/. In addition, the 1-form AŒg� turns out to be
twice the real part of a section ˛ of K2† ˝ K

�
†, where K† denotes the canonical

bundle of .†; Œg�/. We provide another interpretation of the variational equations
by proving that Œg� is extremal for p if and only if the quadratic differential r 00'˛
vanishes identically. Herer' denotes the connection induced by ' onK2†˝K

�
† and

r 00' its .0;1/-part. Applying the Riemann–Roch theorem, it follows that a projective
structure p on the 2-sphere S2 admits an extremal conformal structure if and only if
p is defined by a conformal connection.

While there are no non-trivial critical points for projective structures on the
2-sphere, the situation is quite different for surfaces with negative Euler character-
istic. Indeed, the condition of having a vanishing quadratic differential appeared
previously in the projective differential geometry literature. In the celebrated pa-
per “Lie groups and Teichmüller space” [21] Hitchin proposed a generalisation
of Teichmüller space H2 by identifying a connected component Hn – nowadays
called the Hitchin component – in the space of conjugacy classes of representa-
tions of �1.†/ into PSL.n;R).1 Here † denotes a compact oriented surface whose
genus exceeds one. Using the theory of Higgs bundles [20] and harmonic map
techniques, Hitchin showed that the choice of a conformal structure Œg� on † gives
an identification

Hn '

nM
`D2

H 0.†;K`†/:

Hitchin conjectured that H3 is the space of conjugacy classes of monodromy
representations of (flat) properly convex projective structures, a fact later confirmed
by Choi and Goldman [10] (the geometric interpretation of the Hitchin component
for n > 3 is a topic of current interest, c.f. [18], [22], [28] for recent results).

1More generally, representation into a real split simple Lie group.
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Teichmüller space being parametrised by holomorphic quadratic differentials, one
might ask if there is a unique choice of a conformal structure on †, so that H3 is
parametrised in terms of cubic holomorphic differentials only. This is indeed the
case, as was shown independently by Labourie [27] and Loftin [34] (see also [2]
and [14] for recent work treating the non-compact case and the case of convex
polygons, as well as [30] treating the case of a general real split rank 2 group).
Furthermore, the conformal structure Œg� making the quadratic differential vanish is
the conformal equivalence class of the so-called Blaschke metric, which arises by
realising the universal cover of a properly convex projective surface as a complete
hyperbolic affine 2-sphere, see in particular [34].

Calling a conformal structure Œg� on .†; p/ closed, if ' induces a flat connection
on ƒ2.T �†/, we obtain a novel characterisation of properly convex projective
structures among flat projective structures:

Theorem C. Let .†; p/ be a compact oriented flat projective surface of negative
Euler characteristic. Suppose p is properly convex, then the conformal equivalence
class of the Blaschke metric is closed and extremal for Ep. Conversely, if Ep admits
a closed extremal conformal structure Œg�, then p is properly convex and Œg� is the
conformal equivalence class of the Blaschke metric of p.

We conclude with some remarks about the possible relation between our func-
tional and the energy functional on Teichmüller space [12], [29] which one can
associate to a representation in the Hitchin component. Finally, as a by-product of
our ideas, we obtain a Gauss–Bonnet type identity for oriented projective surfaces,
which we briefly discuss in Section I.
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2. Projective and conformal structures

2.1. Preliminaries

Throughout the article, all manifolds are assumed to be connected, have empty
boundary and unless stated otherwise, all manifolds and maps are assumed to be
smooth, i.e., C1. Also, we adhere to the convention of summing over repeated
indices.

2.1.1. Notation

For F D R;C the field of real or complex numbers, we denote by Fn the space
of column vectors of height n and by Fn the space of row vectors of length n
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whose entries are elements of F . Also, we denote by FP2 D
�
F3 n f0g

�
=F�

the space of one-dimensional linear subspaces in F3, that is, the real or complex
projective plane. We denote by S2 D

�
R3 n f0g

�
=RC the space of oriented one-

dimensional linear subspaces in R3, that is, the projective 2-sphere. Likewise,
we write FP2 D .F3 n f0g/ =F

� for the dual (real or complex) projective plane
and S2 D .R3 n f0g/ =R

C for the dual projective 2-sphere. For a non-zero vector
x 2 F3 we write Œx� for its corresponding point in FP2 and for a non-zero vector
� 2 F3 we write Œ�� for its corresponding point in FP2. For non-zero vectors x 2 R3

and � 2 R3 we also use the notation Œx�C and Œ��C to denote the corresponding
points in S2 and S2. Finally, we use the notation F.F3/ to denote the space
of complete flags in F3 whose points are pairs .`;…/ with … being an F two-
dimensional linear subspace of F3 containing the line `.

2.1.2. The coframe bundle

Recall that the coframe bundle of an n-manifold M is the bundle � W F.T �M/!

M whose fibre at a point p 2M consists of the linear isomorphisms u W TpM !
Rn. The group GL.n;R/ acts transitively from the right on each �-fibre by the
rule Ra.u/ D u � a D a�1 ı u for all a 2 GL.n;R/. This action turns � W
F.T �M/ ! M into a principal right GL.n;R/-bundle. The coframe bundle is
equipped with a tautological Rn-valued 1-form ! D .!i / defined by !u D u ı � 0u.
Note that ! satisfies the equivariance property R�a! D a

�1! for all a 2 GL.n;R/.
The exterior derivative of local coordinates x W U ! Rn on M defines a natural
section Qx W U ! F.T �M/ having the reproducing property Qx�! D dx. We will
henceforth write F instead of F.T �M/ whenever M is clear from the context.

2.1.3. Associated bundles

Throughout the article we will frequently make use of the notion of an associated
bundle of a principal bundle. The reader will recall that if � W P !M is a principal
right G-bundle and .�;N / a pair consisting of a manifold N and a homomorphism
� W G! Diff.N / into the diffeomorphism group ofN , then we obtain an associated
fibre bundle with typical fibreN and structure group G whose total space is P ��N ,
that is, the elements of P �� N are pairs .u; p/ subject to the equivalence relation

.u1; p1/ � .u2; p2/ ” u2 D u1 � g; p2 D �.g
�1/.p1/; g 2 G:

A section s of P �� N is then given by a map �s W P ! N which is equivariant
with respect to the G-right action on P and the right action of G on N induced by �.
We say that s is represented by �s . If N is an affine/linear space and the G-action
induced by � is affine/linear, then the associated bundle is an affine/vector bundle.

2.2. Projective structures

Recall that the set A.M/ of torsion-free connections on the tangent bundle of an
n-manifold M is the space of sections of an affine bundle A.M/ ! M of rank
1
2
n2.nC 1/ which is modelled on the vector bundle V D S2.T �M/˝ TM . We

have a canonical trace mapping tr W V ! T �M as well as an inclusion

� W T �M ! V; � 7! � ˝ IdC Id˝ �:
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For every v 2 V we let v0 denote its trace-free part, so that

v0 D v �
1

.nC 1/
�.tr v/:

A projective structure p on a manifold M of dimension n > 1 is an equivalence
class of torsion-free connections on TM , where two connections are declared to be
equivalent if they share the same unparametrised geodesics. Weyl [44] observed the
following:

Lemma 2.1. Two torsion-free connections r and r 0 on TM are projectively
equivalent if and only if .r � r 0/0 D 0.

Consequently, the set P.M/ of projective structures onM is the space of sections
of an affine bundle P.M/! M of rank 1

2
.nC 2/n.n � 1/ which is modelled on

the traceless part V0 of the vector bundle V . We will use the notation p.r/ for the
projective structure p that is defined by a connection r. A consequence of Weyl’s
result is that the set of representative connections of a projective structure p is an
affine subspace Ap.M/ � A.M/ of the space of torsion-free connections which is
modelled on the space of 1-forms on M .

2.3. Conformal structures

A conformal structure on a manifold M of dimension n > 1 is an equivalence
class Œg� of Riemannian metrics on M , where two metrics g and Og are declared
to be equivalent if there exists a smooth function f on M so that Og D e2f g.
Equivalently, a conformal structure Œg� on M is a (smooth) choice of a coframe
for every point p in M , well defined up to orthogonal transformation and scaling.
Consequently, the set C.M/ of conformal structures onM is the space of sections of
C.M/ D F=

�
RC � O.n/

�
!M , where RC � O.n/ is the subgroup of GL.n;R/

consisting of matrices a having the property that aat is a non-zero multiple of the
identity matrix.

A torsion-free connection r on TM is called a Weyl connection or conformal
connection for the conformal structure Œg� on M if the parallel transport maps of
r are angle-preserving with respect to Œg�. A torsion-free connection r is Œg�-
conformal if for some (and hence any) representative metric g 2 Œg� there exists a
1-form ˇ on M such that

rg D 2ˇ ˝ g:

It is a simple consequence of Koszul’s identity that the Œg�-conformal connections
are of the form

(2.1) .g;ˇ/
r D

g
r C g ˝ ˇ] � ˇ ˝ Id � Id˝ ˇ;

where g 2 Œg�, ˇ is a 1-form on M with g-dual vector field ˇ] and gr denotes the
Levi-Civita connection of g. Consequently, the set of Œg�-conformal connections
defines an affine subspace AŒg�.M/ � A.M/ which is modelled on the space of
1-forms onM as well. For later usage we also record that for every smooth function
f on M we have

.exp.2f /g;ˇCdf /
r D

.g;ˇ/
r;



EXTREMAL CONFORMAL STRUCTURES 7

as the reader may easily verify using the identity [3, Theorem 1.159]

(2.2) exp.2f /g
r D

g
r � g ˝ g

rf C �.df /:

In particular, if ˇ is exact, so that ˇ D df for some smooth function f on M , then
.g;ˇ/r D exp.�2f /gr and hence the conformal connection determined by .g; ˇ/ is
the Levi-Civita connection of the metric e�2f g.

We also use the notation Œg�r for a connection preserving the conformal structure
Œg�.

2.4. Compatibility of projective and conformal structures

Since both projective – and conformal structures give rise to affine subspaces of
A.M/ of the same type, we may ask how two such spaces intersect.

Lemma 2.2. Let Œg� be a conformal – and p a projective structure on M . Then
AŒg�.M/ and Ap.M/ intersect in at most one point.

Proof. Suppose the Œg�-conformal connections Œg�r and Œg� Or are both elements in
Ap.M/. Then, by Theorem 2.1, there exists a 1-form ‡ on M so that

Œg�
r D

Œg� Or C �.‡/:

Fixing a Riemannian metric g defining Œg�, we also have 1-forms ˇ; Ǒ on M so that
Œg�
r D

g
r C g ˝ ˇ] � �.ˇ/ and Œg� Or D

g
r C g ˝ Ǒ] � �. Ǒ/:

Applying these formulae we obtain

�.‡ C ˇ � Ǒ/ D g ˝
�
ˇ] � Ǒ]

�
:

Taking the trace gives

.nC 1/
�
‡ C ˇ � Ǒ

�
D ˇ � Ǒ;

so that ‡ D � n
.nC1/

.ˇ � Ǒ/. Therefore we must have

�
�
ˇ � Ǒ

�
D .nC 1/g ˝

�
ˇ] � Ǒ]

�
:

Contracting this last equation with the dual metric g] implies

0 D .nC 2/.n � 1/
�
ˇ] � Ǒ]

�
;

so that ˇ D Ǒ provided n > 1. It follows that ‡ vanishes too, therefore Œg�r D
Œg� Or, as claimed. □

Remark 2.3. Theorem 2.2 raises the question whether or not one can still determine
a unique point Œg�r 2 AŒg�.M/ and a unique point r 2 Ap.M/ in the general
case, where AŒg�.M/ and Ap.M/ might not intersect. Formally speaking, we are
interested in maps

 D
�
 1;  2

�
W P.M/ � C.M/! A.M/ � A.M/

satisfying the following properties:
(i)  1.p; Œg�/ 2 Ap.M/ and  2.p; Œg�/ 2 AŒg�.M/;

(ii) If Ap.M/ \ AŒg�.M/ is non-empty, then  2.p; Œg�/ �  1.p; Œg�/ D 0;
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(iii)  is equivariant with respect to the natural right action of the diffeomorph-
ism group Diff.M/ on P.M/ � C.M/ and A.M/ � A.M/.

We will next discuss a geometrically natural and explicit map  having these
properties.

To this end let g be a Riemannian metric on M and r a torsion-free connection
on TM . Consider the first-order differential operator for g mapping into the space
of 1-forms on M with values in End.TM/

(2.3) g 7! AŒg� D
�
r �

g
r � g ˝Xg

�
0
;

where Xg 2 �.TM/ is

(2.4) Xg D
.nC 1/

.nC 2/.n � 1/
tr
�
g] ˝ .r � gr/0

�
:

The following result is essentially contained in [35] – except for (vi). For the
convenience of the reader we include a proof.

Theorem 2.4 (Matveev & Trautman, [35]). The 1-form AŒg� has the following
properties:

(i) the endomorphism AŒg�.X/ is trace-free for all X 2 �.TM/;
(ii) for all X; Y 2 �.TM/ we have AŒg�.X/Y D AŒg�.Y /X ;

(iii) AŒg� only depends on the projective equivalence class of r;
(iv) AŒg� only depends on the conformal equivalence class of g;
(v) AŒg� � 0 if and only if there exists a Œg�-conformal connection which is

projectively equivalent to r;
(vi) for n D 2 the endomorphism AŒg�.X/ is symmetric with respect to Œg� for

all X 2 �.TM/;

Proof. The properties (i) and (ii) are obvious from the definition.
(iii) Recall that two affine torsion-free connections r and Or are projectively

equivalent if and only if .r � Or/0 D 0. The claim follows from the linearity of the
“taking the trace-free part” operation.

(iv) Let Og D e2f g for some smooth real-valued function f on M . Then we have
Og
r D

g
r � g ˝ g

rf C �.df /

and hence �
r �

Og
r

�
0
D
�
r �

g
r
�
0
C
�
g ˝ g

rf � �.df /
�
0

D
�
r �

g
r
�
0
C
�
g ˝ g

rf
�
0

D
�
r �

g
r
�
0
C g ˝ g

rf �
1

.nC 1/
�.df /:

We obtain

X Og D
.nC 1/

.nC 2/.n � 1/
tr
�
Og] ˝

��
r �

g
r
�
0
C g ˝ g

rf �
1

.nC 1/
�.df /

��
D e�2f

�
Xg C

n.nC 1/

.nC 2/.n � 1/
g
rf �

2

.nC 2/.n � 1/
g
rf

�
D e�2f

�
Xg C

g
rf

�
:
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This gives

Og
r C Og ˝X Og D

g
r � g ˝ g

rf C �.df /C e2f g ˝ e�2f
�
Xg C

g
rf

�
D
g
r C g ˝Xg C �.df /;

so that �
Og
r C Og ˝X Og

�
0
D
�
g
r C g ˝Xg

�
0
;

which shows that AŒg� does indeed only depend on the conformal class of g.
(v) Recall that the Œg�-conformal connections are of the form

Œg�
r D

g
r C g ˝ ˇ] � �.ˇ/;

where g is any metric in the conformal class Œg� and ˇ is some 1-form on M .
Therefore we have�

Œg�
r �

g
r

�
0
D

�
g ˝ ˇ]

�
0
D g ˝ ˇ] �

1

.nC 1/
�.ˇ/

and thus as before we compute that Xg D ˇ]. We obtain

AŒg� D
h
Œg�
r �

�
g
r C g ˝Xg

�i
0

D

h
g
r C g ˝ ˇ] � �.ˇ/ � gr � g ˝ ˇ]

i
0
D Œ��.ˇ/�0 D 0:

Conversely, suppose p is a projective structure for which there exists a conformal
structure Œg� with AŒg� � 0. Fixing a Riemannian metric g 2 Œg� and a p-
representative connection r, we must have

r � .gr C g ˝Xg/ D �.ˇ/;

for some 1-form ˇ on M . Adding �..Xg/[/ gives

r �

�
g
r C g ˝Xg � �

�
.Xg/

[
��
D �

�
ˇ C .Xg/

[
�
;

so that Theorem 2.1 implies that r and the Œg�-conformal connection

g
r C g ˝Xg � �

�
.Xg/

[
�

are projectively equivalent.
(vi) Let now n D 2. We need to show that for g 2 Œg� and all vector fields

X; Y;Z 2 �.TM/, we have

g.AŒg�.X/Y;Z/ D g.Y;AŒg�.X/Z/:

Without losing generality, we can assume that locally g D .dx1/2 C .dx2/2 for
coordinates x D .x1; x2/ W U ! R2 onM . Let � i

jk
denote the Christoffel symbols

of r with respect to x. Since the Christoffel symbols of gr vanish identically on
U , we obtain with a simple calculation

Xg D �
3

4
.w1 C w3/

@

@x1
C
3

4
.w0 C w2/

@

@x2
;

where

w0 D �
2
11; 3w1 D ��

1
11 C 2�

2
12; 3w2 D �2�

1
12 C �

2
22; w3 D ��

1
22:
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Likewise, we compute

AŒg� D
1

2

�
a1e

11
1 � a2e

11
2 � a2e

12
1 � a1e

12
2

� a2e
21
1 � a1e

21
2 � a1e

22
1 C a2e

22
2

�
where we write eij

k
D dxi ˝ dxj ˝ @

@xk
and

a1 D
1

2
.w3 � 3w1/; a2 D

1

2
.3w2 � w0/:

The claim follows from an elementary calculation. □

Remark 2.5. By construction, the 1-form AŒg� vanishes identically if and only if r
is projectively equivalent to a conformal connection. The necessary and sufficient
conditions for a torsion-free connection to be projectively equivalent to a Levi-Civita
connection were given in [4]. The reader may also consult [7] for the role of Einstein
metrics in projective differential geometry.

As a corollary to Theorem 2.4 and Theorem 2.2 we obtain the following result.

Corollary 2.6. For every conformal structure Œg� on the projective manifold .M; p/,
there exists a unique Œg�-conformal connection Œg�r so that Œg�r C AŒg� 2 p.

Note that Theorem 2.6 provides a unique point Œg�r 2 AŒg�.M/ and a unique
point Œg�r C AŒg� 2 Ap.M/. We may define

 .p; Œg�/ D
�
Œg�
r C AŒg�;

Œg�
r

�
:

Since the map which sends a Riemannian metric to its Levi-Civita connection
is equivariant with respect to the action of Diff.M/ on the space of Riemannian
metrics and on A.M/, it follows that the map  has all the properties listed in
Theorem 2.3.

Proof of Theorem 2.6. Let r be a connection defining p and g a smooth metric
defining Œg�. Set

Œg�
r D

g
r C g ˝Xg � .Xg/

[
˝ Id � Id˝ .Xg/[;

where Xg is defined as before (see (2.4)). Then, property (i) of AŒg� proved in
Theorem 2.4 implies that�
r �

�
Œg�
r C AŒg�

��
0
D
�
r � .gr C g ˝Xg/

�
0
� AŒg� D AŒg� � AŒg� D 0;

so that Œg�r C AŒg� is projectively equivalent to r by Theorem 2.1. If Œg�r 0 is
another Œg�-conformal connection so that Œg�r 0 C AŒg� defines p, then�

Œg�
r �

Œg�
r
0
�
0
D 0;

hence Œg�r D Œg�r 0 by Theorem 2.2. □
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2.5. A diffeomorphism invariant functional

We will henceforth assume M to be oriented. For a pair .p; Œg�/ consisting of a
projective structure and a conformal structure on M , we consider the non-negative
n-form jAŒg�jngd�g , where g is any metric defining Œg�, the n-form d�g denotes its
volume form and where AŒg� is computed with respect to p. For f 2 C1.M/ we
have

jAŒg�je2f g D e�f jAŒg�jg and d�e2f g D e
nf d�g ;

it follows that jAŒg�jngd�g depends only on the conformal structure Œg�. Con-
sequently, we obtain a non-negative functional

F W P.M/ � C.M/! RC0 [ f1g; .p; Œg�/ 7!

Z
M

jAŒg�j
n
gd�g :

By construction, F is invariant under simultaneous action of Diff.M/ on P.M/

and C.M/.
We may also fix a projective structure p onM and define Ep D F Œ.p; �/� which is

a functional on C.M/ only. We may study the infimum of Ep among all conformal
structures onM , and ask whether there is actually a minimising conformal structure
which achieves this infimum. The infimum

�ı.M; p/ WD inf
Œg�2C.M/

Ep.Œg�/;

which may be considered as a measure of how far p deviates from being defined by
a conformal connection, is a new global invariant for oriented projective manifolds.
Note that reversing the role of p and Œg� does not give us a global invariant for
conformal manifolds. Clearly, fixing a conformal structure and considering the
infimum over P.M/ yields zero for every choice of conformal structure Œg�.

3. Projective surfaces and associated bundles

A natural case to consider is n D 2, where F is just the square of the L2-norm of
AŒg� taken with respect to Œg�. We will henceforth consider the surface case only.

There are several natural geometric spaces fibering over an oriented projective
surface which we will discuss next. Before doing so, we recall a result of Cartan [9],
which canonically associates a principal bundle together with a “connection” to
every projective manifold. The reader interested in a description of Cartan’s con-
struction using modern language may also consult [26]. For additional background
on Cartan geometries the reader may also consult [8].

3.1. Cartan’s normal projective connection

Let † be an oriented surface and let G ' R2 Ì GLC.2;R/ denote the two-
dimensional orientation preserving affine group which we think of as the subgroup
of SL.3;R/ consisting of matrices of the form

b Ì a D
�

det a�1 b

0 a

�
;

for b 2 R2 and a 2 GLC.2;R/. We denote by � W FC ! † the principal right
GLC.2;R/-bundle of coframes that are orientation preserving with respect to the
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chosen orientation on † and the standard orientation on R2. We define a right
G-action on FC �R2 by the rule

(3.1) .u; �/ � .b Ì a/ D
�
det a�1a�1 ı u; �a det aC b det a

�
;

for all b Ì a 2 G. Here � W FC �R2 ! R2 denotes the projection onto the latter
factor. This action turns � W FC �R2 ! † into a principal right G-bundle over †,
where � W FC �R2 ! † denotes the natural basepoint projection. Suppose r is a
torsion-free connection on T† with connection 1-form � D .�ij / on FC so that we
have the structure equations2

d!i D ��ij ^ !
j ;

d�ij D ��
i
k ^ �

k
j C .ı

i
ŒkSl�j � SŒkl�ı

i
j /!

k
^ !l ;

where S D .Sij / represents the projective Schouten tensor Schout.r/ of r and
!i the components of the tautological Rn-valued 1-form ! on F . Recall that the
Schouten tensor is defined as

(3.2) Schout.r/ D RicC.r/ �
1

3
Ric�.r/;

where Ric˙.r/ denote the symmetric and anti-symmetric part of the Ricci curvature
of r. On P D FC �R2 we define the sl.3;R/-valued 1-form

(3.3) � D

�
�
1
3

tr � � �! d� � �� � .S!/t � �!�
! � � 1

3
I tr �C !�

�
:

The reader may check that the pair .� W P ! †; �/ defines a Cartan geometry of
type .SL.3;R/;G/, that is, � W P ! † is a principal right G-bundle and � is an
sl.3;R/-valued 1-form on P satisfying the following properties:

(i) �u W TuP ! sl.3;R/ is an isomorphism for every u 2 P ;
(ii) .Rg/�� D g�1�g for every g 2 G;

(iii) �.Xv/ D v for every fundamental vector field Xv generated by an element
v in the Lie algebra of G.

Moreover, writing � D .� ij /i;jD0;1;2, the Cartan geometry .� W P ! †; �/ also
satisfies:

(iv) for every non-zero x 2 R2, the integral curves of the vector fieldXx defined
by the equations

�.Xx/ D

�
0 0

x 0

�
project to † to become geodesics of p and conversely all geodesics of p
arise in this way;

(v) the �-pullback of an orientation compatible volume form on † is a positive
multiple of �10 ^ �

2
0 ;

2Indices in round brackets are symmetrised over and indices in square brackets are anti-
symmetrised over, for instance, we write S.ij / D

1
2

�
Sij C Sj i

�
and SŒij � D

1
2

�
Sij � Sj i

�
so

that Sij D S.ij / C SŒij �.
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(vi) the curvature 2-form ‚ D d� C � ^ � is

(3.4) ‚ D d� C � ^ � D

0@0 L1�
1
0 ^ �

2
0 L2�

1
0 ^ �

2
0

0 0 0

0 0 0

1A ;
for unique curvature functions Li W P ! R.

Remark 3.1. Cartan’s bundle is unique in the following sense: If . O� W OP ! †; O�/ is
another Cartan geometry of type .SL.3;R/;G/ so that the properties (iv),(v) and (vi)
hold, then there exists a G-bundle isomorphism  W P ! OP satisfying  � O� D � .

A projective structure p on† is called flat if every point p 2 † has a neighbourhood
Up which is diffeomorphic to a subset of RP2 in such a way that the geodesics of
p contained in Up are mapped onto (segments) of projective lines RP1 � RP2.
Furthermore, a torsion-free connection r on T† is called projectively flat if p.r/
is flat. Using Cartan’s connection, one can show that a projective structure p is flat
if and only if the functions L1 and L2 vanish identically. Another consequence of
Cartan’s result is that there exists a unique 1-form � 2 �1.†;ƒ2.T �†// so that

��� D .L1�
1
0 C L2�

2
0 /˝ �

1
0 ^ �

2
0 :

The 1-form � was first discovered by R. Liouville [32], hence we call � the Liouville
curvature of p. In particular, the Liouville curvature is the complete obstruction to
flatness of a two-dimensional projective structure.

Example 3.2. Note that the left action of SL.3;R/ on R3 by matrix multiplication
descends to define a transitive left action on the projective 2-sphere S2. The
stabiliser subgroup of the element Œ.1 0 0/t � is the group G � SL.3;R/ so that
S2 ' SL.3;R/=G. Taking � to be the Maurer-Cartan form of SL.3;R/, the pair
.� W SL.3;R/ ! S2; �/ is a Cartan geometry of type .SL.3;R/;G/ defining an
orientation and projective structure pcan on S2 whose geodesics are the “great
circles”. Since d� C � ^ � D 0, this projective structure is flat. We call pcan
the canonical flat projective structure on S2.

3.2. The twistor space

Inspired by Hitchin’s twistorial description of holomorphic projective structures
on complex surfaces [19], it was shown in [13, 42] how to construct a “twistor
space” for smooth projective structures. For what follows it will be convenient to
construct the twistor space in the smooth category by using the Cartan geometry of
a projective surface.

Let therefore .†; p/ be an oriented projective surface with Cartan geometry .� W
P ! †; �/. By construction, the quotient of P by the normal subgroup R2ÌfIdg �
G is isomorphic to the bundle � W FC ! † of orientation preserving coframes
of †. In particular, the choice of a conformal structure Œg� on † corresponds to
a section of the fibre bundle C.†/ ' P= .R2 Ì CO.2// ! †. Here CO.2/ D
RC � SO.2/ is the linear orientation preserving conformal group. By construction,
the typical fibre of the bundle C.†/! † is diffeomorphic to GLC.2;R/=CO.2/ '
SL.2;R/=SO.2/, that is, the open unit disk D2 � C.
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We write the elements of the group R2 Ì CO.2/ in the following form

z Ì rei�
D

0@r�2 Re.z/ Im.z/
0 r cos� r sin�
0 �r sin� r cos�

1A ; z 2 C; rei�
2 C�:

Property (iii) of the Cartan geometry .� W P ! †; �/ implies that the (real –
or complex-valued) 1-forms on P that are semibasic3 for the quotient projection
� W P ! C.†/ are complex linear combinations of the complex-valued 1-forms

(3.5) �1 D �
1
0 C i�20 ; �2 D

�
�11 � �

2
2

�
C i

�
�12 C �

2
1

�
and their complex conjugates. The equivariance property (ii) of the Cartan geometry
gives

(3.6) .RzÌrei� /�
�
�1
�2

�
D

�
1
r3

ei� 0
z
r

ei� e2i�

��
�1
�2

�
:

It follows that there exists a unique almost complex structure J on C.†/ having
the property that a complex-valued 1-form on P is the pullback of a .1;0/-form
on C.†/ if and only if it is a complex linear combination of �1 and �2. Indeed,
locally we may use a section s of the bundle � W P ! C.†/ to pull down the forms
�1; �2 onto the domain of definition U � C.†/ of s. Since �1; �2 are semi-basic for
the projection � W P ! C.†/, it follows that the pulled down forms are linearly
independent over C at each point of U . Hence we obtain a unique almost complex
structure J on U whose .1;0/-forms are s��1; s��2. The equivariance (3.6) implies
that J is independent of the choice of the section s and extends to all of C.†/. Using
property (vi) of the Cartan geometry the reader may easily verify that

d�1 D d�2 D 0; mod �1; �2:

It follows from the Newlander-Nirenberg theorem that J is integrable, thus giving
C.†/ the structure of a complex surface which we will denote by Z and which –
abusing language – we call the twistor space of the projective surface .†; p/.

3.3. An indefinite Kähler-Einstein 3-fold

From (3.6) it follows that the holomorphic cotangent bundle T �CZ
1;0 ! Z is the

bundle associated to � W P ! Z via the complex two-dimensional representation
� W R2 Ì CO.2/! GL.2;C/ defined by the rule

(3.7) �.z Ì rei�/.w1 w2/ D .w1 w2/

�
1
r3

ei� 0
z
r

ei� e2i�

�
for all .w1 w2/ 2 C2. In particular, the form �1 is well defined on Z up to complex-
scale and hence may be thought of as a section of the projective holomorphic cotan-
gent bundle P .T �CZ

1;0/! Z. Abusing notation, we write �1.Z/ � P .T �CZ
1;0/

to denote the image of Z under this section. We now have:

3Recall that a differential form ˛ is said to be semibasic for the projection P ! C.†/ if the
interior product X ˛ vanishes for every vector field X tangent to the fibres of P ! C.†/.
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Lemma 3.3. There exists a unique integrable almost complex structure on the
quotient P=CO.2/ having the property that its .1;0/-forms pull back to P to become
linear combinations of the forms

(3.8) �1 D �
1
0 C i�20 ; �2 D

�
�11 � �

2
2

�
C i

�
�12 C �

2
1

�
; �3 D �

0
1 C i�02 :

Furthermore, with respect to this complex structure P=CO.2/ is biholomorphic to
Y D P .T �CZ

1;0/ n �1.Z/ in such a way that the standard holomorphic contact
structure on Y is identified with the subbundle of TC.P=CO.2//1;0 defined by the
equation �2 D 0.

Proof. Again, it follows from the property (iii) of the Cartan connection � that
the 1-forms that are semibasic for the quotient projection � W P ! P=CO.2/ are
linear combinations of the forms �1; �2; �3 and their complex conjugates. Here
CO.2/ � G is the subgroup consisting of elements of the form 0 Ì rei� . Writing
rei� instead of 0 Ì rei� and � D .�i /, we compute from the equivariance property
(ii) of � that we have

(3.9) .Rrei� /�

0@�1�2
�3

1A D 0@ 1
r3

ei� 0 0

0 e2i� 0

0 0 r3ei�

1A0@�1�2
�3

1A :
It follows as before that there exists a unique almost complex structure J on the
quotient P=CO.2/ having the property that its .1;0/-forms pull back to P to become
linear combinations of the forms �1; �2; �3. Suppose there exists a 1-form  D .ij /

on P with values in gl.3;C/, so that d� D � ^ �, then it follows again from the
Newlander–Nirenberg theorem that J is integrable. Clearly, if such a  exists, then
it is not unique. Defining O D . Oij /, with Oij D ij C Tijk�k for some complex-
valued functions satisfying Tijk D Tikj on P will also work. We can exploit this
freedom and make  take values in the Lie algebra

u.2; 1/ D

8<:
0@ w1 �w2 ix1
�w3 ix2 w2
ix3 w3 �w1

1A W w1; w2; w3 2 C and x1; x2; x3 2 R

9=;
of the indefinite unitary group U.2;1/, where the model of U.2;1/ being used is the
subgroup of GL.3;C/ that fixes the Hermitian form in 3-variables

H.z/ D z1z3 C z3z1 C z2z2:

Indeed, writing

(3.10) L D �
1

2
.L2 � iL1/ and ' D �

1

2

�
3�00 C i.�12 � �

2
1 /
�
;

we have

(3.11) d� D � ^ �;

where

 D

0@ ' �
1
2
�1 0

�
1
2
�3 ' � ' 1

2
�1

L�1 � L�1
1
2
�3 �'

1A ;
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as the reader can verify by using the definitions (3.8),(3.10) and the structure
equations (3.4). It follows that J is integrable. Likewise, the reader may verify that

(3.12) d' D
1

2
�3 ^ �1 �

1

4
�2 ^ �2 � �1 ^ �3;

simply by plugging in the definitions of the involved forms and by using the structure
equations (3.4).

Now consider the map

Q W P ! P �C2 n f0g; u 7!
�
u;
�
0 1

��
and let q W P � C2 n f0g ! P .T �CZ

1;0/ denote the natural quotient projection
induced by (the projectivisation of) �. Then q ı Q W P ! P .T �CZ

1;0/ is a
submersion onto Y whose fibres are the CO.2/-orbits. Indeed, let .u;w/ be a
representative of an element Œ�� 2 P .T �CZ

1;0/ which lies in the complement of
�1.Z/. Then using (3.7) it follows that we might transform with the affine part of
the right action of R2 Ì CO.2/ to ensure that w is of the form .0 w2/ for some
non-zero complex number w2. It follows that the element u 2 P is mapped onto Œ��
showing that q ı Q is surjective onto Y . Clearly q ı Q is smooth and a submersion.
Furthermore, suppose the two points u; u0 2 P are mapped to the same element of
Y . Then, there exists an element z Ì rei� 2 R2 Ì CO.2/ and a non-zero complex
number s so that

�
�
.z Ì rei�/�1

� �
0 1

�
D
�
�zr2e�2i� e�2i�

�
D
�
0 s

�
which holds true if and only if z D 0. Consequently, there exists a unique diffeo-
morphism  W P=CO.2/! Y making the following diagram commute:

P
Q 

����! P �C2 n f0g??y� ??yq
P=CO.2/

 
����! Y

The complex structure on Y � P .T �CZ
1;0/ is such that its .1;0/-forms pull back

to P � C2 n f0g to become linear combinations of the complex-valued 1-forms
�1; �2; dw1; dw2, where w D .w1 w2/ W P � C2 ! C2 denotes the projection
onto the linear factor. Clearly, these forms pull back under Q to become linear
combinations of the forms �1; �2; �3, hence  is a biholomorphism.

Finally, note that the complex version of the Liouville 1-form on T �CZ
1;0 – whose

kernel defines the canonical contact structure on P .T �CZ
1;0/ – pulls back to P �C2

to become w1�1 C w2�2. Since

Q � .w1�1 C w2�2/ D �2;

the claim follows. □

Remark 3.4. Whereas the definition of the forms �i is a natural consequence of the
Lie algebra structure of CO.2/ � R2 Ì GLC.2;R/, the definition of the form '

in (3.10) is somewhat mysterious at this point. The choice will be clarified during
the proof of Theorem 4.9 below.
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We will henceforth identify Y ' P=CO.2/ and think of � as the projection map
onto Y . Denoting the integrable almost complex structure on Y by J , the first part
of the following proposition is therefore clear:

Proposition 3.5. There exists a unique indefinite Kähler structure on .Y; J / whose
Kähler-form �Y satisfies

���Y D �
i
4

�
�1 ^ �3 C �3 ^ �1 C �2 ^ �2

�
:

Moreover, the indefinite Kähler metric hp.�; �/ WD �Y .J �; �/ is Einstein with non-
zero scalar curvature.

Proof. The first part of the statement is an immediate consequence of the fact that
 takes values in u.2; 1/. The skeptical reader might also verify this using the
structure equations (3.11). Furthermore, by definition, the associated Kähler metric
satisfies

��h D
1

2

�
�1 ı �3 C �3 ı �1 C �2 ı �2

�
and hence the forms 1p

2
�i are a unitary coframe for ��hp. In order to verify the

Einstein condition it is therefore sufficient that the trace of the curvature form

� D d C  ^ 

is a non-zero constant (imaginary) multiple of ���Y . We compute

0 D d2�3 ^ �1 ^ �1 D �d .31 ^ �1 C 32 ^ �2 C 33 ^ �3/ ^ �1 ^ �1

D �1 ^ �1 ^

�
dLC

1

2
L�2 � L' � 2L'

�
;

where we have used (3.11) and (3.12). It follows that there exist unique complex-
valued functions L0 and L00 on P such that

(3.13) dL D L0�1 C L00�1 �
1

2
L�2 C L' C 2L':

Using the structure equations (3.11),(3.12) and (3.13) we compute

� D
1

4

0@ �11 ��1 ^ �2 �1 ^ �1

��2 ^ �3 �22 �1 ^ �2

�3 ^ �3 C � �2 ^ �3 �33

1A ;
with

�11 D
1

4

�
�3 ^ �1 � �2 ^ �2 � 4�1 ^ �3

�
;

�22 D
1

4

�
��1 ^ �3 � 2�2 ^ �2 � �3 ^ �1

�
;

�33 D
1

4

�
�1 ^ �3 � �2 ^ �2 � 4�3 ^ �1

�
:

and where � D 4
�
L0 C L0

�
�1 ^ �1. In particular, we obtain

�11 C �22 C �33 D 4i���Y ;

thus verifying the Einstein property. □
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Remark 3.6. In [15], it is shown how to canonically associate a split-signature
anti-self-dual Einstein metric on the total space of a certain rank two affine bundle
A fibering over a projective surface .†; p/. The indefinite Kähler–Einstein manifold
.Y; J;�Y ) constructed here may be interpreted as the twistor space of this anti-self-
dual Einstein metric.

3.4. The canonical flat case

In this subsection we identify the spaces

Y D P=CO.2/ and Z D P= .R2 Ì CO.2//

in the case where .†; p/ is the canonical flat projective structure on the projective
2-sphere. Recall that in this case P D SL.3;R/. The group SL.3;R/ also acts
naturally on C3 by complexification, that is, by the rule

g � .� C i�/ D �g�1 C i�g�1

for all g 2 SL.3;R/. Clearly, this action descends to define a left action on
CP2. However, this action is not transitive, but has two orbits. The first orbit is
RP2 � CP2, where we think of RP2 as those points Œ�C i�� 2 CP2 which satisfy
� ^ � D 0, that is, � and � are linearly dependent over R. Assume therefore Œ"�
is an element in the complement CP2 n RP2 of RP2 in CP2. Since SL.3;R/
acts transitively on unimodular triples of vectors in R3, we can assume without
losing generality that " D .0 � i 1/. For g 2 SL.3;R/ we write g D .g0 g1 g2/
with gi 2 R3. We will next determine the stabiliser subgroup of Œ"�. A simple
computation gives

g � " D g0 ^ .g1 C ig2/ :

An elementary calculation shows that Œg � "� D Œ"� implies that we must have�
c1
c2

�
D

�
g21 �g

1
1

g22 �g
1
2

��
g10
g20

�
D

�
0

0

�
:

Since

detg D g02 c1 � g
0
1 c2 C g

0
0 det

�
g21 �g

1
1

g22 �g
1
2

�
D 1;

it follows that g10 D g
2
0 D 0. Therefore, the stabiliser subgroup of Œ"� is a subgroup

of R2 Ì GL.2;R/. Writing a D .aij /, we obtain

.b Ì a/ � " D det a�1
�
0 �a21 � ia22 a11 C ia12

�
;

from which it follows that Œ.bÌa/ �"� D Œ"� if and only if a11 D a
2
2 and a12Ca

2
1 D 0,

that is, a 2 CO.2/. Concluding, we have shown

SL.3;R/= .R2 Ì CO.2// ' CP2 nRP2

and the projection map is

� W SL.3;R/! CP2 nRP2;
�
g0 g1 g2

�
7! Œg0 ^ .g1 C ig2/�;

where we use R3 ' ƒ
2.R3/.
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Remark 3.7. We have only shown that Z D SL.3;R/= .R2 � CO.2// is diffeo-
morphic to CP2 nRP2. Since Z carries an integrable almost complex structure J ,
we may ask if .Z; J / is biholomorphic to CP2 nRP2 equipped with the standard
complex structure. This is indeed the case, see [37, Prop. 3]. As a consequence
of this result one can prove that the conformal connections on the 2-sphere whose
(unparametrised) geodesics are the great circles are in one-to-one correspondence
with the smooth quadrics in CP2 nRP2, see [37, Cor. 2].

Remark 3.8. In fact [31], if p is a projective structure on the 2-sphere, all of
whose geodesics are simple closed curves, then Z can be compactified and the
compactification is biholomorphic to CP2. This allowed Lebrun and Mason to
prove that there is a nontrivial moduli space of such projective structures on the
2-sphere.

We will show next that Y is a submanifold of F.C3/. Clearly, the action of
SL.3;R/ on the space F.C3/ of complete complex flags is not transitive, there is
however an open orbit. Let F.C3/� denote the SL.3;R/ orbit of the flag

.`;…/ D .Cf"1g;Cf"1; "2g/ ;

where
"1 D

�
0 �i 1

�
; "2 D

�
1 0 0

�
:

We already know that the stabiliser subgroup G0 of .`;…/ must be a subgroup of
R2 Ì CO.2/. For b Ì a 2 R2 Ì CO.2/ we write

b Ì a D

0@ 1
x2Cy2

b1 b2

0 x y

0 �y x

1A ;
with x2 C y2 > 0. We compute

"2 � .b Ì a/ D
�
x2 C y2 �xb1 � yb2 �xb2 C yb1

�
which is easily seen to lie in the complex linear span of "1; "2 if and only if
b1 D b2 D 0, hence

SL.3;R/=CO.2/ ' F.C3/�

and the projection map is

� W SL.3;R/! F.C3/
�
g0 g1 g2

�
7! .Cf"1g;Cf"1; "2g/ ;

with
"1 D g0 ^ .g1 C ig2/; "2 D g1 ^ g2:

Since F.C3/ is real six-dimensional and since dim SL.3;R/ � dim CO.2/ D 6, it
follows that F.C3/� is open.

4. The variational equations

By construction, a conformal structure Œg� on the oriented projective surface .†; p/
is a section of Z ! †. Here we will show that every conformal structure Œg� admits
a natural lift fŒg� W †! Y . In doing so we recover the functional Ep from a different
viewpoint, which simplifies the computation of its variational equations. We start
with recalling the bundle of complex linear coframes of a Riemann surface.
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4.1. The bundle of complex linear coframes

Let † be an oriented surface equipped with a conformal structure Œg�, so that
† inherits the structure of a Riemann surface whose integrable almost complex
structure will be denoted by J . The bundle of complex-linear coframes of .†; Œg�/ is
the GL.1;C/-subbundle FC

Œg�
of FC consisting of those coframes that are complex-

linear with respect to J and the complex structure obtained on R2 via the standard
identification R2 ' C. Of course, via the isomorphism CO.2/ ' GL.1;C/, we
may equivalently think of FC

Œg�
as consisting of those coframes in FC that are angle

preserving with respect to Œg� and the standard conformal inner product on R2.
Recall that a principal CO.2/-connection ' on FC

Œg�
is called torsion-free if it

satisfies

d! D �' ^ !;

where here we think of the tautological R2-valued 1-form ! on FC
Œg�

as taking values
in C and the connection taking values in the Lie algebra of CO.2/ ' GL.1;C/,
that is, C. The curvature ˆ of ' is a .1;1/-form on † whose pullback to FC

Œg�
can

be written as

d' D R! ^ !

for some unique complex-valued function R on FC
Œg�

. By definition of FC
Œg�

, a
complex-valued 1-form on † is a .1;0/-form with respect to J if and only if its
pullback to FC

Œg�
is a complex multiple of !. A consequence of this is the following

elementary lemma whose proof we omit:

Lemma 4.1. A complex-valued function f on FC
Œg�

represents a section ofKm†˝K
n
†

if and only if there exist complex-valued functions f 0 and f 00 on FC
Œg�

so that

df D f 0! C f 00! C f m' C f n':

Remark 4.2. Here K† D T �C†
1;0 denotes the canonical bundle of .†; J /, Km† its

m-th tensorial power and Kn† the conjugate bundle of the n-th tensorial power of
K†. As usual, we we let r' denote the connection induced by ' on Km† ˝ K

n
†

and by r 0' its .1;0/-part and by r 00' its .0;1/-part. Of course, if s is the section of
Km† ˝K

n
† represented by f , then r 0's is represented by f 0 and r 00's is represented

by f 00.

Theorem 4.1 implies that ' may also be thought of as the connection form of the
connection induced by ' on K�†. Therefore, the first Chern class of K�† is

c1.K
�
†/ D

�
i
2�
ˆ

�
and hence if † is compact, we obtain

(4.1)
Z
†

iˆ D 2��.†/;

where �.†/ denotes the Euler-characteristic of †.
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4.2. Submanifold theory in the twistor space

We are interested in co-dimension two submanifolds of Z arising as images of
sections of Z ! †. The second order theory of such submanifolds is summarised
in the following:

Lemma 4.3. Let Œg� W †! Z be a conformal structure on .†; p/. Then there exists
a lift fŒg� W †! Y covering Œg� so that the pullback-bundle p W P 0

Œg�
DfŒg��P ! †

is isomorphic to the CO.2/-bundle of complex linear coframes FC
Œg�

of .†; Œg�/ and

so that on P 0
Œg�
' FC

Œg�
we have

�2 D 2a �1; �3 D k�1 C 2q�1;

for unique complex-valued functions a; k; q on P 0
Œg�

.

Proof. First recall that in Theorem 3.3 we have defined

�1 D �
1
0 C i�20 ; �2 D

�
�11 � �

2
2

�
C i

�
�12 C �

2
1

�
; �3 D �

0
1 C i�02 ;

where � D .� ij / is the Cartan connection of .†; p/.
Let now Œg� W † ! Z be a conformal structure on .†; p/ and let p W PŒg� D

Œg��P ! † denote the pullback of the bundle � W P ! Z, that is,

PŒg� D f.p; u/ 2 † � P j Œg�.p/ D �.u/g :

Since PŒg� is 6-dimensional, two of the components of � become linearly dependent
when pulled back to PŒg�. Clearly, these components must be among the 1-forms
that are semibasic for �. Recall that these forms are spanned by �1; �2 and their
complex conjugates. However, since Œg� is a section of Z ! † and since the
1-forms that are semibasic for the projection � W P ! † are spanned by �1; �1,
it follows that �1 ^ �1 is non-vanishing on PŒg�. Therefore, on PŒg� we have the
relation

(4.2) �2 D 2a�1 C c�1

for unique complex-valued functions a; c. From the equivariance properties of
�1; �2 under the R2 Ì CO.2/-right action (3.6), we obtain that for all u 2 PŒg� and
z Ì rei� 2 R2 Ì CO.2/ we have

c.u � z Ì rei�/ D r3ei�c.u/C r2z

and

(4.3) a.u � z Ì rei�/ D r3e�3i�a.u/:

It follows that the equation c D 0 defines a locus that corresponds to a sectionfŒg� W †! Y covering Œg�. On the pullback bundle P 0
Œg�
DfŒg��P , where

P 0Œg� D
n
.p; u/ 2 † � P jfŒg�.p/ D �.u/o ;

we obtain

(4.4) �2 D 2a�1:

Since P 0
Œg�

is 4-dimensional, two of the remaining components of � become linearly
dependent when pulled back to P 0

Œg�
. Since the 1-forms that are semibasic for the
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projection � W P ! Y are spanned by �1; �2; �3 and their complex conjugates, it
follows as before that

(4.5) �3 D k�1 C 2q �1

for unique complex-valued functions k; q.
Now recall that Cartan’s bundle � W P ! † is isomorphic to FC � R2 ! †

equipped with the G-right action (3.1). Therefore, PŒg� ! † is isomorphic to
FC
Œg�
�R2 ! † and consequently, the bundle P 0

Œg�
! † is isomorphic to FC

Œg�
!

†. □

We also obtain:

Lemma 4.4. The functions a; k; q and the 1-form ' satisfy the following structure
equations on P 0

Œg�
' FC

Œg�

(4.6) da D a0�1 � q�1 C 2a' � a';

and
dk D k0�1 C k00�1 C k' C k';

dq D q0�1 C
1

2

�
LC k00 � 2qa

�
�1 C 2q';

and

(4.7) d' D
�
jaj2 C

1

2
k � k

�
�1 ^ �1

for unique complex-valued functions r 0; k0; k00 and q0 on P 0
Œg�

.

Proof. We will only verify the structure equation for a as the other structure equa-
tions are derived in an entirely analogous fashion. The structure equations (3.11)
and (4.4) gives

d�2 D d.2a�1/ D 2da ^ �1 C a d�1 D ��1 ^ daC 2a
�
�1 ^ ' C

1

2
�1 ^ �2

�
D ��1 ^ �3 C �2 ^ ' � �2 ^ '

D 2q�1 ^ �1 C 2a�1 ^ ' � 2a�1 ^ ';

where we have used (4.5). Equivalently, we obtain

0 D
�

daC q�1 � 2a' C a'
�
^ �1;

which implies (4.6). Finally, the structure equation (5.2) for ' is an immediate
consequence of (3.11), (4.4) and (4.5). □

As we will see next, the functions a; q; k on P 0
Œg�

satisfy certain equivariance
properties with respect to the CO.2/-right action on P 0

Œg�
and hence represent

sections of complex line bundles associated to p W P 0
Œg�
! †.

Proposition 4.5. The choice of a conformal structure Œg� on .†; p/ determines the
following objects:

(i) A torsion-free connection ' on the bundle of complex-linear coframes of
.†; Œg�/;

(ii) A section ˛ of K2† ˝K
�
† that is represented by a.
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(iii) A quadratic differential Q on † that is represented by q;
(iv) A .1;1/-form � on † that is represented by k.

Moreover, the quadratic differential Q satisfies

(4.8) Q D �r 00'˛:

Proof. By construction of P 0
Œg�
' FC

Œg�
, a complex-valued 1-form on † is a .1;0/-

form for the complex structure J induced by Œg� and the orientation if and only if
its p-pullback to P 0

Œg�
is a complex multiple of �1. Since

.Rrei� /� �1 D
1

r3
ei��1

it follows that the sections of K2† are in one-to-one correspondence with the com-
plex-valued functions f on P 0

Œg�
satisfying

.Rrei� /� f D r3e�i�r3e�i�f D r6e�2i�f:

Likewise, it follows that the sections ofK2†˝K
�
† are in one-to-one correspondence

with the complex-valued functions f on P 0
Œg�

satisfying

.Rrei� /� f D r3e�i�r3e�i�r�3ei�f D r3e�3i�f

and that the sections of K† ˝ K† are in one-to-one correspondence with the
complex valued functions f on P 0

Œg�
satisfying

.Rrei� /� f D r3e�i�r3ei�f D r6f:

From (4.5) and (3.9) we obtain that for all u 2 P 0
Œg�

and rei� 2 CO.2/

k.u � rei�/ D r6k.u/;

q.u � rei�/ D r6e�2i�q.u/:

These equations imply that there exists a unique quadratic differential Q on †
that is represented by q and a unique .1;1/-form � on † that is represented by k.
Furthermore, (4.3) implies that there exists a unique section ˛ of K2† ˝K

�
† that is

represented by a.
It follows from the properties (ii) and (iii) of the Cartan connection that ' is

a connection 1-form on the CO.2/-bundle P 0
Œg�
! †. Its pushforward under the

bundle isomorphism P 0
Œg�
! FC

Œg�
is then a CO.2/-connection on FC

Œg�
which – by

abuse of notation – we denote by ' as well. The structure equation (5.2) implies
that ' is torsion-free.

Finally, the identity Q D �r 00'˛ is an immediate consequence of the structure
equation (4.6) and Theorem 4.1. □

We call a map  W .M; g/ ! .N; h/ between two pseudo-Riemannian mani-
folds weakly conformal if  �h D fg for some smooth function f on M . Note that
we do not require f to be positive. Two immediate consequences of Theorem 4.5
are:

Corollary 4.6. Let Œg� be a conformal structure on .†; p/. Then the lift fŒg� W
.†; Œg�/ ! .Y; hp/ is weakly conformal if and only if Q � 0. Furthermore, the
image of Œg� W †! Z is a holomorphic curve if and only if ˛ � 0. In particular,
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if Œg�.†/ � Z is a holomorphic curve, then fŒg�.†/ � Y is a holomorphic contact
curve.

Remark 4.7. Here we call a holomorphic curve † � Y a contact curve if its tangent
bundle is contained in the (holomorphic) contact structure of Y .

Proof of Theorem 4.6. By construction, the metric hp has the property that its pull-
back to P is

��hp D
1

2

�
�1 ı �3 C �3 ı �1 C �2 ı �2

�
:

Therefore, from (4.4) and (4.5) it follows that

(4.9) p�
�fŒg��hp� D 1

2

�
4jaj2 C .k C k/

�
�1 ı �1 C q �1 ı �1 C q �1 ı �1:

Since a complex-valued 1-form on † is a .1;0/-form for the complex structure
defined by Œg� and the orientation if and only if its p-pullback to P 0

Œg�
is a complex

multiple of �1, equation (4.9) implies that fŒg��hp is weakly conformal to Œg� if and
only if q vanishes identically. The first claim follows.

The second part of the claim is an immediate consequence of (4.4) and the
characterisation of the complex structures on Z; Y in terms of �1; �2; �3 and the
characterisation of the holomorphic contact structure in terms of �2 D 0. □

Remark 4.8. Recall that if  W .†; Œg�/! .N; h/ is a map from a Riemann surface
into a (pseudo-)Riemannian manifold, then the .2;0/-part of the pulled back metric
 �h is called the Hopf differential of  . Therefore (4.9) implies that quadratic
differential Q is the Hopf differential of fŒg�.

Theorem 4.5 shows that for every choice of a conformal structure Œg� on †
we obtain a section ˛ of K2† ˝ K

�
†, as well as a connection ' on the principal

GL.1;C/-bundle of complex-linear coframes of .†; Œg�/. Since K2† ˝ K
�
† is a

subbundle of T �C†
2 ˝ TC†, we may use the canonical real structure of the latter

bundle to take the real part of ˛. Consequently, the real part of ˛ is a 1-form on †
with values in End.T†/. We have already encountered an endomorphism valued
1-form AŒg� whose properties we discussed in Theorem 2.4. In Theorem 2.6 we
have also seen that the choice of a conformal structure Œg� on .†; p/ determines a
unique Œg�-conformal connection Œg�r so that Œg�r C AŒg� defines p. On the other
hand, ' also induces a Œg�-conformal connection on TM which we denote by r' .

Proposition 4.9. We have:

(4.10) r' D
Œg�
r;

(4.11) 2Re.˛/ D AŒg�;

(4.12) p�
�
jAŒg�j

2
g d�g

�
D 2ijaj2�1 ^ �1 D �

i
2
�2 ^ �2:

Since a Œg�-conformal connection Œg�r has holonomy in CO.2/, it corresponds
to a unique torsion-free principal CO.2/-connection ' on FC

Œg�
, see for instance [6].
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Before proving Theorem 4.9 it is helpful to see explicitly how the principal connec-
tion ' is constructed from Œg�r. The Œg�-conformal connection Œg�r can be written
as

(4.13) .g;ˇ/
r D

g
r C g ˝ ˇ] � ˇ ˝ Id � Id˝ ˇ;

where g 2 Œg� and ˇ is a 1-form onM with g-dual vector field ˇ]. Let gij D gj i be
the unique real-valued functions on FC so that ��g D gij!i ˝ !j . Let  D . ij /
denote the Levi-Civita connection form of g, so that we have the structure equations.

d!i D � ij ^ !
j ;

dgij D gik 
k
j C gkj 

k
i

as well as

(4.14) d ij C  
i
k ^  

k
j D gjkKg!

i
^ !k;

where the real-valued function Kg on FC is (the pullback of) the Gauss curvature
of g. Therefore, writing ��ˇ D bi!

i for real-valued functions bi on FC, the
connection 1-form of (4.13) is

�ij D  
i
j C

�
bkg

kigjl � ı
i
j bl � ı

i
lbj

�
!l ;

where the real-valued functions gij D gj i on FC satisfy gikgkj D ıij . The
equivariance properties of the functions bi imply that there exist unique real-valued
functions bij on F so that

(4.15) dbi D bj 
j
i C bij!

j :

From the equivariance properties of the functions gij it follows that the conditions
g11 D g22 and g12 D 0 define a reduction of � W FC ! † to the CO.2/-subbundle
of complex linear coframes of FC

Œg�
! † of .†; Œg�/. On FC

Œg�
we obtain

0 D dg12 D g11 12 C g12 
2
2 C g12 

1
1 C g22 

2
1 D g11. 

1
2 C  

2
1 /

and hence  21 D � 
1
2 . Likewise, we have

0 D dg11 � dg22 D 2
�
g11 

1
1 C g12 

2
1

�
� 2

�
g12 

1
2 C g22 

2
2

�
D 2g11

�
 11 �  

2
2

�
so that  11 D  

2
2 . Idenfifying R2 ' C, we may think of ! D .!i / as taking values

in C. If we define ' WD 1
2

�
�11 C �

2
2

�
C

i
2

�
�21 � �

1
2

�
, we obtain

(4.16) ' D
�
 11 � b1!

1
� b2!

2
�
C i

�
 21 C b2!

1
� b1!

2
�

Using this notation the first structure equation can be written in complex form

d! D �' ^ !;

hence ' defines a torsion-free principal CO.2/-connection on FC
Œg�

.

Proof of Theorem 4.9. Without losing generality, we can assume that the projective
structure p is defined by Œg�r C AŒg� for some Œg�-conformal connection Œg�r and
some 1-form AŒg� having all the properties of Theorem 2.4. Recall (3.3) that the
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choice of a representative connection r 2 p gives an identification P ' FC Ì R2
of Cartan’s bundle so that the Cartan connection form becomes

(4.17) � D

�
�
1
3

tr � � �! d� � �� � .S!/t � �!�
! � � 1

3
I tr �C !�

�
:

We will construct Cartan’s connection for the representative connection

(4.18) .g;ˇ/
r C AŒg� D

g
r C g ˝ ˇ] � ˇ ˝ Id � Id˝ ˇ C AŒg�:

Let Ai
jk

denote the real-valued functions on FC representing AŒg�. In particular,
we have

(4.19) Aijk D A
i
kj and Alil D 0:

On FC the connection form of (4.18) is given by

(4.20) �ij D  
i
j C

�
bkg

kigjl � ı
i
j bl � ı

i
lbj C A

i
jl

�
!l ;

By definition, the pullback bundle PŒg� is the subbundle of FC �R2 defined by the
equations g11 D g22 and g12 D 0. Now on PŒg� ' F

C

Œg�
�R2 we have  21 D � 

1
2

and  11 D  
2
2 . Using (4.17), (4.19) and (4.20) we compute

�2 D .�
1
1 � �

2
2 /C i

�
�12 C �

2
1

�
D  11 �  

2
2 C

�
�1 C 2A

1
11

�
!1 C

�
��2 � 2A

2
22

�
!2

C i
�
 12 C  

2
1 C

�
�2 � 2A

2
22

�
!1 C

�
�1 � 2A

1
11

�
!2
�

D 2a�1 C c�1;

where

(4.21)
a D A111 C iA222;

c D �1 C i�2

and we have used that on FC
Œg�

ıilA
l
jk D ıjlA

l
ik;

which follows from Theorem 2.4 (vi). Recall that P 0
Œg�

was defined by the equation

c D 0. Hence on P 0
Œg�
' FC

Œg�
the function � vanishes identically. Using this we

compute

' D �
1

2

�
3�00 C i

�
�12 � �

2
1

��
D  11 � b1!

1
� b2!

2
C i

�
 21 C b2!

1
� b1!

2
�
:

This is precisely (4.16). It follows that the connection defined by ' is the same as
the induced torsion-free connection on FC

Œg�
by Œg�r. This proves (4.10).

Suppose x D .xi / W U ! R2 are local orientation preserving Œg�-isothermal
coordinates on † and write z D .x1 C ix2/. Applying the exterior derivative to z
we obtain a local section Qz W U ! FC

Œg�
so that

AŒg� D Qz
�Aijkdxj ˝ dxk ˝

@

@xi
:

By definition of ˛ we have

˛ D Qz�a dz ˝ dz ˝˝
@

@z
;
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hence (4.11) is an immediate consequence of (4.21).
Finally, in our coordinates we obtain

jAŒg�j
2
g d�g D 4jaj

2dx1 ^ dx2;

so that p�
�
jAŒg�j

2
g d�g

�
D 2ijaj2�1 ^ �1 D � i

2
�2 ^ �2, as claimed. □

Note thatAŒg� vanishes identically if and only if ˛ vanishes identically. Therefore,
as an immediate consequence of Theorem 4.9, Theorem 2.6 and Theorem 4.6, we
obtain an alternative proof of [37, Theorem 3] (see also [36] for a ‘generalisation’
to higher dimensions):

Theorem 4.10. A conformal structure Œg� on .†; p/ is preserved by a conformal
connection defining p if and only if the image of Œg� W † ! Z is a holomorphic
curve.

Remark 4.11. Locally the bundle Z ! † always admits sections having holo-
morphic image and therefore every torsion-free connection on T† is locally pro-
jectively equivalent to a conformal connection (see [37] for additional details).

4.3. Derivation of the variational equations

Applying a technique from [5], we compute the variational equations for the func-
tional Ep. For a compact domain � � † and a section Œg� W †! Z we write

Ep;�.Œg�/ D

Z
�

jAŒg�j
2
gd�g :

Definition 4.12. We say Œg� is an Ep-critical point or that Œg� is extremal for the
projective structure p if for every compact � � † and for every smooth variation
Œg�t W †! Z with support in �, we have

d
dt

ˇ̌̌̌
tD0

Ep;�.Œg�t / D 0:

Using this definition we obtain:

Theorem A. Let .†; p/ be an oriented projective surface. A conformal structure Œg�
on † is extremal for p if and only if fŒg� W .†; Œg�/! .Y; hp/ is weakly conformal.

Proof. Let Œg� W † ! Z be a conformal structure and Œg�t W † ! Z a smooth
variation of Œg� with support in some compact set � � † and with jt j < ". We
consider the submanifold of † � P � .�"; "/ defined by

P 0Œg�t D
n
.p; u; t0/ 2 † � P � .�"; "/ j .p; u/ 2 P

0
Œg�t0

o
and denote by �Œg�t W P

0
Œg�t
! †�P �.�"; "/ the inclusion map. On†�P �.�"; "/

we define the real-valued 2-form

A D �
i
2
�2 ^ �2;

where, by abuse of notation, we write �2 for the pullback of �2 to † � P � .�"; "/.
Using the structure equations (3.11), we compute

(4.22) dA D
i
2

�
�1 ^ �3 ^ �2 � �2 ^ �1 ^ �3

�
:



28 T. METTLER

Now Theorem 4.9 implies

f .t0/ WD Ep;�.Œg�t /
ˇ̌
tDt0
D

Z
�

��
�Œg�t

�� A
�ˇ̌̌
tDt0

:

Therefore

f 0.0/ D

Z
�

�
L@t .�Œg�t /

�A
�ˇ̌
tD0
D

Z
�

�
@t .�Œg�t /

�dA
�ˇ̌
tD0

;

where L@t denotes the Lie-derivative with respect to the vector field @t . It follows
from the proof of Theorem 4.3 that on P 0

Œg�t
there exist complex-valued functions

a; k; q; B; C such that

(4.23) �2 D 2a�1 C Bdt and �3 D k�1 C 2q�1 C Cdt

where we now write �i instead of .�Œg�t /
��i . Combining (4.22) with (4.23) gives

.�Œg�t /
�dA D i

�
qB C qB

�
dt ^ �1 ^ �1

so that

(4.24) f 0.0/ D i
Z
�

�
qB C qB

�
�1 ^ �1

ˇ̌̌
tD0

:

Recall that .Rrei� /� �2 D e2i��2 and therefore, by definition, the complex-valued
function BjtD0 satisfies

.Rrei� /� .BjtD0/ D e2i� .BjtD0/ :

Since .Rrei� /� �1 D r
�3ei��1 it follows that BjtD0 represents a section of K† ˝

K�† with support in �. Here K† denotes the canonical bundle of † with respect to
the complex structure induced by the orientation and Œg� D Œg�t jtD0.

It remains to show that every such section in (4.23) with support in � can be
realised via some variation of Œg�. We fix a representative metric g 2 Œg�. Let gij D
gj i be the real-valued functions on Cartan’s bundle P so that ��g D gij � i0 ˝ �

j
0 .

In particular, from the equivariance properties (ii) of the Cartan connection � it
follows that

.RbÌa/
�

�
g11 g12
g21 g22

�
D .det a/2at

�
g11 g12
g21 g22

�
a:

Applying property (iii) of the Cartan connection this implies the existence of unique
real-valued functions gijk D gj ik so that

(4.25) dgij D �2gij �00 C gkj �
k
i C gik�

k
j C gijk�

k
0 :

Consider the following conformally invariant functions

G D
.g11 � g22/C 2ig12p
g11g22 � .g12/2

; H D
g11 C g22p

g11g22 � .g12/2
:

Translating (4.25) into complex form gives the following structure equation

(4.26) dG D G0�1 CG00�1 CH�2 CG .' � '/ ;

for unique complex-valued functions G0; G00 on P . Clearly, the complex-valued
functions G0 and G00 can be expressed in terms of the functions gijk , as �1 D
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�10 C i�20 . In order to verify (4.26) it is thus sufficient to plug in the definitions of
the functions G;H , the definitions of the forms �2; ' and to use

dgij D �2gij �00 C gkj �
k
i C gik�

k
j mod �10 ; �

2
0 :

While this is somewhat tedious, it is straightforward, so we omit the computation.
Fix a section ofK†˝K�† with respect to Œg� having support in�. Such sections

are well-known to correspond to endomorphisms of T† that are trace-free and
symmetric with respect to Œg�. In particular, on P there exist real-valued functions
.B ij / representing the corresponding endomorphism. The functions satisfy

B ii D 0 and gijB
j

k
D gkjB

j
i :

as well as the equivariance property

.RbÌa/
�

�
B11 B12
B21 B22

�
D a�1

�
B11 B12
B21 B22

�
a:

We defineB D 1
2
.B11�B

2
2 /C

i
2

�
B12 C B

2
1

�
, thenB satisfies .RzÌrei� /�B D e2i�B ,

hence for sufficiently small t we may vary Œg� by defining Œg�t via the zero-locus of
the function

Gt D G � tBH:

Consequently, on

PŒg�t D
n
.p; u; t0/ 2 † � P � .�"; "/ j .p; u/ 2 PŒg�t0

o
we get

0 D dGt D dG � dtBH � td .BH/

D G0�1 CG
00�1 CH�2 CG .' � '/ � dtBH � td .BH/

D G0�1 CG
00�1 CH�2 C tBH .' � '/ � dtBH � td .BH/

In particular, if we evaluate this last equation on PŒg�t
ˇ̌
tD0

, we obtain

0 D G0�1 CG
00�1 CH�2 � dtBH

Since H is non-vanishing on PŒg�t
ˇ̌
tD0

we must have

�2 D �
G0

H
�1 �

G00

H
�1 C Bdt:

Since P 0
Œg�t

arises by reducing PŒg�t , it follows that on P 0
Œg�t

ˇ̌̌
tD0

we obtain

�2 D �
G00

H
�1 C Bdt;

as desired. Finally, we now know that (4.24) must vanish where B is any complex-
valued function representing an arbitrary section of K† ˝K�† with support in �.
This is only possible if qjtD0 vanishes identically. Applying Theorem 4.6 proves
the claim. □

Remark 4.13. Clearly, if Œg�.†/ � Z is a holomorphic curve, then fŒg� W †! Y is
weakly conformal. Using the structure equations this can be seen as follows. The
image Œg�.†/ � Z is a holomorphic curve if and only if ˛ vanishes identically.
However, if ˛ vanishes identically, then so does a and hence (4.6) implies that
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q vanishes identically as well. Consequently, every projective structure p locally
admits a conformal structure Œg� so that fŒg� is weakly conformal.

We conclude this section by showing that in the compact case Ep.Œg�/ is – up to
a topological constant – just the Dirichlet energy of fŒg� W .†; Œg�/! .Y; hp/.

Lemma 4.14. Let .†; p/ be a compact oriented projective surface. Then for every
conformal structure Œg� W †! Z we haveZ

†

jAŒg�j
2
gd�g D 2��.†/C

1

2

Z
†

trgfŒg��hp d�g ;
where �.†/ denotes the Euler-characteristic of †.

Proof. Recall from (4.9) that

p�
�fŒg��hp� D 1

2

�
4jaj2 C .k C k/

�
�1 ı �1 C q �1 ı �1 C q �1 ı �1:

Hence we obtain
1

2

Z
†

trgfŒg��hp d�g D 1

2

Z
†

�
4jaj2 C .k C k/

� i
2
�1 ^ �1:

Since

d' D
�
jaj2 C

1

2
k � k

�
�1 ^ �1;

we get
i
2
.d' � d'/ D

1

2

�
4jaj2 � .k C k/

� i
2
�1 ^ �1

and thus
1

2

Z
†

trgfŒg��hp d�g D Z
†

2ijaj2�1 ^ �1 �
Z
†

i
2
.d' � d'/

D

Z
†

jAŒg�j
2
gd�g � 2��.†/;

where we have used (I.1) and (4.12). □

As an obvious consequence of Theorem 4.14 and Theorem 2.4 we have the lower
bound:

Theorem B. Let .†; p/ be a compact oriented projective surface. Then for every
conformal structure Œg� W †! Z we have

1

2

Z
†

trgfŒg��hp d�g > �2��.†/;

with equality if and only if p is defined by a Œg�-conformal connection.

5. Existence of critical points

Clearly, if a projective structure p is defined by a Œg�-conformal connection, then
the conformal structure Œg� is a critical point for Ep and moreover an absolute
minimiser. In this final section we study the projective structures for which Ep

admits a critical point in some more detail. In particular, we will prove that properly
convex projective structures admit critical points.
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Recall that the choice of a conformal structure Œg� on an oriented projective sur-
face .†; p/ determines a torsion-free principal CO.2/-connection ' on the bundle
FC
Œg�

of complex linear coframes of .†; Œg�/ and a section ˛ of K2† ˝ K
�
†. Fur-

thermore, the conformal structure Œg� is extremal for Ep if and only if r 00'˛ D 0.
Conversely, let .†; Œg�/ be a Riemann surface. Let ' be a torsion-free principal
CO.2/-connection on FC

Œg�
and ˛ a section of K2† ˝K

�
†. Then Theorem 4.5, The-

orem 4.9 and Theorem A show that the conformal structure Œg� is extremal for the
projective structure defined by r' C 2Re.˛/ if and only if r 00'˛ � 0. Since the
curvature of the connection induced by ' on the complex line bundleE D K2†˝K

�
†

is a .1;1/-form, standard results imply (see for instance [25, Prop. 1.3.7]) that there
exists a unique holomorphic line bundle structure @E on E, so that

@E D r
00
' :

Hence the variational equationr 00'˛ D 0 just says that ˛ is holomorphic with respect
to @E . Since the line bundle E has degree

deg.E/ D deg.K2†/ � deg
�
K�†

�
D �3 deg

�
K�†

�
D �3�.†/;

we immediately obtain:

Theorem 5.1. Suppose p is a projective structure on the oriented 2-sphere S2

admitting an extremal conformal structure Œg�. Then p is defined by a Œg�-conformal
connection.

Proof. Suppose Œg� is an extremal conformal structure of Ep. From Theorem 2.6
we know that p is defined by Œg�r C AŒg� for some Œg�-conformal connection
Œg�r. Since �.S2/ D 2, we have deg.E/ D �6 and hence the only holomorphic
section of E is the zero-section. It follows that ˛ vanishes identically and since by
Theorem 4.9 we have AŒg� D 2Re.˛/, so does AŒg�. □

Remark 5.2. Note that the projectively flat conformal connections on S2 are classi-
fied in [37].

From the Riemann–Roch theorem we know that the space H 0.†;E/ of holo-
morphic sections of E has dimension

dimC H 0.†;E/ > deg.E/C 1 � g† D 5g† � 5;

where here g† denotes the genus of †. In particular, if † has negative Euler-
characteristic, then dimC H

0.†;E/ will have positive dimension.

5.1. Convex projective structures

Recall that a flat projective surface .†; p/ has the property that † can be covered
with open subsets, each of which is diffeomorphic onto a subset of RP2 in such a
way that the geodesics of p are mapped onto (segments) of projective lines RP1 �

RP2. This condition turns out to be equivalent to † carrying an atlas modelled on
RP2, that is, an atlas whose chart transitions are restrictions of fractional linear
transformations. On the universal cover Q† of the surface the charts can be adjusted
to agree on overlaps, thus defining a developing map dev W Q† ! RP2, unique
up to post-composition with an element of SL.3;R/. In addition, one obtains a



32 T. METTLER

monodromy representation � W �1.†/! SL.3;R/ of the fundamental group �1.†/
– well defined up to conjugation – making dev into an equivariant map. A flat
projective structure is called properly convex if dev is a diffeomorphism onto a
subset of RP2 which is bounded and convex. If † is a compact orientable surface
with negative Euler characteristic, then (the conjugacy class of) ‘the’ monodromy
representation � of a properly convex projective structure is an element in the
Hitchin component H3 of † and conversely every element in H3 can be obtained
in this way [10].

Motivated by the circle of ideas discussed in the introduction, it is shown in [27]
and [34] that on a compact oriented surface † of negative Euler characterstic, the
convex projective structures are parametrised in terms of pairs .Œg�; C /, consisting
of a conformal structure Œg� and a cubic differential C that is holomorphic with
respect to the complex structure induced by Œg� and the orientation. Indeed, given a
holomorphic cubic differential C on such a †, there exists a unique Riemannian
metric g in the conformal equivalence class Œg�, so that

(5.1) Kg D �1C 2jC j
2
g ;

where Kg denotes the Gauss curvature of g and jC jg the pointwise norm of C with
respect to the Hermitian metric induced by g on the third power of the canonical
bundle K† of †. Now there exists a unique section ˛ of K2† ˝ K�†, so that
˛ ˝ d�g D C , where here we think of the area form d�g of g as a section of
K† ˝K†. Consequently, we obtain a connection r D gr C 2Re.˛/ on T†. The
projective structure defined by r is properly convex and conversely every properly
convex projective structure arises in this way [27, Theorem 4.1.1, Theorem 4.2.1].
The metric g is known as the affine metric or Blaschke metric, due to the fact that its
pullback to the universal cover Q† of† can be realised via some immersion Q†! A3

as a complete hyperbolic affine 2-sphere in the affine 3-space A3. In particular, (5.1)
is known as Wang’s equations in the affine sphere literature [43]. We refer the reader
to the survey articles [23], [33] as well as [1] for additional details.

Calling a conformal structure Œg� on .†; p/ closed, if the associated connection '
on FC

Œg�
induces a flat connection on ƒ2.T �†/, we obtain a novel characterisation

of properly convex projective structures among flat projective structures:

Theorem C. Let .†; p/ be a compact oriented flat projective surface of negative
Euler characteristic. Suppose p is properly convex, then the conformal equivalence
class of the Blaschke metric is closed and extremal for Ep. Conversely, if Ep admits
a closed extremal conformal structure Œg�, then p is properly convex and Œg� is the
conformal equivalence class of the Blaschke metric of p.

Remark 5.3. It would be interesting to know if flat projective surfaces .†; p/ exist
for which Ep admits an extremal conformal structure that is not closed.

Proof of Theorem C. Assume p is properly convex and let .Œg�; C / be the associated
pair. Let g the Blaschke metric satisfying (5.1) and ' the connection on FC

Œg�
induced

by the Levi-Civita connection of g. Recall that r' denotes the connection induced
by ' on TM , hence here we have r' D gr. From [27] we know that p is defined
by a connection of the form

r D
g
r C 2Re.˛/;
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where ˛ satisfies ˛ ˝ d�g D C . A simple computation shows that a torsion-free
connection ' on FC

Œg�
induces a flat connection on ƒ2.T �†/ if and only if r' has

symmetric Ricci tensor. Since here r' D gr is a Levi-Civita connection, it follows
that the conformal structure defined by the Blaschke metric is closed. In addition,
since C is holomorphic, we have r 00'C D 0 and furthermore, since d�g is parallel
with respect to gr, it follows that r 00'˛ vanishes identically, thus showing that the
conformal structure defined by the Blaschke metric is extremal for Ep.

Conversely, let .†; p/ be a compact oriented flat projective surface of negativ
Euler characteristic. Suppose Œg� is a closed and extremal conformal structure for p.
We let ' denote the induced connection on FC

Œg�
and ˛ the corresponding section

of K2† ˝ K
�
†. Theorem 4.4 implies that on P 0

Œg�
' FC

Œg�
we have the following

structure equations, where we write ! instead of �1

(5.2)

da D a0! � q! C 2a' � a';

dk D k0! C k00! C k' C k';

dq D q0! C
1

2

�
LC k00 � 2qa

�
! C 2q';

d' D
�
jaj2 C

1

2
k � k

�
! ^ !:

Since Œg� is extremal, we know that Q and hence q vanishes identically. Moreover,
recall that p is flat if and only if L � 0, hence the third structure equation gives

0 D dq D q0! C
1

2
k00!

showing that the functions q0 and k00 vanish identically as well. Theorem 4.1 implies
that �.' C '/ is the connection form of the connection induced by ' on ƒ2.T �†/.
Since Œg� is closed, the induced connection is flat and hence d.' C '/ must vanish
identically. Thus we obtain

0 D d.' C '/ D
3

2

�
k � k

�
! ^ !;

showing that k must be real-valued. Note that since k is real-valued, we have

0 D d.k � k/ D k0! � k0!;

so that k0 vanishes identically. Finally, we have reduced the structure equations to

(5.3)

da D a0! C 2a' � a';

dk D k' C k';

d' D
�
jaj2 �

1

2
k

�
! ^ !:

The equivariance property of the tautological 1-form ! on FC
Œg�

gives

.Rrei� /�! D
1

r
ei�!

for all rei� 2 CO.2/. The function k represents a .1;1/-form � on † which satisfies
��� D i

2
k! ^ !. Consequently, k has the equivariance property .Rrei� /�k D r2k.
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Recall that Z
†

id' D
Z
†

i
�
jaj2 �

1

2
k

�
! ^ ! D 2��.†/ < 0;

hence k must be positive somewhere. Note that (5.3) shows that the .1;1/-form
� represented by k is parallel with respect to '. Consequently, k cannot vanish.
Since † is assumed to be connected, the equivariance property of k implies that the
equation k D 1 defines a reduction FCg � F

C

Œg�
to an SO.2/-subbundle which is the

orthonormal coframe bundle of a unique representative metric g 2 Œg�. On FCg we
have

0 D dk D ' C ';
showing that we may write ' D i� for a unique 1-form � on FCg . Of course, � is
the Levi-Civita connection form of g and hence using ! D !1C i!2, we obtain the
familiar structure equation for the Levi-Civita connection of an oriented Riemannian
2-manifold

d� D �
�
�1C 2jaj2

�
!1 ^ !2:

We may define a cubic differential C by setting C D ˛˝d�g and since the pullback
to FCg of the area form of g is !1 ^ !2, we conclude the the cubic differential C is
holomorphic and represented by the function a. Since

d� D �Kg!1 ^ !2;

where Kg denotes the Gauss curvature of g, we have

Kg D �1C 2jC j
2
g ;

where we use that ��jC j2g D jcj
2. It follows that g is the Blaschke metric associated

to the pair .Œg�; C / and hence p is a properly convex projective structure. □

5.2. Concluding remarks

Remark 5.4. Let G0 be a real split simple Lie group and S.G0/ the associated
symmetric space. For our purposes we may take G0 D SL.3;R/ so that S.G0/ D
SL.3;R/=SO.3/, but the following results hold in the more general case. Suppose†
is a compact oriented surface of negative Euler characteristic and � W �1.†/! G0
a representation in the Hitchin component forG0. By a theorem of Corlette [11], the
choice of a conformal structure Œg� on † determines a map  W Q†! S.G0/ which
is equivariant with respect to � and harmonic with respect to the Riemannian metric
on S.G0/ and the conformal structure on Q† obtained by lifting Œg�. Furthermore,
this map is unique up to post-composition with an isometry of S.G0/. The energy
density of the map  descends to define a 2-form e�.Œg�/ d�g on † and hence one
may define an energy functional [12], [29]

E�.Œg�/ D

Z
†

e�.Œg�/ d�g :

The energy E�.Œg�/ turns out to only depend on the diffeotopy class of Œg� and
thus defines an energy functional on Teichmüller space for every representation
� in the Hitchin component of G0. The Hopf differential of the map  yields
a holomorphic quadratic differential which descends to † as well and it is con-
jectured [17], [29], that for every representation in the Hitchin component there



EXTREMAL CONFORMAL STRUCTURES 35

exists a unique conformal structure on † whose associated Hopf differential van-
ishes identically. For such a conformal structure the mapping  is harmonic and
conformal, hence minimal. In [30] Labourie proves the existence of a unique �-
equivariant minimal mapping  W Q†! S.G0/ in the case where G0 has rank two
(the case G0 D SL.3;R/ was treated previously in [27]). Labourie also shows the
existence of such a mapping without any assumption on the rank of G0 in [29].
Moreover, in [30], the energy bound

E�.Œg�/ > �2��.†/

is obtained, with equality if and only if � is a Fuchsian representation.
Given our results it is natural to expect a relation between E� and our functional

Ep, where � is an element in the SL.3;R/ Hitchin component and p denotes its
associated properly convex projective structure. However, relating the representation
� to its associated projective structure p in a way that would allow to establish the
expected relation proves to be quite difficult. This may be investigated elsewhere.

Remark 5.5. Although we are currently unable to prove this, the previous remark
suggests that in the case of a properly convex compact oriented projective surface
.†; p/ of negative Euler characteristic, the conformal equivalence class of the
Blaschke metric is in fact the unique critical point of Ep. As a partial result towards
this claim, it is shown in [41] that if a properly convex compact oriented projective
surface .†; p/ of negative Euler characteristic admits a compatible Weyl connection,
then p arises from a hyperbolic metric.

Remark 5.6. In [38], it is shown that for a compact oriented projective surface
.†; p/ of negative Euler characteristic the functional Ep admits at most one absolute
minimiser Œg� (i.e. a conformal structure Œg� such that Ep.Œg�/ D 0).

Remark 5.7. In [39], the author shows that properly convex projective surfaces arise
from torsion-free connections on T† that admit an interpretation as Lagrangian
minimal surfaces. Some of their properties are studied in [40]. It would be in-
teresting to relate these minimal Lagrangian surfaces to the minimal mapping  
constructed in [27].

Remark 5.8. We have seen that oriented projective structures admitting extremal
conformal structures arise from pairs .'; ˛/ on a Riemann surface .†; Œg�/, where
˛ satisfies r 00'˛ � 0. The torsion-free connection ' on FC

Œg�
induces a holomorphic

line bundle structure @E on E D K2† ˝ K
�
† and conversely, it is easy see that

for every choice of a holomorphic line bundle structure @E on E there exists a
unique torsion-free connection ' on FC

Œg�
inducing @E . Hence we may equivalently

describe these projective structures in terms of a pair .@E ; ˛/ satisfying @E˛ � 0.

Remark 5.9. The so-called naive Einstein affine hypersurface structures introduced
in [16] also provide examples of projective surfaces admitting an extremal conformal
structure.

Appendix I. A Gauss–Bonnet type identity

As a by-product of our considerations, we obtain a Gauss–Bonnet type identity:
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Theorem I.1. Let .†; p/ a compact oriented projective surface. Then for every
section s W †! .Y;�p/ we have

(I.1)
Z
†

s��p D 2��.†/:

Proof. Since � W Y ! † admits smooth global sections, it follows that �� W
Hk.†/! Hk.Y / is injective. Note that by construction the fibres of the bundle � W
Y ! † are diffeomorphic to

�
R2 Ì GLC.2;R/

�
=CO.2/ and hence diffeomorphic

to R2�D
2. In particular, the fibre is contractible, thus we haveH 2.Y / ' H 2.†/ '

R showing that �� W H 2.†/ ! H 2.Y / is an isomorphism. It follows that any
two sections of Y ! † induce the same map on the second de Rham cohomology
groups. It is therefore sufficient to construct a section s W †! Y for which (I.1)
holds. From the proof of the Theorem 4.3 we know that for every conformal
structure Œg� W †! Z there exists a lift fŒg� W †! Y so that on the pullback bundle
P 0
Œg�

we have

�2 D 2a �1; �3 D k�1 C 2q �1;

Since

���p D �
i
4

�
�1 ^ �3 C �3 ^ �1 C �2 ^ �2

�
;

computing as in Theorem 4.14 and using the above identities for �2; �3 givesZ
†

fŒg���p D �
i
4

Z
†

�
k C k � 4jaj2

�
�1 ^ �1 D

i
2

Z
†

d' � d' D 2��.†/:

□
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