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Convex projective surfaces with compatible Weyl
connection are hyperbolic

THOMAS METTLER AND GABRIEL P. PATERNAIN

ABSTRACT. We show that a properly convex projective structure p on a closed
oriented surface of negative Euler characteristic arises from a Weyl connection
if and only if p is hyperbolic. We phrase the problem as a non-linear PDE for
a Beltrami differential by using that p admits a compatible Weyl connection if
and only if a certain holomorphic curve exists. Turning this non-linear PDE into
a transport equation, we obtain our result by applying methods from geometric
inverse problems. In particular, we use an extension of a remarkable L2-energy
identity known as Pestov’s identity to prove a vanishing theorem for the relevant
transport equation.

1. Introduction

A projective structure on a smooth manifold M is an equivalence class p of torsion-
free connections on its tangent bundle TM , where two such connections are declared
to be projectively equivalent if they share the same unparametrised geodesics.
The set of torsion-free connections on TM is an affine space modelled on the
sections of S2.T �M/ ˝ TM . By a classical result of Cartan, Eisenhart, Weyl
(see [23] for a modern reference), two connections are projectively equivalent
if and only if their difference is pure trace. In particular, it follows from the
representation theory of GL.2;R/ that a projective structure on a surface M is
a section of a natural affine bundle of rank 4 whose associated vector bundle is
canonically isomorphic to V D S3.T �M/˝ƒ2.TM/. Choosing an orientation
and Riemannian metric g on M , the bundle V decomposes into irreducible SO.2/-
bundles V ' T �M ˚ S30 .T

�M/, where the latter summand denotes the totally
symmetric .0;3/ tensors on M that are trace-free with respect to g, or equivalently,
the cubic differentials with respect to the complex structure J induced by g and the
orientation. In other words, fixing an orientation and Riemannian metric g on M , a
projective structure p may be encoded in terms of a unique triple .g; A; �/, where A
is a cubic differential – and � a 1-form on M . A conformal change of the metric
g 7! e2ug corresponds to a change

.g; A; �/ 7! .e2ug; e2uA; � C du/:

Consequently, the sectionˆ D A=d� ofK2˝K� does only depend on the complex
structure J . Here d� denotes the area form of g and K the canonical bundle of M .
In addition, we obtain a connection D on the anti-canonical bundle K� inducing
the complex structure by taking the Chern connection with respect to g and by
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subtracting twice the .1;0/-part of � . Again, the connection D does only depend on
J . Fixing a complex structure J on M thus encodes a given projective structure p
in terms of a unique pair .D; ˆ/.

There are two special cases of particular interest. Firstly, we can find a complex
structure J so that D is the Chern connection of a metric in the conformal class
determined by J . This amounts to finding a complex structure for which � is exact.
Secondly, we can find a complex structure J so that ˆ vanishes identically. This
turns out to be equivalent to p containing a Weyl connection for the conformal
structure Œg� determined by J , that is, a torsion-free connection on TM whose
parallel transport maps are angle preserving with respect to Œg�.

In [14], it is shown that a two-dimensional projective structure p does locally
always contain a Weyl connection and moreover, finding the Weyl connection turns
out to be equivalent to finding a holomorphic curve into a certain complex surfaceZ
fibering over M . Here we use this observation to rephrase the problem in terms of a
non-linear PDE for a Beltrami differential. More precisely, we think of p as being
given on a Riemann surface .M; J / in terms of .D; ˆ/. We show (see Theorem 4.4)
that p contains a Weyl connection with respect to the complex structure defined by
the Beltrami differential � on .M; J / if and only if

(1.1) D00� � �D0� D ˆ�3 Cˆ;

where D0 and D00 denote the .1;0/ – and .0;1/-part of D. Since every two-dimen-
sional projective structure locally contains a Weyl connection, the above PDE for
the Beltrami differential � can locally always be solved. Moreover, on the 2-sphere
every solution � lies in a complex 5-manifold of solutions, whereas on a closed
surface of negative Euler characteristic the solution is unique, provided it exists,
see [15] (and Theorem 4.6 below).

Here we address the problem of finding a projective structure p for which the
above PDE has no global solution. Naturally, one might start by looking at projective
structures p at “the other end”, that is, those that arise from pairs .D; ˆ/ where D is
the Chern connection of a conformal metric, or equivalently, those for which there
exists a metric g so that p is encoded in terms of the triple .g; A; 0/. This class of
projective structures includes the so-called properly convex projective structures.
A projective surface .M; p/ is called properly convex if it arises as a quotient of
a properly convex open set � � RP2 by a free and cocompact action of a group
� � SL.3;R/ of projective transformations. In particular, using the Beltrami–
Klein model of two-dimensional hyperbolic geometry, it follows that every closed
hyperbolic Riemann surface is a properly convex projective surface. Motivated by
Hitchin’s generalisation of Teichmüller space [9], Labourie [11] and Loftin [12]
have shown independently that on a closed oriented surface M of negative Euler
characteristic every properly convex projective structure arises from a unique pair
.g; A; 0/, where g and A are subject to the equations

Kg D �1C 2jAj
2
g and @A D 0:

Using quasilinear elliptic PDE techniques, C.P. Wang previously showed [24] (see
also [6]) that the metric g is uniquely determined in terms of .Œg�; A/ by the equation
for the Gauss curvature Kg of g. Consequently, Labourie, Loftin conclude that
on M the properly convex projective structures are in bijective correspondence
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with pairs .Œg�; A/ consisting of a conformal structure and a cubic holomorphic
differential.

Naturally one might speculate that (1.1) does not admit a global solution for a
properly convex projective structure p unless A vanishes identically, in which case
p is hyperbolic. This is indeed the case:

Corollary 6.2. Let .M; p/ be a closed oriented properly convex projective surface
with �.M/ < 0 and with p containing a Weyl connection D. Then p is hyperbolic
and moreover D is the Levi-Civita connection of the hyperbolic metric.

This corollary is an application of the more general vanishing Theorem 6.1 (see
below) whose proof makes use of a remarkable L2-energy identity. This energy
identity – known for geodesic flows as Pestov’s identity – is ubiquitous when solving
uniqueness problems for X-ray transforms, including tensor tomography. To make
the bridge between (1.1) and this circle of ideas, it is necessary to recast the non-
linear PDE in dynamical terms as a transport problem. Given a projective structure p
captured by the triple .g; A; �/ we associate a dynamical system on the unit tangent
bundle � W SM ! M of g as follows. We consider a vector field of the form
F D XC .a�V�/V , where X; V denote the geodesic – and vertical vector field of
SM , a 2 C1.SM;R/ represents the cubic differential A (essentially its imaginary
part) and where we think of � as a function on SM . The flow of the vector field
F is a thermostat (see Section 3 below for more details) and it has the property
that its orbits project to M as unparametrised geodesics of p. We show that (1.1) is
equivalent to the transport equation (see Theorem 5.6)

(6.2) Fu D VaC ˇ

on SM , where the real-valued function u encodes a conformal metric of the sought
after complex structure OJ and ˇ is a 1-form on M , again thought of as a function
on SM . Explicitly

u D
3

2
log

�
p

.pq � r2/2=3

�
;

where p; q; r are given in terms of a OJ -conformal metric Og and the complex structure
J of .M; g/ by

p.x; v/ D Og.v; v/; r.x; v/ D Og.v; J v/; and q.x; v/ D Og.J v; J v/:

The right hand side in (6.2) has degree 3 in the velocities and the dynamics of
F is Anosov when p is a properly convex projective structure [18], hence it is
natural to think that techniques from tensor tomography might work. Regular
tensor tomography involves the geodesic vector field X and the typical question
at the level of the transport equation is the following: if Xu D f where f has
degree m in the velocities, is it true that u has degree m � 1 in the velocities?
The case m D 2 is perhaps the most important and it is at the core of spectral
rigidity of negatively curved manifolds and Anosov surfaces [4, 7, 21]. Thermostats
introduce new challenges, however we are able to successfully use a general L2

energy identity developed in [10] (following earlier results for geodesic flows in
[22]) together with ideas in [18] to show that if equation (6.2) holds then a D 0 and
ˇ is exact. Our vanishing Theorem 6.1 is actually rather general and it applies to a
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class of projective structures considerably larger than properly convex projective
structures, see Theorem 6.4 below.

For the case of surfaces with boundary a full solution to the tensor tomography
problem was given in [20]; the solution was inspired by the proof of the Kodaira
vanishing theorem in Complex Geometry. In the present paper, we go in the opposite
direction, we import ideas from geometric inverse problems, to solve an existence
question for a non-linear PDE in Complex Geometry. These connections were
not anticipated, and it is natural to wonder if they are manifestations of something
deeper.
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2. Preliminaries

Here we collect some standard facts about Riemann surfaces and the unit tangent
bundle that will be needed throughout the paper.

2.1. The frame bundle

Throughout the article M will denote a connected oriented smooth surface with
empty boundary. Unless stated otherwise, all maps are assumed to be smooth,
i.e., C1. Let � W P ! M denote the oriented frame bundle of M whose fibre
at a point x 2 M consists of the linear isomorphisms f W R2 ! TxM that are
orientation preserving, where we equip R2 with its standard orientation. The Lie
group GLC.2;R/ acts transitively from the right on each fibre by the rule Rh.f / D
f ı h and this action turns � W P ! M into a principal right GLC.2;R/-bundle.
The bundle P is equipped with a tautological R2-valued 1-form ! D .!i / defined
by !f D f �1 ı d�f and which satisfies the equivariance property R�

h
! D h�1!.

The components of ! are a basis for the 1-forms on P that are semibasic for the
projection � W P !M , i.e., those 1-forms that vanish when evaluated on a vector
field that is tangent to the fibres of � W P ! M . Therefore, if g is a Riemannian
metric on M , there exist unique real-valued functions gij D gj i on P so that
��g D gij!

i ˝!j . The Levi-Civita connection gr of g corresponds to the unique
connection form  D . ij / 2 �

1.P; gl.2;R// satisfying the structure equations

(2.1)
d!i D � ij ^ !

j ;

dgij D gik 
k
j C gkj 

k
i :

The curvature ‰ D .‰ij / of  is the 2-form

‰ij D d 
i
j C  

i
k ^  

k
j D Kggjk!

i
^ !k;

where Kg denotes (the pullback to P of) the Gauss curvature of g.
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2.2. Conformal connections

The conformal frame bundle of the conformal equivalence class Œg� of g is the
principal right CO.2/-subbundle � W PŒg� !M defined by

PŒg� D ff 2 P W g11.f / D g22.f / ^ g12.f / D 0g :

Here CO.2/ D RC � SO.2/ denotes the linear conformal group whose Lie algebra
co.2/ is spanned by the matrices�

1 0

0 1

�
and

�
0 �1

1 0

�
:

A conformal connection for Œg� is principal CO.2/ connection

� D

�
�1 ��2
�2 �1

�
; �i 2 �

1.PŒg�/

on PŒg� which is torsion-free, that is, satisfies

(2.2) d

�
!1

!2

�
D �

�
�1 ��2
�2 �1

�
^

�
!1

!2

�
:

The standard identification R2 ' C gives an identification CO.2/ ' GL.1;C/ and
consequently, co.2/ ' C. In particular, (2.2) takes the form d! D ��^! where we
think of � and ! as being complex-valued. Writing rei� for the elements of CO.2/,
the equivariance property for ! implies .Rrei� /

�! D 1
r

e�i�!. In particular, we see
that the �-semibasic complex-valued 1-form ! is well-defined on M up to complex
scale. It follows that there exists a unique complex-structure J on M whose .1;0/-
forms are represented by smooth complex-valued functions u on PŒg� satisfying
the equivariance property .Rrei� /

�u D rei�u, that is, so that u! is invariant under
the CO.2/-right action. Of course, this is the standard complex structure on M
obtained by rotation of a tangent vector v counter-clockwise by �=2 with respect
to Œg�. Denoting the canonical bundle of M with respect to J by K, it follows
that the sections of Lm;` WD Km ˝K` are in one-to-one correspondence with the
smooth complex-valued functions u on PŒg� satisfying the equivariance property
.Rrei� /

�u D rmC`ei.m�`/�u. Infinitesimally, this translates to the existence of
unique smooth complex-valued functions u0 and u00 on PŒg� so that

(2.3) du D u0! C u00! Cmu� C `u�:

Recall, if ˛ is a 1-form on M taking values in some complex vector bundle over
M , the decomposition ˛ D ˛0 C ˛00 of ˛ into its .1;0/ part ˛0 and .0;1/ part ˛00 is
given by

˛0 D
1

2
.˛ � iJ˛/ and ˛00 D

1

2
.˛ C iJ˛/

where we define .J˛/.v/ WD ˛.J v/ for all tangent vectors v 2 TM . The principal
CO.2/-connection � induces a connection on all (real or complex) vector bundles
associated to PŒg� and – by standard abuse of notation – we use the same letter D to
denote the induced connection on the various bundles. If s is the section of Lm;`
represented by the function u satisfying (2.3), then D0s WD .Ds/0 is represented by
u0 and D00s WD .Ds/00 is represented by u00.
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Since dg11 D dg22 and dg12 D 0 on PŒg�, it follows from (2.1) that the
pullback of the Levi-Civita connection  of g to PŒg� is a conformal connection.
The difference of any two principal CO.2/-connections is �-semibasic. Therefore,
any other torsion-free principal CO.2/-connection � on PŒg� is of the form � D

 �2�1! for a unique complex-valued function �1 on PŒg�. Since � is a connection,
it satisfies the equivariance property .Rrei� /

�� D 1
r

e�i��rei� D � and so does
 . Therefore, 2�1! is invariant under the CO.2/-right action as well and hence
twice the pullback of a .1;0/-form on M which we denote by � 0. From (2.3) we
see that we may think of � as being the connection form of the induced connection
on the anti-canonical bundle K�. In particular,  may be thought of as being the
connection form of the Chern connection induced by g on K�. By the definition
of the Chern connection, it induces the complex structure of K�. Since  and �
differ by a .1;0/-form, � also induces the complex structure of K�. Consequently,
the conformal connections on PŒg� are in one-to-one correspondence with the
connections D on K� inducing the complex structure, that is, D00 D @K� .

2.3. The unit tangent bundle

For what follows it will be necessary to further reduce PŒg�. The unit tangent bundle

SM D f.x; v/ 2 TM W g.v; v/ D 1g

of g may be interpreted as the principal right SO.2/-subbundle of P defined by

SM D
˚
f 2 P W gij .f / D ıij

	
On SM the identities dgij � 0 imply the identities  11 �  

2
2 � 0 and  12 � � 

2
1 ,

so that  is purely imaginary.
Abusing notation by henceforth writing  instead of  21 , the structure equations

thus take the form

(2.4) d

�
!1
!2

�
D �

�
0 � 

 0

�
^

�
!1
!2

�
and d D �Kg !1 ^ !2;

where we write !i D ıij!j . Note that on SM the 1-forms !1; !2 take the explicit
form

(2.5) !1.�/ D g.v; d�.�// and !2.�/ D g.J v; d�.�//; � 2 T.x;v/SM:

Furthermore, the 1-form  becomes

(2.6)  .�/ D g
�
 00.0/; J v

�
where � 2 T.x;v/SM and  W .�"; "/ ! SM is any curve with .0/ D .x; v/,
P.0/ D � and  00 denotes the covariant derivative of  along � ı  .

The three 1-forms .!1; !2;  / trivialise the cotangent bundle of SM and we
denote by .X;H; V / the corresponding dual vector fields. The vector field X is the
geodesic vector field of g, V is the infinitesimal generator of the SO.2/-action and
H is the horizontal vector field satisfyingH D ŒV;X�. The structure equations (2.4)
imply the additional commutation relations

ŒV;H� D �X and ŒX;H� D KgV:
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Following [7], we use the volume form ‚ D !1 ^ !2 ^  on SM to define an
inner product

hu; vi D

Z
SM

u Nv ‚

for complex-valued functions u; v on SM and we denote by L2.SM/ the corres-
ponding space of square integrable complex-valued functions on SM . The structure
equations (2.4) and Cartan’s formula imply that all vector fields X;H; V preserve
‚. In particular, �iV is densely defined and self-adjoint with respect to h�; �i. Con-
sequently, we have an orthogonal direct sum decomposition into the kernels Hm of
the operators mIdC iV

(2.7) L2.SM/ D
M
m2Z

Hm:

2.4. Weyl connections

If � is a 1-form onM , we may write ��� D �!1CV.�/!2, where on the right hand
side we think of � as being a real-valued function on SM . Therefore, ��� 0 D �1!,
where �1 D 1

2
.��iV�/ and likewise ��� 00 D ��1!, where ��1 D 1

2
.�CiV�/. On

SM the connection form � of a conformal connection thus becomes � D i �2�1!
or in matrix notation

(2.8) � D

�
0 � 

 0

�
C

�
��!1 � V.�/!2 �V.�/!1 C �!2
V.�/!1 � �!2 ��!1 � V.�/!2

�
:

Finally, without the identification R2 ' C, we may equivalently think of the
connection form � as the connection form of a torsion-free connection on TM .
Writing � as

� D

�
0 � 

 0

�
C

�
�!1 �!2

V.�/!1 V.�/!2

�
�

�
2�!1 C V.�/!2 V.�/!1

�!2 �!1 C 2V.�/!2

�
;

the reader may easily check that � is the connection form of

(2.9) D D g
r C g ˝ �] � Sym.�/;

where the section Sym.�/ of S2.T �M/˝ TM is defined by the rule

Sym.�/.v1; v2/ D �.v1/v2 C �.v2/v1

for all tangent vectors v1; v2 2 TM . Connections of the form (2.9) for g 2 Œg�
and � 2 �1.M/ are known as Weyl connections for the conformal structure Œg�.
By construction, they preserve Œg�, that is, the parallel transport maps are angle
preserving with respect to Œg�. Conversely, every torsion-free connection on TM
preserving Œg� is of the form (2.9) for some g 2 Œg� and 1-form � . Summarising,
we have the following folklore result:

Proposition 2.1. On a Riemann surface M with conformal structure Œg� the follow-
ing sets are in one-to-one correspondence:

(i) the conformal connections on PŒg�;
(ii) the connections on K� inducing the complex structure;

(iii) the Weyl connections for Œg�.
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3. Projective thermostats

In this section we show how to associate the triple .g; A; �/ to a given projective
structure p. As mentioned in the introduction, the existence of such a triple is a
consequence of some elementary facts about SO.2/-representation theory and a
description of projective structures as sections of a certain affine bundle over M
(see [17] for a construction of .g; A; �/ in that spirit), here instead we obtain the
triple as a by-product of a characterisation of projective thermostats.

A (generalised) thermostat is a flow � on SM which is generated by a vector
field of the form F D X C �V , where � is a smooth real-valued function on
SM . In this article we are mainly interested in the case where the generalised
thermostat is projective. By this we mean that there exists a torsion-free connection
r on TM having the property that for every �-orbit  W I ! SM , there exists a
reparametrisation ' W I 0 ! I so that � ı  ı ' W I 0 !M is a geodesic of r.

Phrased more loosely, the orbit projections to M agree with the geodesics of a
projective structure p on M . By a classical result of Cartan, Eisenhart, Weyl (see
for instance [23, Chap. 6, Addendum 1, Prop. 17] for a modern reference), two
torsion-free connections r and r 0 on TM are projectively equivalent if and only if
there exists a 1-form ˛ on M so that

r
0
� r D Sym.˛/:

3.1. A characterisation of projective thermostats

It turns out that projective thermostats admit a simple characterisation in terms of
the vertical Fourier decomposition (2.7) of �. Towards this end we first show:

Lemma 3.1. Let r be a torsion-free connection on the tangent bundle TM and
' D .'ij / 2 �

1.SM; gl.2;R// its connection form. Then, up to reparametrisation,
the leaves of the foliation F defined by '21 D !2 D 0 project to M to become the
geodesics of r. Conversely, every geodesic of r, parametrised with respect to g-arc
length, lifts to become a leaf of F .

Proof. Recall that the set of torsion-free connections on TM is an affine space
modelled on the sections of S2.T �M/˝ TM . It follows that there exists a 1-form
QB on M with values in the endomorphisms of TM so that r D gr C QB . As we

have seen, the connection form of the Levi-Civita connection of g on TM is

� D

�
0 � 

 0

�
:

Hence there exist unique real-valued function bi
jk
D bi

kj
on SM so that

' D

�
0 � 

 0

�
C

�
b111!1 C b

1
12!2 b121!1 C b

1
22!2

b211!1 C b
2
12!2 b221!1 C b

2
22!2

�
:

Explicitly, bi
jk
.v/ D g. QB.ej /ek; ei /, where we write e1 D v and e2 D Jv for

v 2 SM .
Let ı W I ! SM be a leaf of F , so that ı�!2 D 0. Writing  WD � ı ı and

evaluating ı�!2 on the standard vector field @t of R, we obtain

0 D @t ı�!2 D g .d.� ı ı/.@t /; J ı.t// D g. P.t/; J ı.t//;
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so that ı D f P for some unique f 2 C1.I /. Hence without losing generality,
we may assume that the leaves of F are of the form P for some smooth curve
 W I !M having unit length velocity vector with respect to g.

By construction of  , see (2.6), the pullback 1-form P� evaluated on @t gives
the function g.gr P P; J P/, hence P�'21 D 0 if and only if

0 D g
�
g
r P P; J P

�
C b211. P/ D g

�
g
r P P C QB. P/ P; J P

�
:

It follows that there exists a function f 2 C1.I / so that
g
r P P C QB. P/ P D r P P D f P:

By a standard lemma in projective differential geometry [23, Chap. 6, Addendum
1, Prop. 17] a smooth immersed curve  W I !M can be reparametrised to become
a geodesic of the torsion-free connection r on TM if and only if there exists a
smooth function f W I ! R so that r P P D f P . The claim follows by applying
this lemma. □

Lemma 3.2. Suppose the thermostat F D X C �V is projective, then

0 D
3

2
�C

5

3
V V �C

1

6
V V V V �:

Proof. Using notation as in the proof of Theorem 3.1, we must have F '21 D 0

and F !2 D 0. The latter conditions is trivially satisfied, but the former gives

F '21 D .X C �V /
�
 C b211!1 C b

2
12!2

�
D �C b211 D 0;

so that � D �b211. Since the functions bi
jk

represent a section of S2.T �M/˝ TM ,
they satisfy the structure equations

dbijk D b
i
jl�

l
k C b

i
lk�

l
j � b

l
jk�

i
l ; mod !i :

In particular, from this we compute

Vb211 D V db211 D V
�
2b212 � b

1
11

�
 D 2b212 � b

1
11:

Applying V again we obtain

V Vb211 D 2b
2
22 � 3b

2
11 � 4b

1
12

and likewise
V V V Vb211 D 40b

1
12 C 21b

2
11 � 20b

2
22;

so that the claim follows from an elementary calculation. □

Lemma 3.3. For � 2 C1.SM/ the following statements are equivalent:

(i) 0 D 3
2
�C 5

3
V V �C 1

6
V V V V �;

(ii) � 2 H�1 ˚H1 ˚H�3 ˚H3.

Proof. Let � 2 H�3 ˚H�1 ˚H1 ˚H3 so that we may write � D ��3 C ��1 C
�1 C �3 with �m 2 Hm. Since � is real-valued we have ��1 D �1 and ��3 D �3.
Hence setting �1 D ��1 C �1 and �3 D ��3 C �3, we obtain V V�1 D ��1 and
V V�3 D �9�3 so that
3

2
�C

5

3
V V �C

1

6
V V V V � D

3

2
.�3C �1/C

5

3
.�9�3 � �1/C

1

6
.81�3C �1/ D 0:
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Conversely, suppose � 2 C1.SM/ satisfies 0 D 3
2
�C 5

3
V V �C 1

6
V V V V � and

write � D
P
m �m with �m 2 Hm. Hence we obtain

0 D
3

2
�C

5

3
V V �C

1

6
V V V V � D

X
m

�
3

2
�
5

3
m2 C

1

6
m4
�
�m

so that �m D 0 unless

0 D
3

2
�
5

3
m2 C

1

6
m4 D

1

6
.m � 3/.m � 1/.mC 1/.mC 3/:

The claim follows. □

Finally, we obtain:

Proposition 3.4. A thermostat F D X C �V is projective if and only if � 2
H�1 ˚H1 ˚H�3 ˚H3.

Proof. It remains to show that if � 2 H�1 ˚H1 ˚H�3 ˚H3, then there exists
a torsion-free connection r on TM so that F '21 vanishes identically, where
' D .'ij / denotes the connection form of r. We may write

� D a � V�

where a 2 C1.SM/ satisfies 9a C V Va D 0 and � is a smooth 1-form on M ,
thought of as a real-valued function on SM . Since 9aC V Va D 0, there exists a
unique cubic differential A on M so that ��A D .Va=3C ia/!3. Hence simple
computations show that

(3.1)
a.v/ D ReA.Jv; J v; J v/ D �ReA.Jv; v; v/

1

3
Va.v/ D ReA.v; v; v/ D �ReA.v; J v; J v/

for all v 2 SM . Let B be the unique 1-form on M with values in the endomorph-
isms of TM satisfying

(3.2) g.B.v1/v2; v3/ D ReA.v1; v2; v3/

for all tangent vectors v1; v2; v3 2 TM . On TM consider the torsion-free connec-
tion r D DC B , where D is the Weyl connection

D D g
r C g ˝ �] � Sym.�/:

Using (2.8) and (3.1), we compute that the connection form of r is

(3.3) ' D

�
��!1 � V.�/!2 �V.�/!1 C �!2 �  

 C V.�/!1 � �!2 ��!1 � V.�/!2

�
C

�
V.a/=3!1 � a!2 �a!1 � V.a/=3!2
�a!1 � V.a/=3!2 �V.a/=3!1 C a!2

�
:

In particular, we have

'21 D  C .V .�/ � a/ !1 � .� C V.a/=3/ !2;

so that F '21 D 0. □
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3.2. The effect of a conformal change

Summarising the previous subsection, we have seen that if r is a torsion-free
connection on TM and we fix a Riemannian metric g on M , then we may write
r D gr C QB for some endomorphism-valued 1-form QB on M . The thermostat on
SM defined by � D �b211 has the property that its orbits project toM to become the
geodesics of r up to parametrisation. Moreover, we obtain a 1-form � 2 �1.M/ as
well as a cubic differentialA 2 �.K3/, so that the connection r shares its geodesics
– up to parametrisation – with the projections to M of the orbits of the projective
thermostat defined by � D a � V� , where a represents the imaginary part of A.

Next we compute how � and A transform under conformal change of the metric.
As a consequence, we obtain:

Proposition 3.5. Let r be a torsion-free connection on TM . Then the choice of a
conformal structure Œg� on M determines a unique Weyl connection D for Œg� and a
unique section ˆ of K2 ˝K� so that DC Reˆ is projectively equivalent to r.

Proof. Let g 7! Og D e2ug be a conformal change of the metric, where u 2
C1.M/. For the new metric Og there exists a 1-form O� and a cubic differential OA on
M so that DCB and ODC OB are projectively equivalent. Here OB denotes the 1-form
constructed from OA by using the metric Og. Projective equivalence corresponds to
the existence of a 1-form ˛ on M so that

DC B D ODC OB C Sym.˛/

Using (2.9) as well as (see [1, Theorem 1.159])

(3.4) exp.2u/g
r D

g
r � g ˝ g

ruC Sym.du/

this is equivalent to

g
r C g ˝ �] � Sym.�/C B D g

r � g ˝ g
ru

C Sym.du/C e2ug ˝ O�
O]
� Sym. O�/C OB C Sym.˛/

or
g ˝

�
�] C g

ru � O�]
�
C B � OB D Sym .ˇ/ ;

where ˇ D ˛ C � C du � O� . Evaluating this equation on the pair .v; J v/ with v a
unit tangent vector with respect to g gives

B.v/J v � OB.v/J v D Sym .ˇ/ .v; J v/:

Computing the inner product with the tangent vector v yields

ReA.v; J v; v/ � e�2uRe OA.v; J v; v/ D ˇ.J v/:

Thought of as an identity for functions on SM , the left hand side lies in H�3˚H3

whereas the right hand side lies in H�1 ˚H1 and hence they can only be equal if
both sides vanish identically. Consequently, it follows that ˇ D 0 and that

OA D e2uA:

Therefore, B D OB and

(3.5) O� D � C du
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so that ˛ D 0 as well as D D OD.
In particular, we see that both D and B do only depend on the conformal equival-

ence class of g. We may define a section ˆ of K2 ˝K� by ˆd� D A, where d�
denotes the area form of g. Comparing with (3.2), we see that B is the real part of
ˆ. □

4. Holomorphic curves

It is natural to ask whether for a given torsion-free connection r on TM one can
always (at least locally) choose a conformal structure Œg� on M so that ˆ vanishes
identically. Equivalently, whether every torsion-free connection r on TM is locally
projectively equivalent to a Weyl connection D. This question was answered in
the affirmative in [14], where it is also observed that the problem is equivalent to
finding a suitable holomorphic curve into a complex surface fibering over M . Here
we will briefly review this observation and use it do derive a non-linear PDE for the
Beltrami differential of the sought after conformal structure.

Remark 4.1. Given that one can locally always find a conformal structure so that
ˆ vanishes identically, one might wonder whether it is possible to simultaneously
pick a conformal metric so that the 1-form � is closed. Indeed, (3.4) and (3.5) imply
that the additional closedness condition corresponds to r being locally projectively
equivalent to a Levi-Civita connection of some metric. However, this is not always
possible, see [2].

4.1. A complex surface

Inspired by the twistorial construction of holomorphic projective structures by
Hitchin [8], it was shown in [5] and [19] and how to construct a ‘twistor space‘
for smooth projective structures. Let r be a torsion-free connection on TM and
' D .'ij / 2 �

1.P; gl.2;R// its connection form on the frame bundle P . We can
use ' to construct a complex structure on the quotient P=CO.2/. By definition, an
element of P=CO.2/ gives a frame in some tangent space of M , well defined up to
rotation and scaling. Therefore, the conformal structures on M are in one-to-one
correspondence with the sections of the fibre bundle P=CO.2/!M whose fibre
is GLC.2;R/=CO.2/, that is, the open disk. We will construct a complex structure
on P=CO.2/ in terms of its .1;0/-forms, or more precisely, the pullbacks of the
.1;0/-forms to P . Recall that the Lie algebra co.2/ of CO.2/ is spanned by the
matrices �

1 0

0 1

�
and

�
0 �1

1 0

�
:

Consequently, the complex-valued 1-forms on P that are semibasic for the quotient
projection P ! P=CO.2/ are spanned by the form ! and

� D .'11 � '
2
2/C i.'

1
2 C '

2
1/

as well as their complex conjugates. Recall that we have
�
Rrei�

��
! D 1

r
e�i�

and using that ' satisfies the equivariance property R�
h
' D h�1'h for all h 2

GLC.2;R/, we compute
�
Rrei�

��
� D e�2i��. It follows that there exists a unique

almost complex structure J on P=CO.2/ whose .1;0/-forms pull back to P to
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become linear combinations of the forms !; �. The almost complex structure J can
be shown to only depend on the projective equivalence class of r and moreover, an
application of the Newlander–Nirenberg theorem shows that J is always integrable,
see [14] for details.

4.2. Möbius action

In our setting it is convenient to reduce the frame bundle P to the unit tangent
bundle SM of some fixed metric g. In order to get a handle on the complex surface
P=CO.2/ after having carried out this reduction, we interpret the disk bundle
P=CO.2/ ! M as an associated bundle to the frame bundle P . This requires
an action of the structure group GLC.2;R/ on the open disk and this is what we
compute next.

The group GLC.2;R/ acts from the left on the lower half plane

�H WD fw 2 C W =.w/ < 0g

by Möbius transformations, where w denotes the standard coordinate on C. We
let D � C denote the open unit disk. Identifying �H with D via the Möbius
transformation

�H! D; w 7! �

�
w C i

w � i

�
we obtain an induced action of GLC.2;R/ on D making this transformation equivari-
ant

(4.1)
�
a b

c d

�
� z D

iz.aC d/C z.b � c/ � i.a � d/C .b C c/

�iz.a � d/ � z.b C c/C i.aC d/ � .b � c/
:

The stabiliser subgroup of the point z D 0 consists of elements in GLC.2;R/ satis-
fying a D d and b C c D 0, i.e., the linear conformal group CO.2/. Consequently,
we have D ' GLC.2;R/=CO.2/ and we obtain a projection

� W GLC.2;R/! D;

�
a b

c d

�
7!

�
a b

c d

�
� 0 D

�i.a � d/C .b C c/

i.aC d/ � .b � c/
:

In particular, a mapping z W N ! D from a smooth manifold N into D is covered
by a map

Qz D

 
1�jzj2

.1Cz/.1Cz/
i.z�z/

.1Cz/.1Cz/

0 1

!
:

into GLC.2;R/. Equivalently, we have Qz � 0 D z or z � Qz D 0, where as usual we
turn the left action into a right action by the definition z � Qz WD Qz�1 � z.

Let � W Z ! M denote the disk-bundle associated to the above GLC.2;R/
action on D. Suppose z W P ! D represents a section of Z ! M so that z is a
GLC.2;R/-equivariant map. For every coframe u 2 P the pair .u; z.u// 2 P �D

lies in the same GLC.2;R/ orbit as

(4.2) .u � Qz.u/; z.u/ � Qz.u// D .u � Qz.u/; 0/:

Therefore, the map z gives for every point p 2 M a coframe u � Qz.u/ which is
unique up to the action of CO.2/. It follows that the bundle Z !M is isomorphic
to P=CO.2/!M , as desired.
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Let ‡ W P � D ! P be the map defined by (4.2). We will next compute the
pullback of !; � under ‡ . Note that we may write ‡ D R ı .IdP � Qz/ where
R W P � GLC.2;R/ ! P denotes the GLC.2;R/ right action of P . Recall the
standard identities

R�' D h�1'hC h�1dh and R�! D h�1!;

where h W P � GLC.2;R/ ! GLC.2;R/ denotes the projection onto the latter
factor. From this we compute

(4.3) !‡ WD ‡
�! D Qz�1! D

�
1C z

1 � jzj2

�
.! C z!/ :

and

(4.4) '‡ WD ‡
�' D Qz�1' Qz C Qz�1d Qz

We also obtain �‡ D ‡�� D .'‡ /11 � .'‡ /
2
2 C i

�
.'‡ /

1
2 C .'‡ /

2
1

�
. Writing

� D
1

2

�
3.'11 C '

2
2/C i.'

2
1 � '

1
2/
�
;

and using (4.4), a tedious but straightforward calculation gives

(4.5) �‡ D
2.1C z/

.jzj2 � 1/.z C 1/

�
dz �

1

2
� C

1

2
z2� C z� � z N�

�
:

Remark 4.2. The complex-valued 1-form � is chosen so that �; �; !; !; �; � span
the complex-valued 1-forms on P . Clearly, this condition does not pin down �
uniquely. The particular choice is so that in the absence of � the form � becomes
the connection form of the Chern connection onK� upon reducing to SM , see (4.6)
below.

The complex structure onZ does only depend on the projective equivalence class
of r. Thus, after possibly replacing ' with a projectively equivalent connection,
we can assume that the torsion-free connection on TM corresponding to ' is of the
form DC B for some 1-form � and some cubic differential A on M . On the unit
tangent bundle SM of g the connection form of DC B takes the form (3.3). Using
this equation and reducing to SM � P yields the following identities on SM

(4.6)
� D 2a�3!;

� D i � 4�1! � 2��1!;

Recall, we write a3 D 1
3
Va C ia and a�3 D a3 as well as �1 D 1

2
.� � iV�/

and ��1 D �1. Also, the connection form � of the induced Weyl connection is
� D i � 2�1!, see (2.8). Therefore, we have

� D 2� C �:

The SO.2/-action induced by (4.1) is�
cos� � sin�
sin� cos�

�
� z D

2iz cos� � 2z sin�
2i cos� C 2 sin�

D e2i�z

and hence the equivariance property of a function z W SM ! D representing a
section of Z ! M becomes

�
Rei�

��
z D e�2i�z, that is, z represents a section
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of K�2. Since we have a metric, we have an identification K� ' K and hence
K�2 ' K� ˝K. In particular, we may write

(4.7) dz D z0! C z00! C �z � �z

For unique complex-valued functions z0 and z00 on SM . Consequently, using (4.5),
(4.6) and (4.7) we obtain

(4.8)

�
.jzj2 � 1/.z C 1/

2.1C z/

�
�‡ D z

0! C z00! C �z � �z � a�3! C z
2a3!

C z.2� C �/ � z.2� C �/

D
�
z0 C z2a3

�
! C

�
z00 � a�3

�
!:

In order to connect the expressions for !‡ and �‡ to the condition of z representing
a conformal structure Œ Og� that defines a holomorphic curve into Z, we use the
following elementary lemma:

Lemma 4.3. Let Z be a complex surface and !; � 2 �1.Z;C/ a basis for the
.1;0/-forms of Z. Suppose M � Z is a smooth surface on which ! ^ ! is non-
vanishing. ThenM admits the structure of a holomorphic curve – that is, a complex
1-dimensional submanifold of Z – if and only if ! ^ � vanishes identically on M .

Proof. Since ! ^ ! is non-vanishing on M , the forms ! and ! span the complex-
valued 1-forms on M . Since M is a complex submanifold of Z if and only if the
pullback of a .1;0/-form on Z is a .1;0/-form on M , the claim follows. □

The reduction of P to SM identifies Z with SM �SO.2/ D. Now suppose the
conformal structure Œ Og� W M ! Z is represented by the map z W SM ! D. If
v W U ! SM is a local section of � W SM !M , then Œ Og�jU W U ! Z is covered
by the map .IdSM � z/ ı v W U ! SM �D. Recall that the complex structure on
Z has the property that its .1;0/-forms pull-back to become linear combination of
!‡ and �‡ . Using the expressions (4.3) and (4.8) for the pullbacks of !‡ and �‡
to SM we obtain

!‡ ^ �‡ D �
2.1C z/2

.jzj2 � 1/2.z C 1/

�
z00 � zz0 � z3a3 � a�3

�
! ^ !:

In particular, since v W U ! SM is a �-section and ! and ! are �-semibasic, the
pullback v�.!‡ ^ �‡ / vanishes if and only if !‡ ^ �‡ vanishes on ��1.U /. Thus,
Theorem 4.3 implies that z represents a holomorphic curve if and only if

(4.9) z00 � zz0 D z3a3 C a�3:

4.3. The Beltrami differential

So far we have not explicitly tied the conformal structure Œ Og� to the function z W
SM ! D representing it. In order to do this we first recall the Beltrami differential.
The choice of a metric Og on M allows to define the functions

p.x; v/ D Og.v; v/; r.x; v/ D Og.v; J v/ and q.x; v/ D Og.J v; J v/
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on SM . The orientation compatible complex structure OJ on M induced by the
conformal equivalence class of Og has matrix representation

OJ D
1p

pq � r2

�
�r �q

p r

�
:

In particular, we compute that the .1;0/-forms with respect to OJ pull-back to SM
to become complex multiples of

(4.10) ! OJ WD
1

2

�
! � i OJ!

�
D

 
p C q C 2

p
pq � r2

4
p
pq � r2

!
.! C �!/

where

� D
.p � q/C 2ir

p C q C 2
p
pq � r2

is the Beltrami coefficient of OJ . Clearly, � does only depend on the conformal
equivalence class Œ Og� of Og. Moreover, the function � represents a .0;1/-form on
M with values in K� called the Beltrami differential of Œ Og�, which – by abuse of
language – we denote by � as well.

The reduction of P to the unit tangent bundle SM of g turned ! into a basis
for the .1;0/-forms with respect to the complex structure induced by g and the
orientation. The mapping z represents a conformal structure Œ Og� and consequently,
induces an orientation compatible complex structure OJ whose .1;0/-forms we
computed in (4.3). Comparing this expression with the formula (4.10) for the
Beltrami coefficient shows that we obtain the same .1;0/-forms if and only if z D �.
Remember, z0 and z00 represent the .1;0/ and .0;1/ part of the derivative of z with
respect to the connection D induced by the Weyl connection D. Furthermore,
the function a3 represents the cubic differential A or equivalently, the form ˆ,
since ˆd� D A and d� is represented by the constant function 1 on SM . Using
equation (4.9) and the fact that p contains a Weyl connection with respect to Œ Og� if
and only if Œ Og� W M ! Z is a holomorphic curve [14, Theorem 3], we have thus
shown:

Proposition 4.4. Let .M; Œg�/ be a Riemann surface equipped with a projective
structure p given in terms of .D; ˆ/. Then p contains a Weyl connection with respect
to the conformal structure defined by the Beltrami differential � if and only if

(4.11) D00� � �D0� D ˆ�3 Cˆ:

Remark 4.5. In the special case where p is a properly convex projective structure,
an equation equivalent to (4.11) was previously obtained by N. Hitchin using the
Higgs bundle description of p.1

As a corollary, we obtain:

Corollary 4.6. Let M be a closed oriented surface with �.M/ < 0. Suppose the
Weyl connections D and OD on TM are projectively equivalent. Then D D OD and
they preserve the same conformal structure.

1Private communication, August 2014.
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Proof. Equip M with the Riemann surface structure defined by Œg� and the orienta-
tion. Let p be the projective structure defined by D (or OD). The projective structure p
is encoded in terms of the pair .D; 0/. Moreover, the Beltrami differential � defined
by Œ Og� solves (4.11), that is,

D00� � �D0� D 0:

Now observe that @� D D00 � D0� defines a del-bar operator on K ˝ K� and
hence (4.11) can be written as @�� D 0. Therefore, � is holomorphic with respect
to the holomorphic line bundle structure defined by @� on K ˝ K�. However,
since �.M/ < 0, the line bundle K ˝ K� has negative degree, so that its only
holomorphic section is the zero-section. It follows that � D 0 and hence Œg� D Œ Og�.
Since D and OD are projectively equivalent and preserve the same conformal structure
Œg�, we conclude exactly as in the proof of Theorem 3.5 that D D OD. □

Remark 4.7. The above corollary was first proved in [15]. In particular, as a special
case, it also shows that on a closed surface with �.M/ < 0, the unparametrised
geodesics of a Riemannian metric determine the metric up to rescaling by a positive
constant. This was first observed in [13].

5. The transport equation

While the PDE (4.11) for the Beltrami differential � is natural from a complex
geometry point of view, it turns out to be advantageous to rephrase it as a transport
equation on SM . The relevant transport equation on SM can be derived using (4.11)
– see Section A – but here we will instead take a different approach, as it leads to a
more general result about thermostats having the same unparametrised geodesics,
see Theorem 5.2.

Let g; Og be Riemannian metrics on M . In what follows all objects defined in
terms of the metric Og will be decorated with a hat symbol. There is an obvious
scaling map

` W SM ! bSM; .x; v/ 7!

 
x;

vp
Og.v; v/

!
which is a fibre-bundle isomorphism covering the identity on M . As before we
define

p.x; v/ D Og.v; v/; r.x; v/ D Og.v; J v/; and q.x; v/ D Og.J v; J v/:

Lemma 5.1. The pullback of the volume form O‚ on bSM is

`� O‚ D

�
pq � r2

p

�
‚:

Proof. Since

d� .X.x; v// D v and d� .H.x; v// D Jv;

we obtain

�� Og D p!1 ˝ !1 C 2r!1 ı !2 C q!2 ˝ !2;
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where we write !1 ı !2 WD 1
2
.!1 ˝ !2 C !2 ˝ !1/. We first compute�

X `� O!1
�
.x; v/ D O!1 .d`.X.x; v/// D Og .`.x; v/; .d O� ı d`/.X.x; v///

D
1p
Og.v; v/

Og.v; d�.X.x; v/// D
p
Og.v; v/ D

p
p;

where we have used that O� ı ` D � . Likewise, we obtain�
H `� O!1

�
.x; v/ D O!1 .d`.H.x; v/// D Og .`.x; v/; .d O� ı d`/.H.x; v///

D
1p
Og.v; v/

Og.v; d�.H.x; v/// D
Og.v; J v/p
Og.v; v/

D
r
p
p
:

Since O!1 is semibasic for the projection O� , the pullback `� O!1 is semibasic for the
projection � , hence V `� O!1 D 0, so that we have

(5.1) `� O!1 D
p
p!1 C

r
p
p
!2:

The pullback `� O!2 must be a multiple of !2. Indeed, `� O!2 is �-semibasic and we
obtain�
X `� O!2

�
.x; v/ D O!2 .d`.X.x; v/// D Og

�
OJ `.x; v/; .d O� ı d`/.X.x; v//

�
D

1p
Og.v; v/

Og. OJv; d�.X.x; v/// D
Og. OJv; v/p
Og.v; v/

D 0:

Recall that the area form d O� of Og satisfies O��d O� D O!1 ^ O!2, hence

`�. O!1 ^ O!2/ D �
�d O� D

q
pq � r2 !1 ^ !2:

Thus we must have

(5.2) `� O!2 D

p
pq � r2
p
p

!2:

Since the Lie derivative of �� Og with respect to V vanishes identically, we compute
that V

p
p D r=

p
p. Moreover, since

p
pq � r2 is the �-pullback of a function on

M , we obtain

V

 p
pq � r2
p
p

!
D �

r
p
pq � r2

p3=2
:

Pulling back the structure equation d O!2 D � O ^ O!1 whilst using (5.1) and (5.2)
gives

`�.d O!2/ D d.`
�
O!2/ D d

 p
pq � r2
p
p

!2

!

D

 
Oa!1 �

r
p
pq � r2

p3=2
 

!
^ !2 �

p
pq � r2
p
p

 ^ !1

D �`� O ^ `� O!1 D �`
� O ^

�
p
p!1 C

r
p
p
!2

�
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for some unique real-valued function Oa on SM . Comparing the coefficients in the
above equations, it follows that

(5.3) `� O D a!1 C b!2 C

p
pq � r2

p
 

for some unique real-valued functions a; b on SM . In particular, we obtain

`� O‚ D `�
�
O!1 ^ O!2 ^ O 

�
D

�
pq � r2

p

�
!1 ^ !2 ^  ;

as claimed. □

We use this lemma to derive the following observation about general thermostats:

Proposition 5.2. If two thermostats determined by pairs .g; �/ and . Og; O�/ have the
same unparametrised geodesics, then

p
p . OV O� ı `/ D F log

�
pq � r2

p3=2

�
C V �:

As an immediate application we obtain the following classical fact:

Corollary 5.3. Let g and Og be two Riemannian metrics on M having the same
unparametrised geodesics, then p=.pq � r2/2=3 is an integral for the geodesic flow
of g.

Proof. This special case corresponds to � D O� D 0 and hence Theorem 5.2 implies

0 D X log
�
pq � r2

p3=2

�
D �

3

2
X log

�
p

.pq � r2/2=3

�
D �

3

2

.pq � r2/2=3

p
X

�
p

.pq � r2/2=3

�
:

□

In order to prove Theorem 5.2 we also recall a general lemma whose proof is
elementary and thus omitted.

Lemma 5.4. Let X be a vector field on a manifold M with volume form �. Let f
and s > 0 be smooth functions. Then

div�.fX/ D Xf C f div�X and divs �.X/ D X log s C div�X:

Proof of Theorem 5.2. This follows from Theorem 5.1 and Theorem 5.4 and the
key fact that if the thermostats have the same unparametrised geodesics then

(5.4) `� OF D
1
p
p
F:

To see the last equality, note that we can rephrase the hypothesis as follows. There
is a smooth function � W SM �R! R implementing the time change so that

` ı ��.x;v;t/.x; v/ D O�t ı `.x; v/:

Differentiating this with respect to t and setting t D 0 gives

d`.fF / D OF ı `;
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where f .x; v/ WD d
dt
�.x; v; t/jtD0. To check that f has the desired form, apply

d O� to the last equation to get f v D v=
p
Og.v; v/.

Writing s WD .pq � r2/=p and taking the divergence of (5.4) with respect to
`� O‚ D s‚ gives

divs ‚
�
p
p `� OF

�
D .`� OF /

p
p C
p
p divs ‚.`� OF /

D

�
1
p
p

�
F
p
p C
p
p div

`� O‚

�
`� OF

�
D F

�
log
p
p
�
C
p
p
�

div O‚
OF
�
ı `

D divs ‚F D F log s C div‚F

where we have used Theorem 5.4. Since div‚F D V � and div O‚
OF D OV O� this last

equation is equivalent to

p
p
�
OV O� ı `

�
D F log

�
s
p
p

�
C V �;

which proves the claim. □

Remark 5.5. Note that the crucial identity (5.4) also follows from a different argu-
ment. Since the orbits of F and OF project onto the same unparametrised curves,
there must exist a smooth function w on SM , so that `� OF D wF . From (5.1), (5.2)
and (5.3), we compute that

`� OX D
1
p
p
X �

a
p
pp

pq � r2
V and `� OV D

pp
pq � r2

V

from which one immediately obtains w D 1=
p
p.

A special case of Theorem 5.2 is the following:

Corollary 5.6. Suppose the projective thermostat associated to the pair .g; �/ D
.g; a � V�/ has the same unparametrised geodesics as the Weyl connection D
defined by . Og; ˛/, then

u D
3

2
log

�
p

.pq � r2/2=3

�
satisfies the transport equation

(5.5) Fu D VaC ˇ;

where ˇ D � � ˛.

Proof. Applying Theorem 5.2 in the special case � D a � V� and O� D � OV ˛ gives

�
p
p
�
OV OV ˛ ı `

�
D
p
p .˛ ı `/ D F log

�
pq � r2

p3=2

�
C V.a � V�/;

the left hand side of which is simply ˛, thought of as a function on SM . Hence we
obtain

� .VaC � � ˛/ D F log
�
pq � r2

p3=2

�
D F

�
�
3

2

�
logp �

2

3
log.pq � r2/

��
D �Fu;
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as claimed. □

6. The tensor tomography result

In this final section we prove a vanishing theorem for the transport equation Fu D
VaC ˇ, provided the triple .g; A; �/ defining F satisfies certain conditions. Recall
that every properly convex projective structure p arises from a triple .g; A; 0/
satisfying

Kg D �1C 2jAj
2
g and @A D 0:

In particular, we would like to conclude that if such a p contains a Weyl connection,
then A must vanish identically and hence p is hyperbolic. It turns out that one
can prove a more general vanishing theorem for a class of thermostats arising
from a triple .g; A; �/ where A is a differential of degree m > 3 on M , that is,
a section of Km. Suppose A 2 �.Km/. Like in the case m D 3 there exists
a unique smooth real-valued function a on SM lying in H�m ˚ Hm, so that
��A D .V .a/=mC ia/!m. In particular, to a triple .g; A; �/ we may associate the
thermostat F D X C .a � V�/V . We now have:

Theorem 6.1. LetM be a closed oriented surface and .g; A; �/ be a triple satisfying

@A D

�
m � 1

2

� �
� � i ?g �

�
˝ A and Kg � ıg� C .2 �m/jAj

2
g 6 0:

Let F denote the vector field of the thermostat determined by .g; A; �/. Suppose
there is a 1-form ˇ 2 �1.M/ and a function u 2 C1.SM/ such that

Fu D VaC ˇ:

Then A D 0 and ˇ is exact.

Let us first verify that this gives the desired statement.

Corollary 6.2. Let .M; p/ be a closed oriented properly convex projective surface
with �.M/ < 0 and with p containing a Weyl connection D. Then p is hyperbolic
and moreover D is the Levi-Civita connection of the hyperbolic metric.

Proof. By a result of Calabi [3], if m D 3 and .g; A/ satisfy

Kg D �1C 2jAj
2
g and @A D 0;

then Kg 6 0. In particular, the triple .g; A; 0/ satisfies the assumptions of The-
orem 6.1 and Theorem 5.6 implies that we have a solution u to the transport equation
Fu D VaC ˇ. Hence the theorem gives right away that A vanishes identically and
hence p is hyperbolic. In particular, the Levi-Civita connection gr of the hyperbolic
metric and the connection D both lie in p and hence are projectively equivalent, but
this can happen if and only if gr D D, by Theorem 4.6. □

Remark 6.3. In [16] the notion of a minimal Lagrangian connection is introduced.
These are torsion-free connections on TM of the form r D DCB where .g; A; �/
defining D and B are subject to the equations

�Kg � ıg� D �1C 2jAj
2
g ; @A D

�
� � i ?g �

�
˝ A; d� D 0:
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In particular, on a closed oriented surface of negative Euler characteristic every
properly convex projective structure arises from a minimal Lagrangian connection.
Another immediate consequence of Theorem 6.1 and Theorem 4.6 thus is:

Corollary 6.4. Let M be a closed oriented surface of negative Euler characteristic
and r a minimal Lagrangian connection arising from the triple .g; A; �/. Suppose
jAj2g 6 1 and that r is projectively equivalent to a Weyl connection D. Then A
vanishes identically and hence r D D.

In order to show the theorem we use the following L2 identity proved in [10,
Equation (5)] which is in turn an extension of an identity in [22] for geodesic flows.
The identity holds for arbitrary thermostats F D XC�V . If we letHc WD H CcV
where c W SM ! R is any smooth function then

(6.1) 2hHcu; VFui D kFuk2CkHcuk2�hFcCc2CKg�Hc�C�2; .V u/2i;

where u is any smooth function. All norms and inner products are L2 with respect
to the volume form ‚.

We also need the following lemma whose proof is a straightforward calculation
(see [18, Lemma 4.1] for a proof).

Lemma 6.5. We have

@A D

�
m � 1

2

�
.� � i ?g �/˝ A

if and only if
XVa �mHa � .m � 1/.�Va �maV�/ D 0:

Proof of Theorem 6.1. Without loss of generality we may assume that ˇ has zero
divergence. Indeed if not, a standard application of scalar elliptic PDE theory shows
that we can always find a smooth function h on M such that ˇ C dh has zero
divergence. Now note that F.uC h/ D VaC ˇ C dh.

A calculation shows that if we pick c D � C V.a/=m, then

Fc C c2 CKg �Hc�C �
2
D Kg � ıg� C .1 �m/jAj

2
g ;

where we use that

��jAj2g D .Va/
2=m2 C a2 and ��ıg� D � .X� CHV�/ ;

hence for this choice of c, (6.1) simplifies to
(6.2)
2hHcu; VFui�kjAjgV uk

2
D kFuk2CkHcuk

2
�hKg�ıg�C.2�m/jAj

2
g ; .V u/

2
i:

If Fu D VaC ˇ, then VFu D �m2aC Vˇ. Using that X and H preserve ‚ and
that XVa �mHa � .m � 1/.�Va �maV�/ D 0 we compute

2
˝
Hcu;�m

2a
˛
D �2m2hHu; ai � 2m2hcV u; ai

D 2m2hu;Hai � 2m2hcV u; ai

D �2m2hXu; V.a/=mi � 2m.m � 1/hu; �Va �maV�i

� 2m2hcV u; ai

D �2mkVak2 D �2m3kak2;
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where the last equation is obtained using that Xu D ˇ C Va � .a � V�/V u,
hˇ; Vai D 0 and c D � C V.a/=m.

Using that X and H preserve ‚ and that XˇCHVˇ D 0 (ˇ is assumed to have
zero divergence) we compute:

2 hHcu; Vˇi D 2hHu; Vˇi C 2hcV u; Vˇi

D �2hu;HVˇi C 2hcV u; Vˇi

D �2hXu; ˇi C 2hcV u; Vˇi

D �2kˇk2 C 2h.a � V�/V u; ˇi C 2hcV u; Vˇi

D �2kˇk2 C 2haV u; ˇi C 2h.VaV u/=m; Vˇi;

where the penultimate equation is obtained using that Xu D ˇCVa� .a�V�/V u
and hˇ; Vai D 0. The last equation uses that c D � C V.a/=m and

V.�Vˇ � V�ˇ/ D 0:

Inserting these calculations back into (6.2), we derive

� 2m3kak2 � 2kˇk2 C 2haV u; ˇi C 2h.VaV u/=m; Vˇi � kjAjgV uk
2

D kFuk2 C kHcuk
2
� hKg � ıg� C .2 �m/jAj

2
g ; .V u/

2
i:

Since jAj2g D a
2 C .Va/2=m2 this can be re-written as

� 2m3kak2 � kˇ � aV uk2 � kVˇ � VaV u=mk2

D kFuk2 C kHcuk
2
� hKg � ıg� C .2 �m/jAj

2
g ; .V u/

2
i;

where we have used that kˇk2 D kVˇk2. By hypothesis the right hand side is > 0

which gives right away that a D ˇ D 0. □

Appendix A. Deriving the transport equation

Here we sketch how to derive the transport equation for the function u starting from
the PDE

D00� � �D0� D ˆ�3 Cˆ

for the Beltrami differential �. Let .g; A; �/ be the triple encoding p so that the
connection form of D on SM is (see (2.8)) � D i � 2�1!, where we write
�1 D

1
2
.� � iV�/. Moreover, on SM the section ˆ of K2 ˝ K� is represented

by a3 D 1
3
VaC ia, where a.v/ D ReA.Jv; J v; J v/, v 2 SM . Writing ��2 for

the complex-valued function on SM representing the Beltrami differential � and
�2 D ��2, the PDE for � is equivalent to

d��2 D �
0
�2! C

�
��2�

0
�2 C a3�

3
�2 C a3

�
! C ���2 � ���2;

where �0
�2 is a complex-valued function on SM . Since ��2 represents a section of

K ˝K� ' K�2, writing �˙ D 1
2
.X � iH/ we also have

d��2 D �C.��2/! C ��.��2/! � 2i��2 :

Thus the PDE is equivalent to the system

(A.1) ����2 � ��2�C��2 D a3�
3
�2 � 2�

2
�2�1 � 2��2�1 C a3
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and V��2 D �2i��2. The Beltrami differential does only define a conformal
equivalence class Œ Og�. We may fix a metric Og 2 Œ Og� by requiring

1

2
.p C q/ D

1C j�2j
2�

1 � j�2j2
�4 ;

where again we specify the metric Og in terms of the functions p; q; r . Explicitly, we
have

1

2
.p � q/ D

��2 C �2�
1 � j�2j2

�4 and r D
i.�2 � ��2/�
1 � j�2j2

�4 :
In particular, this yields

h WD
p

.pq � r2/2=3
D .��2 C 1/.�2 C 1/:

Writing F D X C .a � V�/V and using (A.1), a lengthy but straightforward
calculation shows that

Fh D
2

3
hVaC 2hRe

�
a3�

2
�2 � �2a�3 � 2�2��1 C �C��2

�
:

Hence if we define u D 3
2

log h, then we obtain

Fu � Va D 3Re
�
a3�

2
�2 � �2a�3 � 2�2��1 C �C��2

�
Note that the right hand side of the last equation lies in H�1 ˚H1, hence there
exists a 1-form ˇ on M so that

Fu D VaC ˇ

which is the transport equation (5.5).
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