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GL(2)-structures in dimension four,
H-flatness and integrability

wojciech kryński and thomas mettler

Abstract. We show that torsion-free four-dimensional GL(2)-structures
are flat up to a coframe transformation with a mapping taking values in
a certain subgroup H ⊂ SL(4,R), which is isomorphic to a semidirect
product of the three-dimensional continuous Heisenberg group H3(R)
and the Abelian group R. In addition, we show that the relevant PDE
system is integrable in the sense that it admits a dispersionless Lax-pair.

1. Introduction

A GL(2)-structure on a smooth 4-manifold M is given by a smoothly varying
family of twisted cubic curves, one in each projectivised tangent space of M .
Equivalently, a GL(2)-structure is the same as G-structure π : B → M on
M , where G is the image subgroup of the faithful irreducible 4-dimensional
representation of GL(2,R) on the space of homogeneous polynomials of
degree three with real coefficients in two real variables. A GL(2)-structure
is called torsion-free if its associated G-structure is torsion-free. Torsion-
free GL(2)-structures are of particular interest, as they provide examples
of torsion-free connections with exotic holonomy group GL(2,R). However,
the local existence of torsion-free GL(2)-structures is highly non-trivial, even
when applying the Cartan–Kähler machinery, which is particularly well-
suited for the construction of torsion-free connections with special holonomy.
Adapting methods of Hitchin [10], Bryant [2] gave an elegant twistorial
construction of real-analytic torsion-free GL(2)-structures in dimension four,
thus providing the first example of an irreducibly-acting holonomy group of
a (non-metric) torsion-free connection missing from Berger’s list [1] of such
connections.

A natural source for GL(2)-structures are differential operators. Recall
that the principal symbol σ(D) of a k-th order linear differential operator
D: C∞(M,Rn)→ C∞(M,Rm) assigns to each point p ∈M a homogeneous
polynomial of degree k on T ∗

pM , with values in Hom(Rn,Rm). Therefore, in
each projectivised cotangent space P(T ∗

pM) ofM we obtain the so-called char-
acteristic variety Ξp of D, consisting of those [ξ] ∈ P(T ∗

pM), for which the
linear mapping σξ(D): Rn → R

m fails to be injective. Given a (possibly non-
linear) differential operator D and a smooth Rn-valued function u defined on
some open subset U ⊂M and which satisfies D(u) = 0, we may ask that the
linearisation Lu(D) of D around u has characteristic varieties all of which are
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the tangential variety of the twisted cubic curve. Consequently, one obtains
a GL(2)-structure on the domain of definition of each solution u of the PDE
D(u) = 0 for an appropriate class of differential operators. Various examples
of such operators have recently been given by Ferapontov–Kruglikov [7]. In
particular, they show that locally all torsion-free GL(2)-structures arise in
this fashion for some second order operator D, which furthermore has the
property that the PDE D(u) = 0 admits a dispersionless Lax representation.
We also refer the reader to [8] for an application of similar ideas to the case
of three-dimensional Einstein–Weyl structures.

Here we show that if a 4-manifoldM carries a torsion-free GL(2)-structure
π : B →M , then for every point p ∈M there exists a p-neighbourhood Up,
local coordinates x : Up → R

4 and a mapping h : Up → H into a certain
4-dimensional subgroup H ⊂ SL(4,R), so that the coframing η = hdx is
a local section of π : B → M . The group H is isomorphic to a semidirect
product of the three-dimensional continuous Heisenberg group H3(R) and the
Abelian group R. Moreover, the mapping h satisfies a first order quasi-linear
PDE system which admits a dispersionless Lax-pair. As in [7], linearising
the PDE system around a solution h gives a linear first order differential
operator whose characteristic variety is the tangential variety of the twisted
cubic curve. Also, note that our result shows that 4-dimensional torsion-free
GL(2)-structures are H-flat, that is, flat up to a coframe transformation with
a mapping taking values in H.

Along the way (see Theorem 2.4), we derive a first order PDE describing
general H-flat torsion-free G-structures which may be of independent interest.
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2. G-structures and H-flatness

In this section we collect some elementary facts about G-structures, introduce
the notion of H-flatness and derive the first order PDE system describing
H-flat torsion-free G-structures. Throughout the article all manifolds and
maps are assumed to be smooth, that is C∞.

2.1. The coframe bundle and G-structures

Let M be an n-manifold and V a real n-dimensional vector space. A V -
valued coframe at p ∈ M is a linear isomorphism f : TpM → V . The set
FpM of V -valued coframes at p ∈M is the fibre of the principal right GL(V )
coframe bundle υ : FM → M , where the right action Ra : FM → FM is
defined by the rule Ra(f) = a−1 ◦ f for all a ∈ GL(V ) and f ∈ FM . Of
course, we may identify V ≃ Rn, but it is often advantageous to allow V to
be an abstract vector space, in which case we say FM is modelled on V . The
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coframe bundle carries a tautological V -valued 1-form defined by ωf = f ◦ υ∗
so that we have the equivariance property R∗

aω = a−1ω. A local υ-section
η : U → FM is called a coframing on U ⊂ M and a choice of a basis of V
identifies η with n linearly independent 1-forms on U .

Let G ⊂ GL(V ) be a closed subgroup. A G-structure on M is a reduction
π : B → M of the coframe bundle with structure group G, equivalently, a
smooth section of the fibre bundle FM/G → M . For local considerations
we may take M = V . Note that in this case M is equipped with a cofram-
ing η0 defined by the exterior derivative of the identity map η0 = d IdV .
Consequently, the coframe bundle of V may naturally be identified with
V ×GL(V ) and hence the set of G-structures on V is in one-to-one corres-
pondence with the space of smooth maps V → GL(V )/G. In particular, a
smooth map h : V → GL(V ) defines a G-structure on V by composing h
with the quotient projection GL(V )→ GL(V )/G.

2.2. H-flatness

A G-structure π : B →M is called flat if in a neighbourhood Up of every point
p ∈M there exist local coordinates x : Up → V , so that dx : Up → FM takes
values in B. We remark that flat G-structures also are often called integrable.
Suppose H ⊂ GL(V ) is a closed subgroup. We say a G-structure is H-flat if
in a neighbourhood Up of every point p ∈ M there exist local coordinates
x : Up → V and a mapping h : Up → H, so that h dx : Up → FM takes values
in B. Clearly, every G-structure is GL(V )-flat and a G-structure is flat in
the usual sense if and only if it is {e}-flat, where {e} denotes the trivial
subgroup of GL(V ).
Example 2.1. Every O(2)-structure is R+-flat, where R+ denotes the group
of uniform scaling transformations of R2 with positive scale factor. This
is the existence of local isothermal coordinates for Riemannian metrics in
two-dimensions. Likewise, conformally flat Riemannian metrics in dimensions
n > 2 yield examples of O(n)-structures that are R+-flat.
Remark 2.2. Note that if a G-structure is H-flat for some Lie group H ⊂ G,
then it is {e}-flat.

2.3. A PDE for H-flat torsion-free G-structures

A G-structure π : B → M is called torsion-free if there exists a principal
G-connection θ on B, so that Cartan’s first structure equation
(1) dω = −θ ∧ ω
holds. Recall that a principal G-connection on B is a 1-form θ on B with
values in the Lie algebra g of G that pulls back to each π-fibre to be the
canonical left invariant 1-form on G and that is equivariant with respect to
the adjoint action of G, that is, θ satsifies R∗

gθ = Ad(g−1)θ for all g ∈ G.
Remark 2.3. We remark that a weaker notion of torsion-freeness is also in
use, see for instance [3, 11]. Namely, a G-structure π : B → M is called
torsion-free if there exists a g-valued 1-form θ on B so that (1) holds.
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We may ask when a G-structure on V induced by a mapping h : V →
H ⊂ GL(V ) is torsion-free. To this end let A ⊂ V ∗⊗ V be a linear subspace.
Denote by

δ : V ∗ ⊗ V ∗ ⊗ V → Λ2(V ∗)⊗ V
the natural skew-symmetrisation map. Recall that the Spencer cohomology
group H0,2(A) of A is the quotient

H0,2(A) =
(
Λ2(V ∗)⊗ V

)
/δ(V ∗ ⊗A).

Let
ΠA : Λ2(V ∗)⊗ V → H0,2(A)

denote the quotient projection and let µH denote the Maurer–Cartan form
of H. Note that ψh = h∗µH is a 1-form on V with values in the Lie algebra
h of H, that is, a smooth map

ψh : V → V ∗ ⊗ h ⊂ V ∗ ⊗ gl(V ) ≃ V ∗ ⊗ V ∗ ⊗ V.
We define τh = δ ψh, so that τh is a 2-form on V with values in V . We now
have:

Theorem 2.4. Let h : V → H be a smooth map. Then the G-structure
defined by h is torsion-free if and only if
(2) ΠAd(h−1)g τh = 0.

Remark 2.5. In the case where H = G the H-structure defined by h is the
same as the torsion-free H-structure defined by the map h ≡ IdV : V →
GL(V ), hence (2) must be trivially satisfied. This is indeed the case. Since
the adjoint action of H preserves h, we obtain for any map h : V → H

ΠAd(h−1)h τh = Πh τh = Πh δ ψh = 0.

Proof of Theorem 2.4. For the proof we fix an identification V ≃ Rn. Let
x = (xi) denote the standard linear coordinates on Rn. Furthermore let
h : Rn → H ⊂ GL(n,R) be given and let π : Bh → R

n denote the G-structure
defined by h, that is,

Bh =
{
(x, a) ∈ Rn ×GL(n,R) : a = h−1(x)g, g ∈ G

}
.

We have a G-bundle isomorphism
ψ : Rn ×G→ Bh, (x, g) 7→ (x, h−1(x)g).

The tautological 1-form ω0 on FRn ≃ Rn × GL(n,R) satisfies (ω0)(x,a) =
a−1dx for all (x, a) ∈ Rn×GL(n,R). Continuing to write ω0 for the pullback
to Bh of ω0, we obtain

ω(x,g) := (ψ∗ω0)(x,g) = g−1h(x)dx.
Let α be any 1-form on Rn with values in g, the Lie-algebra of G. We obtain
a principal G-connection θ = (θij) on Rn ×G by defining

θ = g−1αg + g−1dg,
where g : Rn × G → G ⊂ GL(n,R) denotes the projection onto the latter
factor. Conversely, every principal G-connection on the trivial G-bundle
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R
n ×G arises in this fashion. The G-structure Bh is torsion-free if and only

if there exists a principal G-connection θ such that
dω + θ ∧ ω = 0,

which is equivalent to

0 = d
(
g−1hdx

)
+

(
g−1αg + g−1dg

)
∧ g−1hdx

or
0 =

(
dg−1 + g−1dgg−1

)
∧ h dx+ g−1 (dh ∧ dx+ α ∧ h dx) .

Using 0 = d
(
g−1g

)
, we see that the G-structure defined by h is torsion-free

if and only if there exists a 1-form α on V with values in g such that
0 = dh ∧ dx+ α ∧ hdx.

This is equivalent to (
h−1dh+ h−1αh

)
∧ dx = 0

or
(3)

(
ψh +Ad(h−1)α

)
∧ dx = 0,

where ψh = h−1dh denotes the h-pullback of the Maurer–Cartan form of H
and Ad(h)v = hvh−1 the adjoint action of h ∈ H on v ∈ gl(n,R). Now (3)
is equivalent to

δ ψh + δAd(h−1)α = 0.
Since α takes values in g, this implies that τh = δ ψh lies in the δ-image of
V ∗ ⊗Ad(h−1)g. Therefore, we obtain

ΠAd(h−1)g τh = 0.

Conversely, suppose τh lies in the δ-image of V ∗ ⊗ Ad(h−1)g. Then there
exists a 1-form β on V with values in h−1gh so that

τh = δ ψh = δ β.

Hence, the g-valued 1-form α on V defined by α = −hβh−1 satisfies
τh + δ h−1αh = δ ψh + δAd(h−1)α = 0,

thus proving the claim. □

3. GL(2)-structures

Let x, y denote the standard linear coordinates on R2 and let R[x, y] denote
the polynomial ring with real coefficients generated by x and y. We let
GL(2,R) act from the left on R[x, y] via the usual linear action on x, y.
We denote by Vd the subspace consisting of homogeneous polynomials in
degree d ⩾ 0 and by Gd ⊂ GL(Vd) the image subgroup of the GL(2,R)
action on V3. The vector space V3 carries a two-dimensional cone C̃ of
distinguished polynomials, consisting of the perfect cubes, i.e., those that
are of the form (ax + by)3 for ax + by ∈ V1. The reader may easily check
that G3 is characterised as the subgroup of GL(V3) that preserves C̃. The
projectivisation of C̃ gives an algebraic curve C of degree 3 in P(V3), which is
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linearly equivalent to the twisted cubic curve, i.e., the curve in RP3 defined
by the zero locus of the three homogeneous polynomials

P0 = XZ − Y 2, P1 = YW − Z2, P2 = XW − Y Z,
where [X : Y : Z :W ] are the standard homogeneous coordinates on RP3.
The vector space V3 carries another algebraic variety in its projectivisation
besides the twisted cubic curve. Indeed, the polynomials having vanishing
discriminant define a G3-invariant quartic cone Q̃ whose projectivisation Q

defines a quartic hypersurface in P(V3). Furthermore, the singular locus of
Q is the twisted cubic curve C and the tangential variety of C is Q.

Let M be a 4-manifold and let υ : FM → M denote its coframe bundle
modelled on V3. A GL(2)-structure on M is a reduction π : B → M of
FM with structure group G3 ≃ GL(2,R). By definition, a GL(2)-structure
identifies each tangent space of M with V3 up to the action by GL(2,R).
Consequently, each projectivised tangent space P(TpM) of M carries an
algebraic curve Cp, which is linearly equivalent to the twisted cubic curve.
Conversely, if C ⊂ P(TM) is a smooth subbundle having the property that
each fibre Cp is linearly equivalent to the twisted cubic curve, then one
obtains a unique reduction of the coframe bundle of M whose structure
group is G3.

For what follows it will be convenient to identify V3 ≃ R4 by the isomorph-
ism V3 → R

4 defined on the basis of monomials as
x(3−i)yi 7→ ei+1,

where i = 0, 1, 2, 3 and ei denotes the standard basis of R4. Note that, under
the identification TpM = V3, the cone C̃ of a GL(2)-structure at p can be
written as

C̃p = {s3e1 + 3s2te2 + 3st2e3 + t3e4 | s, t ∈ R}.
We now have:

Theorem 3.1. All torsion-free GL(2)-structures in dimension four are H-
flat, where H ⊂ SL(4,R) is the subgroup consisting of matrices of the form

(4)


1 A B D
0 1 A C
0 0 1 A
0 0 0 1


and where A,B,C,D are arbitrary real numbers.

Remark 3.2. We note that the group H is isomorphic to a semidirect product
of the continuous three-dimensional Heisenberg group H3(R) and the Abelian
group R, that is, H ≃ H3(R) ⋊ R. Indeed, H3(R) has a faithful (neces-
sarily reducible) four-dimensional representation defined by the Lie group
homomorphism ϕ : H3(R)→ SL(4,R)1 a c

0 1 b
0 0 1

 7→

1 a 1

2a
2 + b 1

6a
3 + ab− c

0 1 a 1
2a

2

0 0 1 a
0 0 0 1

 .



GL(2)-STRUCTURES, H-FLATNESS AND INTEGRABILITY 7

The homomorphism ϕ embeds H3(R) as a normal subgroup of the group
H and we think of R as the Abelian subgroup of H defined by setting
A = B = D = 0 in (4).

Remark 3.3. In fact, the notion of a GL(2)-structure makes sense in all
dimensions d ⩾ 3. However, torsion-free GL(2)-structures in dimensions
exceeding four are {e}-flat [2], that is, flat in the usual sense. We refer
the reader to [9, 18] for a comprehensive study of five-dimensional GL(2)-
structures (with torsion).

Remark 3.4. Phrased differently, Theorem 3.1 states that locally every tor-
sion-free GL(2)-structure in dimension four is obtained from a solution to
the first order PDE system (2), where h takes values in the aforementioned
group H.

Proof of Theorem 3.1. We shall prove that for a given torsion-free GL(2)-
structure one can always choose local coordinates such that the cone C̃ has
the following form

C̃ = { s3V0 + 3s2tV1 + 3st2V2 + t3V3| s, t ∈ R},
where the framing (V0, V1, V2, V3) is

(5)
V0 = ∂0, V1 = ∂1 + α∂0, V2 = ∂2 + α∂1 + β∂0,

V3 = ∂3 + α∂2 + γ∂1 + δ∂0,

for some functions α, β, γ and δ. Then, the dual coframing is of the form
h dx, where h takes values in H with
A = −α, B = −β + α2, C = −γ + α2, D = −δ + α(γ + β)− α3.

In order to derive the desired form of C̃ we explore a correspondence
between the torsion-free GL(2)-structures and classes of contact equivalent
fourth order ODEs (compare the proof of [4, Theorem 1] and a similar
correspondence in dimension 3). Indeed, it is proved in [2] that any torsion-
free GL(2)-structure is defined by a fourth order ODE of the form

(6) x(4) = F (y, x, x′, x′′, x′′′),
where the function F = F (y, x0, x1, x2, x3) satisfies a system of non-linear
equations that we will refer to as the Bryant–Wünschmann condition. (Similar
conditions in higher dimensions are known as the generalized Wünschmann
conditions, because they generalize the classical 3-dimensional case, c.f.
[6, 17].)

Above, (y, x0, x1, x2, x3) denote the standard coordinates on the space
J3(R,R) of 3-jets of functions R→ R and the Bryant–Wünschmann condi-
tion is invariant with respect to the group of contact transformations of the
coordinates. The GL(2)-structure corresponding to equation (6) is defined
on the solution space of (6), i.e., on the quotient space J3(R,R)/XF , where
XF = ∂y + x1∂0 + x2∂1 + x3∂2 + F∂3 is the total derivative. In order to
define the structure, we first consider the following field of cones on J3(R,R)
as in [12]

Ĉ = { s3V̂0 + 3s2tV̂1 + 3st2V̂2 + t3V̂3 | s, t ∈ R} mod XF
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where

V̂0 =
3
4∂3,

V̂1 =
1
2∂2 +

3
8∂3F∂3,

V̂2 =
1
2∂1 +

1
4∂3F∂2 +

( 7
20∂2F −

3
20XF (∂3F ) +

9
40(∂3F )

2
)
∂3,

V̂3 = ∂0 +
1
4∂3F∂1 +

(
∂2F −

5
4XF (∂3F ) +

7
16(∂3F )

2 + 7
10K

)
∂2

+
(
∂1F −

3
10XF (K)−XF (∂2F ) +

21
40K∂3F

− 27
16XF (∂3F )∂3F −

3
4∂2F∂3F + 3

4X
2
F (∂3F ) +

27
64(∂3F )

3
)
∂3,

with K = −∂2F + 3
2X(∂3F ) − 3

8(∂3F )
2. To define the cone one looks for

(f, g) such that
(7) ad4fXF

(g∂3) = 0 mod XF , ∂3, ∂2,

where adiXF
stands for the iterated Lie bracket with the vector field XF .

Then Ĉp is defined as the set of all (ad3fXF
(g∂3))(p), where (f, g) solve (7).

The explicit formula for Ĉ can be found using [12, Proposition 4.1] and
[12, Corollary 5.3]. The cone Ĉ is invariant with respect to the flow of
XF if and only if (6) satisfies the Bryant–Wünschmann condition. In this
case (7) takes the form ad4fXF

(g∂3) = 0 mod XF (c.f. [13]). Then Ĉ can be
projected to the quotient space J3(R,R)/XF and defines a GL(2)-structure
there via the field of cones C̃ = q∗Ĉ, where q : J3(R,R) → J3(R,R)/XF

is the quotient map. Note that J3(R,R)/XF can be identified with the
hypersurface {y = 0} ⊂ J3(R,R). Denoting

α = ∂3F |y=0,

β =
( 7
20∂2F −

3
20X(∂3F ) +

9
40(∂3F )

2
) ∣∣∣∣

y=0
,

γ =
(
∂2F −

5
4XF (∂3F ) +

7
16(∂3F )

2 + 7
10K

) ∣∣∣∣
y=0

,

δ =
(
∂1F −

3
10X(K)−X(∂2F ) +

21
40K∂3F −

27
16X(∂3F )∂3F

−3
4∂2F∂3F + 3

4X
2(∂3F ) +

27
64(∂3F )

3
) ∣∣∣∣

y=0

we get that
C̃ = { s3V0 + 3s2tV1 + 3st2V2 + t3V3 | s, t ∈ R}

where

V0 =
3
4∂3, V1 =

1
2∂2 +

3
8α∂3, V2 =

1
2∂1 +

1
4α∂2 + β∂3,

V3 = ∂0 +
1
4α∂1 + γ∂2 + δ∂3.
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The following linear change of coordinates

(x0, x1, x2, x3) 7→
(
x3, 2x2, 2x1,

4
3x0

)

transforms (V0, V1, V2, V3) to

V0 = ∂0, V1 = ∂1 +
1
2α∂0, V2 = ∂2 +

1
2α∂1 +

4
3β∂0,

V3 = ∂3 +
1
2α∂2 + 2γ∂1 +

4
3δ∂0,

which is equivalent to (5) up to constants. □

Remark 3.5. Theorem 3.1 should be compared with [7, Proposition 1],
which can be rephrased that locally any torsion-free GL(2)-structure admits
a coframing of the form hdx with

h =

a1a2a3 a0a2a3 a0a1a3 a0a1a2
1
3 (a1a2b3 + a1b2a3

1
3 (a0a2b3 + a0b2a3

1
3 (a0a1b3 + a0b1a2

1
3 (a0a1b2 + a0b1a3

+b1a2a3) +b0a2a3) +b0a1a3) +b0a1a2)
1
3 (a1b2b3 + b1a2b3

1
3 (a0b2b3 + b0a2b3

1
3 (a0b1b3 + b0a1b3

1
3 (a0b1b2 + b0a1b2

+b1b2a3) +b0b2a3) +b0b1a3) +b0a1b2)
b1b2b3 b0b2b3 b0b1b3 b0b1b2

,

where ai =
(

∂u
∂xi

)−1
and bi =

(
∂v
∂xi

)−1
for some real-valued functions u and

v on V3 ≃ R4. One checks that h is not contained in any proper subgroup of
GL(4,R). It is an interesting problem to find the smallest possible dimension
of the group H, such that all torsion-free GL(2)-structures are H-flat (we
believe that dimension 4 from Theorem 3.1 is optimal).

4. Integrability

In this section we derive the system (2) explicitly in terms of the functions
A, B, C and D of Theorem 3.1. Moreover, we prove that it possesses a
dispersionless Lax pair understood as a pair of commuting vector fields
depending on a spectral parameter. Systems of this type, e.g., the dispersion-
less Kadomtsev-Petviashivili equation, often appear as dispersionless limits
of integrable PDEs. Other examples include the Plebański heavenly equa-
tion or the Manakov-Santini system describing 3-dimensional Einstein-Weyl
geometry. We refer to [15, 16] for general methods of integration of such
systems. Let H ⊂ SL(4,R) be the subgroup of matrices (4). Furthermore,
let Ai, Bi, Ci and Di denote ∂iA, ∂iB, ∂iC and ∂iD, respectively,
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Theorem 4.1. An H-flat GL(2)-structure defined by a coframing h dx, where
h takes values in H, is torsion-free if and only if

(8)

V2(D)− V3(B)−AV2(B)− CV2(A) +AV3(A) +A2V2(A) = 0
2V1(D)− V2(C)− 2AV1(B)− V3(A)+

+AV2(A) + 2A2V1(A)− 2CV1(A) = 0
V0(D)− 2V1(C) + 3V1(B)−AV0(B)− 2V2(A)

−AV1(A)− CV0(A) +A2V0(A) = 0
V0(C)− 2V0(B) + V1(A) +AV0(A) = 0,

and where the framing (V0, V1, V2, V3) dual to h dx is explicitly given by
V0 = ∂0, V1 = ∂1 −A∂0, V2 = ∂2 −A∂1 − (B −A2)∂0,
V3 = ∂3 −A∂2 − (C −A2)∂1 − (D − (C +B)A+A3)∂0.

The system (8) can be put in the Lax form [L0, L1] = 0 with
L0 = ∂3 + (−C + 2Aλ− 3λ2)∂1

+ (−D +AC − 2A2λ+ 4Aλ2 − 2λ3)∂0 + ν(λ)∂λ,
L1 = ∂2 + (−A+ 2λ)∂1 + (−B +A2 − 2Aλ+ λ2)∂0 + µ(λ)∂λ

and

ν(λ) =
(1
2A

2A1 −ABA0 +AA2 −AB1 −
1
2DA0 −

1
2C2

+1
2AC1 +

1
2BC0 −

1
2CA1 +

1
2ACA0 +

1
2A3

)
+ (3B1 − C1 −AA1 −AC0 + 2BA0 − 2A2)λ
+ (C0 −A1)λ2

µ(λ) =
(1
2AA1 +

1
2AC0 −BA0 +A2 −B1

)
+

(1
2A1 −

1
2C0

)
λ,

for some auxiliary spectral coordinate λ.

Remark 4.2. The spectral parameter λ can be treated as an affine parameter
on the fibres of C. The theorem states that D = span{L0, L1} is an integrable
rank-2 distribution on C. There is a 3-parameter family of integral manifolds
of D. Projections of these submanifolds to M give a 3-parameter family of
2-dimensional submanifolds of M tangent to the field of cones C̃.

Remark 4.3. The space of integral manifolds of the aforementioned distribu-
tionD = span{L0, L1} is the twistor space T of a torsion-free GL(2)-structure.
In this context C is the correspondence space and we have a double fibration
picture M ←− C −→ T , where the fibres of the second projection are tan-
gent to D. If the coefficients µ and ν in the Lax pair (L0, L1) vanish, then
there is additional natural projection, defined by the parameter λ, from T
to one-dimensional projective space. In other words, for any fixed λ, the
integral leaves of Dλ = span{L0(λ), L1(λ)} define a 2-dimensional foliation
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of M . Among these structures there is a subclass for which the distribution
span{L0(λ), L1(λ), d

dλL1(λ)} is integrable and thus defines a 3-dimensional
foliation. Such foliations are known as Veronese webs, c.f. [13]. From this
point of view, the Veronese webs can be thought of as higher-dimensional
counterparts of 3-dimensional hyper-CR Einstein-Weyl structures [5].

Veronese webs are described by a hierarchy of integrable systems introduced
in [5], which generalize the dispersionless Hirota equation. It is worth seeing
how the system (8) looks like in this case. For this we note that the H-flat
form of 4-dimensional Veronese webs has been given in [14, Section 6] and
in this case we get (after permutation of indices) the following coefficients

A = ∂1f

∂0f
, B = C = ∂2f

∂0f
, D = ∂3f

∂0f
,

where f = f(x0, x1, x2, x3) is a function. Then, in terms of f , the system (8)
takes the following simple form

f2f00 − f0f02 − f1f01 + f0f11 = 0,
f3f00 − f0f03 − f1f02 + f0f12 = 0,
f3f01 − f0f13 − f2f02 + f0f22 = 0,

which coincides with the system derived in [14, Theorem 6.1]. One can
also set Hi = −fi+1

f0
and pass to a system derived in [14, Theorem 6.2].

An example of such a structure is given by the equation x(4) = (x(3))4/3 from
[5]. In this case, using the formulae given in the proof of Theorem 3.1, one
finds α = x

1/3
0 , β = γ = x

2/3
0 and δ = x0. Thus A = −x1/30 , B = C = D = 0

and f(x0, x1, x2, x3) = x1 − 3
2x

2/3
0 .

Remark 4.4. A Cartan–Kähler analysis reveals that the first order system (8)
– or equivalently (2) – is involutive and has solutions depending on four
functions of three variables, confirming the count of Bryant [2]. Moreover,
straightforward computations show that the characteristic variety of the
system (8) linearised along any solution (A,B,C,D) is the discriminant
locus Q, i.e., the tangential variety of C.

Proof of Theorem 4.1. The system (8) can be directly obtained by expanding
(2) explicitly in terms of the functions A,B,C,D. Here we use a different
method and apply [12, Corollary 7.4] to the framing (V0, 3V1, 3V2, V3).
Namely, denoting λ = s

t , we get that the curve C in P(TM) is the image
of λ 7→ RV (λ) ∈ P(TM), where V (λ) = λ3V0 + 3λ2V1 + 3λV2 + V3 and the
vector fields V0, V1, V2 and V3 are given by (5) with
α = −A, β = −B +A2, γ = −C +A2, δ = −D + (C +B)A−A3.

According to [12, Corollary 7.2], a GL(2)-structure is torsion-free if and
only if

(9)
[
V (λ), d

dλ
V (λ)

]
∈ span

{
V (λ), d

dλ
V (λ), d

2

dλ2
V (λ)

}
,

for any λ ∈ R. This, due to [12, Corollary 7.4] applied to the framing
(V0, 3V1, 3V2, V3),
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is expressed as eight linear equations for structural functions ckij defined by
[Vi, Vj ] =

∑
k c

k
ijVk. However, in the present case, the vector fields Vi are

special and four equations are void. Indeed, the nontrivial equations are as
follows:

c023 = 0, c123 − 2c013 = 0,
c223 − 2c113 + c003 + 3c012 = 0, c323 − 2c213 + c103 + 3c112 − 2c002 = 0

(the equations differ from equations in [12] because of the factor 3 next to V1
and V2 in the present paper). Substituting the structural functions, which
can be easily computed, we get the system (8).

Now, we consider

L0 = V (λ)−
(
λ− 1

3A
)
d

dλ
V (λ) mod ∂λ

and
L1 =

1
3
d

dλ
V (λ) mod ∂λ.

Due to (9), the commutator [L0, L1] lies in the span of {L0, L1,
d2

dλ2V (λ)}
mod ∂λ. Moreover, since

L0 = ∂3 mod ∂1, ∂0, ∂λ and L1 = ∂2 mod ∂1, ∂0, ∂λ,

we get [L0, L1] = ϕ d2

dλ2V (λ) mod ∂λ for some ϕ. One checks by direct
computations that µ(λ) and ν(λ) are chosen such that ϕ = 0 and the
coefficient of [L0, L1] next to ∂λ vanishes as well. □
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