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GL.2/-structures in dimension four, H -flatness
and integrability

WOJCIECH KRYŃSKI AND THOMAS METTLER

ABSTRACT. We show that torsion-free four-dimensional GL.2/-structures are
flat up to a coframe transformation with a mapping taking values in a certain
subgroup H � SL.4;R/, which is isomorphic to a semidirect product of the
three-dimensional continuous Heisenberg group H3.R/ and the Abelian group R.
In addition, we show that the relevant PDE system is integrable in the sense that
it admits a dispersionless Lax-pair.

1. Introduction

A GL.2/-structure on a smooth 4-manifoldM is given by a smoothly varying family
of twisted cubic curves, one in each projectivised tangent space of M . Equivalently,
a GL.2/-structure is the same as G-structure � WB ! M on M , where G is the
image subgroup of the faithful irreducible 4-dimensional representation of GL.2;R/
on the space of homogeneous polynomials of degree three with real coefficients
in two real variables. A GL.2/-structure is called torsion-free if its associated
G-structure is torsion-free. Torsion-free GL.2/-structures are of particular interest,
as they provide examples of torsion-free connections with exotic holonomy group
GL.2;R/. However, the local existence of torsion-free GL.2/-structures is highly
non-trivial, even when applying the Cartan–Kähler machinery, which is particularly
well-suited for the construction of torsion-free connections with special holonomy.
Adapting methods of Hitchin [10], Bryant [2] gave an elegant twistorial construction
of real-analytic torsion-free GL.2/-structures in dimension four, thus providing the
first example of an irreducibly-acting holonomy group of a (non-metric) torsion-free
connection missing from Berger’s list [1] of such connections.

A natural source for GL.2/-structures are differential operators. Recall that the
principal symbol �.D/ of a k-th order linear differential operator DWC1.M;Rn/!
C1.M;Rm/ assigns to each point p 2M a homogeneous polynomial of degree k
on T �pM , with values in Hom.Rn;Rm/. Therefore, in each projectivised cotangent
space P .T �pM/ of M we obtain the so-called characteristic variety „p of D, con-
sisting of those Œ�� 2 P .T �pM/, for which the linear mapping ��.D/WRn ! Rm

fails to be injective. Given a (possibly non-linear) differential operator D and a
smooth Rn-valued function u defined on some open subset U � M and which
satisfies D.u/ D 0, we may ask that the linearisation Lu.D/ of D around u has
characteristic varieties all of which are the tangential variety of the twisted cubic
curve. Consequently, one obtains a GL.2/-structure on the domain of definition
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of each solution u of the PDE D.u/ D 0 for an appropriate class of differen-
tial operators. Various examples of such operators have recently been given by
Ferapontov–Kruglikov [7]. In particular, they show that locally all torsion-free
GL.2/-structures arise in this fashion for some second order operator D, which
furthermore has the property that the PDE D.u/ D 0 admits a dispersionless Lax
representation. We also refer the reader to [8] for an application of similar ideas to
the case of three-dimensional Einstein–Weyl structures.

Here we show that if a 4-manifold M carries a torsion-free GL.2/-structure
� WB ! M , then for every point p 2 M there exists a p-neighbourhood Up,
local coordinates xWUp ! R4 and a mapping hWUp ! H into a certain 4-
dimensional subgroup H � SL.4;R/, so that the coframing � D h dx is a local
section of � WB ! M . The group H is isomorphic to a semidirect product of
the three-dimensional continuous Heisenberg group H3.R/ and the Abelian group
R. Moreover, the mapping h satisfies a first order quasi-linear PDE system which
admits a dispersionless Lax-pair. As in [7], linearising the PDE system around a
solution h gives a linear first order differential operator whose characteristic variety
is the tangential variety of the twisted cubic curve. Also, note that our result shows
that 4-dimensional torsion-free GL.2/-structures are H -flat, that is, flat up to a
coframe transformation with a mapping taking values in H .

Along the way (see Theorem 2.4), we derive a first order PDE describing general
H -flat torsion-free G-structures which may be of independent interest.
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2. G-structures and H -flatness

In this section we collect some elementary facts about G-structures, introduce the
notion ofH -flatness and derive the first order PDE system describingH -flat torsion-
free G-structures. Throughout the article all manifolds and maps are assumed to be
smooth, that is C1.

2.1. The coframe bundle and G-structures

Let M be an n-manifold and V a real n-dimensional vector space. A V -valued
coframe at p 2 M is a linear isomorphism f WTpM ! V . The set FpM of
V -valued coframes at p 2 M is the fibre of the principal right GL.V / coframe
bundle �WFM !M , where the right actionRaWFM ! FM is defined by the rule
Ra.f / D a

�1 ı f for all a 2 GL.V / and f 2 FM . Of course, we may identify
V ' Rn, but it is often advantageous to allow V to be an abstract vector space, in
which case we say FM is modelled on V . The coframe bundle carries a tautological
V -valued 1-form defined by !f D f ı�� so that we have the equivariance property
R�a! D a�1!. A local �-section �WU ! FM is called a coframing on U � M
and a choice of a basis of V identifies � with n linearly independent 1-forms on U .
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Let G � GL.V / be a closed subgroup. A G-structure on M is a reduction
� WB !M of the coframe bundle with structure group G, equivalently, a smooth
section of the fibre bundle FM=G ! M . For local considerations we may take
M D V . Note that in this case M is equipped with a coframing �0 defined by
the exterior derivative of the identity map �0 D d IdV . Consequently, the coframe
bundle of V may naturally be identified with V � GL.V / and hence the set of
G-structures on V is in one-to-one correspondence with the space of smooth maps
V ! GL.V /=G. In particular, a smooth map hWV ! GL.V / defines a G-structure
on V by composing h with the quotient projection GL.V /! GL.V /=G.

2.2. H -flatness

A G-structure � WB ! M is called flat if in a neighbourhood Up of every point
p 2 M there exist local coordinates xWUp ! V , so that dxWUp ! FM takes
values in B . We remark that flat G-structures also are often called integrable.
Suppose H � GL.V / is a closed subgroup. We say a G-structure is H -flat if in a
neighbourhood Up of every point p 2M there exist local coordinates xWUp ! V

and a mapping hWUp ! H , so that h dxWUp ! FM takes values in B . Clearly,
every G-structure is GL.V /-flat and a G-structure is flat in the usual sense if and
only if it is feg-flat, where feg denotes the trivial subgroup of GL.V /.

Example 2.1. Every O.2/-structure is RC-flat, where RC denotes the group of
uniform scaling transformations of R2 with positive scale factor. This is the exist-
ence of local isothermal coordinates for Riemannian metrics in two-dimensions.
Likewise, conformally flat Riemannian metrics in dimensions n > 2 yield examples
of O.n/-structures that are RC-flat.

Remark 2.2. Note that if a G-structure is H -flat for some Lie group H � G, then
it is feg-flat.

2.3. A PDE for H -flat torsion-free G-structures

A G-structure � WB ! M is called torsion-free if there exists a principal G-
connection � on B , so that Cartan’s first structure equation

(1) d! D �� ^ !

holds. Recall that a principal G-connection on B is a 1-form � on B with values
in the Lie algebra g of G that pulls back to each �-fibre to be the canonical left
invariant 1-form on G and that is equivariant with respect to the adjoint action of G,
that is, � satsifies R�g� D Ad.g�1/� for all g 2 G.

Remark 2.3. We remark that a weaker notion of torsion-freeness is also in use, see
for instance [3, 11]. Namely, a G-structure � WB !M is called torsion-free if there
exists a g-valued 1-form � on B so that (1) holds.

We may ask when a G-structure on V induced by a mapping hWV ! H �

GL.V / is torsion-free. To this end let A � V �˝V be a linear subspace. Denote by

ıWV � ˝ V � ˝ V ! ƒ2.V �/˝ V
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the natural skew-symmetrisation map. Recall that the Spencer cohomology group
H 0;2.A/ of A is the quotient

H 0;2.A/ D
�
ƒ2.V �/˝ V

�
=ı.V � ˝ A/:

Let
…AWƒ

2.V �/˝ V ! H 0;2.A/

denote the quotient projection and let �H denote the Maurer–Cartan form of H .
Note that  h D h��H is a 1-form on V with values in the Lie algebra h of H , that
is, a smooth map

 hWV ! V � ˝ h � V � ˝ gl.V / ' V � ˝ V � ˝ V:

We define �h D ı  h, so that �h is a 2-form on V with values in V . We now have:

Theorem 2.4. Let hWV ! H be a smooth map. Then the G-structure defined by h
is torsion-free if and only if

(2) …Ad.h�1/g �h D 0:

Remark 2.5. In the case where H D G the H -structure defined by h is the same as
the torsion-free H -structure defined by the map h � IdV WV ! GL.V /, hence (2)
must be trivially satisfied. This is indeed the case. Since the adjoint action of H
preserves h, we obtain for any map hWV ! H

…Ad.h�1/h �h D …h �h D …h ı  h D 0:

Proof of Theorem 2.4. For the proof we fix an identification V ' Rn. Let x D .xi /
denote the standard linear coordinates on Rn. Furthermore let hWRn ! H �

GL.n;R/ be given and let � WBh ! Rn denote the G-structure defined by h, that
is,

Bh D
˚
.x; a/ 2 Rn � GL.n;R/ W a D h�1.x/g; g 2 G

	
:

We have a G-bundle isomorphism

 WRn �G ! Bh; .x; g/ 7! .x; h�1.x/g/:

The tautological 1-form !0 on FRn ' Rn�GL.n;R/ satisfies .!0/.x;a/ D a�1dx
for all .x; a/ 2 Rn � GL.n;R/. Continuing to write !0 for the pullback to Bh of
!0, we obtain

!.x;g/ WD . 
�!0/.x;g/ D g

�1h.x/dx:

Let ˛ be any 1-form on Rn with values in g, the Lie-algebra of G. We obtain a
principal G-connection � D .� ij / on Rn �G by defining

� D g�1˛g C g�1dg;

where gWRn � G ! G � GL.n;R/ denotes the projection onto the latter factor.
Conversely, every principal G-connection on the trivial G-bundle Rn �G arises in
this fashion. The G-structure Bh is torsion-free if and only if there exists a principal
G-connection � such that

d! C � ^ ! D 0;

which is equivalent to

0 D d
�
g�1hdx

�
C
�
g�1˛g C g�1dg

�
^ g�1hdx
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or
0 D

�
dg�1 C g�1dgg�1

�
^ h dx C g�1 .dh ^ dx C ˛ ^ h dx/ :

Using 0 D d
�
g�1g

�
, we see that the G-structure defined by h is torsion-free if and

only if there exists a 1-form ˛ on V with values in g such that

0 D dh ^ dx C ˛ ^ h dx:

This is equivalent to �
h�1dhC h�1˛h

�
^ dx D 0

or

(3)
�
 h C Ad.h�1/˛

�
^ dx D 0;

where  h D h�1dh denotes the h-pullback of the Maurer–Cartan form of H and
Ad.h/v D hvh�1 the adjoint action of h 2 H on v 2 gl.n;R/. Now (3) is
equivalent to

ı  h C ıAd.h�1/˛ D 0:

Since ˛ takes values in g, this implies that �h D ı  h lies in the ı-image of
V � ˝ Ad.h�1/g. Therefore, we obtain

…Ad.h�1/g �h D 0:

Conversely, suppose �h lies in the ı-image of V � ˝ Ad.h�1/g. Then there exists a
1-form ˇ on V with values in h�1gh so that

�h D ı  h D ı ˇ:

Hence, the g-valued 1-form ˛ on V defined by ˛ D �hˇh�1 satisfies

�h C ı h
�1˛h D ı  h C ıAd.h�1/˛ D 0;

thus proving the claim. □

3. GL.2/-structures

Let x; y denote the standard linear coordinates on R2 and let RŒx; y� denote the
polynomial ring with real coefficients generated by x and y. We let GL.2;R/
act from the left on RŒx; y� via the usual linear action on x; y. We denote by Vd
the subspace consisting of homogeneous polynomials in degree d > 0 and by
Gd � GL.Vd / the image subgroup of the GL.2;R/ action on V3. The vector space
V3 carries a two-dimensional cone QC of distinguished polynomials, consisting of
the perfect cubes, i.e., those that are of the form .ax C by/3 for ax C by 2 V1.
The reader may easily check that G3 is characterised as the subgroup of GL.V3/
that preserves QC . The projectivisation of QC gives an algebraic curve C of degree 3
in P .V3/, which is linearly equivalent to the twisted cubic curve, i.e., the curve in
RP3 defined by the zero locus of the three homogeneous polynomials

P0 D XZ � Y
2; P1 D YW �Z

2; P2 D XW � YZ;

where ŒX W Y WZ WW � are the standard homogeneous coordinates on RP3. The
vector space V3 carries another algebraic variety in its projectivisation besides the
twisted cubic curve. Indeed, the polynomials having vanishing discriminant define a
G3-invariant quartic cone QQ whose projectivisation Q defines a quartic hypersurface



6 W. KRYŃSKI AND T. METTLER

in P .V3/. Furthermore, the singular locus of Q is the twisted cubic curve C and the
tangential variety of C is Q.

LetM be a 4-manifold and let �WFM !M denote its coframe bundle modelled
on V3. A GL.2/-structure on M is a reduction � WB ! M of FM with structure
group G3 ' GL.2;R/. By definition, a GL.2/-structure identifies each tangent
space ofM with V3 up to the action by GL.2;R). Consequently, each projectivised
tangent space P .TpM/ of M carries an algebraic curve Cp, which is linearly
equivalent to the twisted cubic curve. Conversely, if C � P .TM/ is a smooth
subbundle having the property that each fibre Cp is linearly equivalent to the twisted
cubic curve, then one obtains a unique reduction of the coframe bundle of M whose
structure group is G3.

For what follows it will be convenient to identify V3 ' R4 by the isomorphism
V3 ! R4 defined on the basis of monomials as

x.3�i/yi 7! eiC1;

where i D 0; 1; 2; 3 and ei denotes the standard basis of R4. Note that, under the
identification TpM D V3, the cone QC of a GL.2/-structure at p can be written as

QCp D fs
3e1 C 3s

2te2 C 3st
2e3 C t

3e4 j s; t 2 Rg:

We now have:

Theorem 3.1. All torsion-free GL.2/-structures in dimension four areH -flat, where
H � SL.4;R/ is the subgroup consisting of matrices of the form

(4)

0BB@
1 A B D

0 1 A C

0 0 1 A

0 0 0 1

1CCA
and where A;B;C;D are arbitrary real numbers.

Remark 3.2. We note that the group H is isomorphic to a semidirect product
of the continuous three-dimensional Heisenberg group H3.R/ and the Abelian
group R, that is, H ' H3.R/ Ì R. Indeed, H3.R/ has a faithful (necessarily
reducible) four-dimensional representation defined by the Lie group homomorphism
'WH3.R/! SL.4;R/0@1 a c

0 1 b

0 0 1

1A 7!
0BB@
1 a 1

2
a2 C b 1

6
a3 C ab � c

0 1 a 1
2
a2

0 0 1 a

0 0 0 1

1CCA :
The homomorphism ' embeds H3.R/ as a normal subgroup of the group H and
we think of R as the Abelian subgroup of H defined by setting A D B D D D 0
in (4).

Remark 3.3. In fact, the notion of a GL.2/-structure makes sense in all dimensions
d > 3. However, torsion-free GL.2/-structures in dimensions exceeding four are
feg-flat [2], that is, flat in the usual sense. We refer the reader to [9, 18] for a
comprehensive study of five-dimensional GL.2/-structures (with torsion).
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Remark 3.4. Phrased differently, Theorem 3.1 states that locally every torsion-free
GL.2/-structure in dimension four is obtained from a solution to the first order PDE
system (2), where h takes values in the aforementioned group H .

Proof of Theorem 3.1. We shall prove that for a given torsion-free GL.2/-structure
one can always choose local coordinates such that the cone QC has the following
form

QC D f s3V0 C 3s
2tV1 C 3st

2V2 C t
3V3j s; t 2 Rg;

where the framing .V0; V1; V2; V3/ is

(5)
V0 D @0; V1 D @1 C ˛@0; V2 D @2 C ˛@1 C ˇ@0;

V3 D @3 C ˛@2 C @1 C ı@0;

for some functions ˛, ˇ,  and ı. Then, the dual coframing is of the form h dx,
where h takes values in H with

A D �˛; B D �ˇ C ˛2; C D � C ˛2; D D �ı C ˛. C ˇ/ � ˛3:

In order to derive the desired form of QC we explore a correspondence between the
torsion-free GL.2/-structures and classes of contact equivalent fourth order ODEs
(compare the proof of [4, Theorem 1] and a similar correspondence in dimension
3). Indeed, it is proved in [2] that any torsion-free GL.2/-structure is defined by a
fourth order ODE of the form

(6) x.4/ D F.y; x; x0; x00; x000/;

where the function F D F.y; x0; x1; x2; x3/ satisfies a system of non-linear equa-
tions that we will refer to as the Bryant–Wünschmann condition. (Similar conditions
in higher dimensions are known as the generalized Wünschmann conditions, be-
cause they generalize the classical 3-dimensional case, c.f. [6, 17].)

Above, .y; x0; x1; x2; x3/ denote the standard coordinates on the space J 3.R;R/
of 3-jets of functions R! R and the Bryant–Wünschmann condition is invariant
with respect to the group of contact transformations of the coordinates. The GL.2/-
structure corresponding to equation (6) is defined on the solution space of (6), i.e.,
on the quotient space J 3.R;R/=XF , whereXF D @yCx1@0Cx2@1Cx3@2CF@3
is the total derivative. In order to define the structure, we first consider the following
field of cones on J 3.R;R/ as in [12]

OC D f s3 OV0 C 3s
2t OV1 C 3st

2 OV2 C t
3 OV3 j s; t 2 Rg mod XF
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where

OV0 D
3

4
@3;

OV1 D
1

2
@2 C

3

8
@3F@3;

OV2 D
1

2
@1 C

1

4
@3F@2 C

�
7

20
@2F �

3

20
XF .@3F /C

9

40
.@3F /

2

�
@3;

OV3 D @0 C
1

4
@3F@1 C

�
@2F �

5

4
XF .@3F /C

7

16
.@3F /

2
C

7

10
K

�
@2

C

�
@1F �

3

10
XF .K/ �XF .@2F /C

21

40
K@3F

�
27

16
XF .@3F /@3F �

3

4
@2F@3F C

3

4
X2F .@3F /C

27

64
.@3F /

3

�
@3;

with K D �@2F C 3
2
X.@3F / �

3
8
.@3F /

2. To define the cone one looks for .f; g/
such that

(7) ad4fXF
.g@3/ D 0 mod XF ; @3; @2;

where adiXF
stands for the iterated Lie bracket with the vector field XF . Then

OCp is defined as the set of all .ad3fXF
.g@3//.p/, where .f; g/ solve (7). The

explicit formula for OC can be found using [12, Proposition 4.1] and [12, Corol-
lary 5.3]. The cone OC is invariant with respect to the flow of XF if and only if
(6) satisfies the Bryant–Wünschmann condition. In this case (7) takes the form
ad4fXF

.g@3/ D 0 mod XF (c.f. [13]). Then OC can be projected to the quotient
space J 3.R;R/=XF and defines a GL.2/-structure there via the field of cones
QC D q� OC , where qWJ 3.R;R/ ! J 3.R;R/=XF is the quotient map. Note that
J 3.R;R/=XF can be identified with the hypersurface fy D 0g � J 3.R;R/. De-
noting

˛ D @3F jyD0;

ˇ D

�
7

20
@2F �

3

20
X.@3F /C

9

40
.@3F /

2

� ˇ̌̌̌
yD0

;

 D

�
@2F �

5

4
XF .@3F /C

7

16
.@3F /

2
C

7

10
K

� ˇ̌̌̌
yD0

;

ı D

�
@1F �

3

10
X.K/ �X.@2F /C

21

40
K@3F �

27

16
X.@3F /@3F

�
3

4
@2F@3F C

3

4
X2.@3F /C

27

64
.@3F /

3

� ˇ̌̌̌
yD0

we get that

QC D f s3V0 C 3s
2tV1 C 3st

2V2 C t
3V3 j s; t 2 Rg
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where

V0 D
3

4
@3; V1 D

1

2
@2 C

3

8
˛@3; V2 D

1

2
@1 C

1

4
˛@2 C ˇ@3;

V3 D @0 C
1

4
˛@1 C @2 C ı@3:

The following linear change of coordinates

.x0; x1; x2; x3/ 7!

�
x3; 2x2; 2x1;

4

3
x0

�
transforms .V0; V1; V2; V3/ to

V0 D @0; V1 D @1 C
1

2
˛@0; V2 D @2 C

1

2
˛@1 C

4

3
ˇ@0;

V3 D @3 C
1

2
˛@2 C 2@1 C

4

3
ı@0;

which is equivalent to (5) up to constants. □

Remark 3.5. Theorem 3.1 should be compared with [7, Proposition 1], which can
be rephrased that locally any torsion-free GL.2/-structure admits a coframing of
the form h dx with

h D0BBBBB@
a1a2a3 a0a2a3 a0a1a3 a0a1a2

1
3
.a1a2b3 C a1b2a3

1
3
.a0a2b3 C a0b2a3

1
3
.a0a1b3 C a0b1a2

1
3
.a0a1b2 C a0b1a3

Cb1a2a3/ Cb0a2a3/ Cb0a1a3/ Cb0a1a2/
1
3
.a1b2b3 C b1a2b3

1
3
.a0b2b3 C b0a2b3

1
3
.a0b1b3 C b0a1b3

1
3
.a0b1b2 C b0a1b2

Cb1b2a3/ Cb0b2a3/ Cb0b1a3/ Cb0a1b2/

b1b2b3 b0b2b3 b0b1b3 b0b1b2

1CCCCCA;

where ai D
�
@u
@xi

��1
and bi D

�
@v
@xi

��1
for some real-valued functions u and v on

V3 ' R4. One checks that h is not contained in any proper subgroup of GL.4;R/.
It is an interesting problem to find the smallest possible dimension of the group H ,
such that all torsion-free GL.2/-structures are H -flat (we believe that dimension 4
from Theorem 3.1 is optimal).

4. Integrability

In this section we derive the system (2) explicitly in terms of the functions A, B ,
C and D of Theorem 3.1. Moreover, we prove that it possesses a dispersionless
Lax pair understood as a pair of commuting vector fields depending on a spectral
parameter. Systems of this type, e.g., the dispersionless Kadomtsev-Petviashivili
equation, often appear as dispersionless limits of integrable PDEs. Other examples
include the Plebański heavenly equation or the Manakov-Santini system describing
3-dimensional Einstein-Weyl geometry. We refer to [15, 16] for general methods
of integration of such systems. Let H � SL.4;R/ be the subgroup of matrices (4).
Furthermore, let Ai , Bi , Ci and Di denote @iA, @iB , @iC and @iD, respectively,
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Theorem 4.1. An H -flat GL.2/-structure defined by a coframing h dx, where h
takes values in H , is torsion-free if and only if

(8)

V2.D/ � V3.B/ � AV2.B/ � CV2.A/C AV3.A/C A
2V2.A/ D 0

2V1.D/ � V2.C / � 2AV1.B/ � V3.A/C

C AV2.A/C 2A
2V1.A/ � 2CV1.A/ D 0

V0.D/ � 2V1.C /C 3V1.B/ � AV0.B/ � 2V2.A/

� AV1.A/ � CV0.A/C A
2V0.A/ D 0

V0.C / � 2V0.B/C V1.A/C AV0.A/ D 0;

and where the framing .V0; V1; V2; V3/ dual to h dx is explicitly given by

V0 D @0; V1 D @1 � A@0; V2 D @2 � A@1 � .B � A
2/@0;

V3 D @3 � A@2 � .C � A
2/@1 � .D � .C C B/AC A

3/@0:

The system (8) can be put in the Lax form ŒL0; L1� D 0 with

L0 D @3 C .�C C 2A� � 3�
2/@1

C .�D C AC � 2A2�C 4A�2 � 2�3/@0 C �.�/@�;

L1 D @2 C .�AC 2�/@1 C .�B C A
2
� 2A�C �2/@0 C �.�/@�

and

�.�/ D

�
1

2
A2A1 � ABA0 C AA2 � AB1 �

1

2
DA0 �

1

2
C2

C
1

2
AC1 C

1

2
BC0 �

1

2
CA1 C

1

2
ACA0 C

1

2
A3

�
C .3B1 � C1 � AA1 � AC0 C 2BA0 � 2A2/�

C .C0 � A1/�
2

�.�/ D

�
1

2
AA1 C

1

2
AC0 � BA0 C A2 � B1

�
C

�
1

2
A1 �

1

2
C0

�
�;

for some auxiliary spectral coordinate �.

Remark 4.2. The spectral parameter � can be treated as an affine parameter on
the fibres of C . The theorem states that D D spanfL0; L1g is an integrable rank-
2 distribution on C . There is a 3-parameter family of integral manifolds of D .
Projections of these submanifolds to M give a 3-parameter family of 2-dimensional
submanifolds of M tangent to the field of cones QC .

Remark 4.3. The space of integral manifolds of the aforementioned distribution
D D spanfL0; L1g is the twistor space T of a torsion-free GL.2/-structure. In
this context C is the correspondence space and we have a double fibration picture
M  � C �! T , where the fibres of the second projection are tangent to D . If the
coefficients � and � in the Lax pair .L0; L1/ vanish, then there is additional natural
projection, defined by the parameter �, from T to one-dimensional projective space.
In other words, for any fixed �, the integral leaves of D� D spanfL0.�/; L1.�/g
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define a 2-dimensional foliation ofM . Among these structures there is a subclass for
which the distribution spanfL0.�/; L1.�/; dd�L1.�/g is integrable and thus defines
a 3-dimensional foliation. Such foliations are known as Veronese webs, c.f. [13].
From this point of view, the Veronese webs can be thought of as higher-dimensional
counterparts of 3-dimensional hyper-CR Einstein-Weyl structures [5].

Veronese webs are described by a hierarchy of integrable systems introduced in
[5], which generalize the dispersionless Hirota equation. It is worth seeing how
the system (8) looks like in this case. For this we note that the H -flat form of
4-dimensional Veronese webs has been given in [14, Section 6] and in this case we
get (after permutation of indices) the following coefficients

A D
@1f

@0f
; B D C D

@2f

@0f
; D D

@3f

@0f
;

where f D f .x0; x1; x2; x3/ is a function. Then, in terms of f , the system (8)
takes the following simple form

f2f00 � f0f02 � f1f01 C f0f11 D 0;

f3f00 � f0f03 � f1f02 C f0f12 D 0;

f3f01 � f0f13 � f2f02 C f0f22 D 0;

which coincides with the system derived in [14, Theorem 6.1]. One can also set
Hi D �

fiC1

f0
and pass to a system derived in [14, Theorem 6.2]. An example

of such a structure is given by the equation x.4/ D .x.3//4=3 from [5]. In this
case, using the formulae given in the proof of Theorem 3.1, one finds ˛ D x

1=3
0 ,

ˇ D  D x
2=3
0 and ı D x0. Thus A D �x1=30 , B D C D D D 0 and

f .x0; x1; x2; x3/ D x1 �
3
2
x
2=3
0 .

Remark 4.4. A Cartan–Kähler analysis reveals that the first order system (8) – or
equivalently (2) – is involutive and has solutions depending on four functions of
three variables, confirming the count of Bryant [2]. Moreover, straightforward
computations show that the characteristic variety of the system (8) linearised along
any solution .A;B; C;D/ is the discriminant locus Q, i.e., the tangential variety of
C .

Proof of Theorem 4.1. The system (8) can be directly obtained by expanding (2)
explicitly in terms of the functions A;B;C;D. Here we use a different method
and apply [12, Corollary 7.4] to the framing .V0; 3V1; 3V2; V3/. Namely, denoting
� D s

t
, we get that the curve C in P .TM/ is the image of � 7! RV.�/ 2 P .TM/,

where V.�/ D �3V0 C 3�
2V1 C 3�V2 C V3 and the vector fields V0, V1, V2 and

V3 are given by (5) with

˛ D �A; ˇ D �B C A2;  D �C C A2; ı D �D C .C C B/A � A3:

According to [12, Corollary 7.2], a GL.2/-structure is torsion-free if and only if

(9)
�
V.�/;

d

d�
V.�/

�
2 span

�
V.�/;

d

d�
V.�/;

d2

d�2
V.�/

�
;

for any � 2 R. This, due to [12, Corollary 7.4] applied to the framing

.V0; 3V1; 3V2; V3/;
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is expressed as eight linear equations for structural functions ckij defined by ŒVi ; Vj � DP
k c

k
ijVk . However, in the present case, the vector fields Vi are special and four

equations are void. Indeed, the nontrivial equations are as follows:

c023 D 0; c123 � 2c
0
13 D 0;

c223 � 2c
1
13 C c

0
03 C 3c

0
12 D 0; c323 � 2c

2
13 C c

1
03 C 3c

1
12 � 2c

0
02 D 0

(the equations differ from equations in [12] because of the factor 3 next to V1 and
V2 in the present paper). Substituting the structural functions, which can be easily
computed, we get the system (8).

Now, we consider

L0 D V.�/ �

�
� �

1

3
A

�
d

d�
V.�/ mod @�

and

L1 D
1

3

d

d�
V.�/ mod @�:

Due to (9), the commutator ŒL0; L1� lies in the span of fL0; L1; d
2

d�2V.�/g mod @�.
Moreover, since

L0 D @3 mod @1; @0; @� and L1 D @2 mod @1; @0; @�;

we get ŒL0; L1� D ' d2

d�2V.�/ mod @� for some '. One checks by direct computa-
tions that �.�/ and �.�/ are chosen such that ' D 0 and the coefficient of ŒL0; L1�
next to @� vanishes as well. □
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