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Minimal Lagrangian connections on
compact surfaces

THOMAS METTLER

ABSTRACT. We introduce the notion of a minimal Lagrangian connection
on the tangent bundle of a manifold and classify all such connections
in the case where the manifold is a compact oriented surface of non-
vanishing Euler characteristic. Combining our classification with results
of Labourie and Loftin, we conclude that every properly convex projective
surface arises from a unique minimal Lagrangian connection.

1. Introduction

1.1. Background

A projective manifold is a pair (M,p) consisting of a smooth manifold
M and a projective structure p, that is, an equivalence class of torsion-free
connections on the tangent bundle 7'M, where two such connections are called
projectively equivalent if they share the same geodesics up to parametrisation.
A projective manifold (M, p) is called properly convez if it arises as a quotient
of a properly convex open set M C RP" by a group I' € PSL(n + 1,R) of
projective transformations which acts discretely and properly discontinuously.
The geodesics of p are the projections to M = I‘\J\Zf of the projective line
segments contained in M. In particular, locally the geodesics of a properly
convex projective structure p can be mapped diffeomorphically to segments
of straight lines, that is, p is flat.

It follows from the work of Cheng-Yau [9, 10] that the universal cover M
of a properly convex projective manifold (M, p) determines a unique properly
embedded hyperbolic affine sphere f : M — R™!, which is asymptotic to
the cone over M in R™t1. The Blaschke metric and Blaschke connection
induced by f descend to the quotient F\M and equip M with a complete
Riemannian metric g and projectively flat connection V € p, see the work of
Loftin [30]. The difference between V and the Levi-Civita connection of the
Blaschke metric is encoded in terms of a cubic form, the so-called Fubini—Pick
form of f. For an introduction to affine differential geometry the reader may
consult [35] as well as [29] for a nice survey on affine spheres.

Properly convex projective surfaces are of particular interest, as they
may be seen — through the work of Hitchin [25], Goldman [20] and Choi-
Goldman [12] — as the natural generalisation of the notion of a hyperbolic
Riemann surface. In the case of a properly convex oriented surface (%, p),
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the Fubini—Pick form is the real part of a cubic differential that is holo-
morphic with respect to the Riemann surface structure on X defined by
the orientation and the conformal equivalence class of the Blaschke metric.
Conversely, Wang [38] observed that a holomorphic cubic differential C on a
closed hyperbolic Riemann surface (X, [g]) determines a unique conformal
Riemannian metric g whose Gauss curvature K, satisfies

(1.1) Ky =—-1+2|C[2,

where |C|, denotes the point-wise tensor norm of C' with respect to the
Hermitian metric induced by g on the third power of the canonical bundle of
Y. Furthermore, the pair (g, Re(C)) can be realized as the Blaschke metric
and Fubini—Pick form of a complete hyperbolic affine sphere f : M — R3
defined on the universal cover M of M. In particular, combining Wang’s work
with the work of Loftin establishes — on a compact oriented surface of negative
Euler characteristic — a bijective correspondence between properly convex
projective structures and pairs ([g], C) consisting of a conformal structure [g]
and a cubic holomorphic differential C, see [30]. This correspondence was
also discovered independently by Labourie [26]. Since then, Benoist—Hulin [1]
have extended the correspondence to noncompact projective surfaces with
finite Finsler volume and Dumas—Wolf [14] study the case of polynomial
cubic differentials on the complex plane.

In [28], Libermann constructs a para-Kéahler structure (hg, () on the
open submanifold 49 C RP™ x RP™ consisting of non-incident point-line
pairs. A para-Kéhler structure may be thought of as a split-complex analogue
of the notion of a Kéhler structure. In particular, hg is a pseudo-Riemannian
metric of split-signature (n,n) and Qg a symplectic form, so that there exists
an endomorphism of the tangent bundle relating hy and Qy which squares
to become the identity map. In [22, 23], Hildebrand — see also the related
work [17, 19, 37] — observed that proper affine spheres f : M — R"*!
correspond to minimal Lagrangian immersions f : M — Ap. Thus, the result
of Hildebrand, combined with the work of Cheng—Yau, associates a minimal
Lagrangian immersion to every properly convex projective manifold.

1.2. Minimal Lagrangian connections

Here we propose a generalization of the notion of a properly convex projective
surface which arises naturally from the concept of a minimal Lagrangian
connection. In joint work with Dunajski the author has shown that the
construction of Libermann is a special case of a more general result: In [15], it
is shown that a projective structure p on an n-manifold M canonically defines
an almost para—Kéhler structure (hy, £,) on the total space of a certain affine
bundle A — M, whose underlying vector bundle is the cotangent bundle of
M. The bundle A — M has the crucial property that its sections are in one-
to-one correspondence with the representative connections of p. Therefore,
fixing a representative connection V € p gives a section sy : M — A and
hence an isomorphism vy : T*M — A, by declaring the origin of the affine
fibre A, to be sy(p) for all p € M. Correspondingly, we obtain a pair
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(hv,Qv) = ¥ (hy, ) on the total space of the cotangent bundle. Besides
being a geometric structure of interest in itself (see [15] for details), the pair
(hv,Qv) has the natural property

O*hv = (Sv)*hp = — (ﬁ) RiC+(V)
and "
0" Qv = (sv)*Q = (n——|—1> Ric™(V),

where 0 : M — T*M denotes the zero-section and Ric* (V) the symmetric
(respectively, the anti-symmetric) part of the Ricci curvature Ric(V) of V.
Consequently, we call V Lagrangian if the Ricci tensor of V is symmetric, or
equivalently, if the zero-section o is a Lagrangian submanifold of (T*M, Qy).
Likewise, we call V timelike/spacelike if £Rict (V) is positive definite, or
equivalently, if the zero-section o is a timelike/spacelike submanifold of
(T*M, hy). The upper sign corresponds to the timelike case and lower sign
to the spacelike case. Moreover, we call V minimal if the zero-section is a
minimal submanifold of (T*M, hv).

We henceforth restrict our considerations to the case of oriented surfaces.
We show (see Theorem 4.4 below) that a timelike/spacelike Lagrangian
connection V is minimal if and only if

RY (2V;Rj — Vi Rij) =0,
where R;; denotes the Ricci tensor of V and RY its inverse. We then show
that a minimal Lagrangian connection V on an oriented surface ¥ defines a

triple (g, 8,C) on X, consisting of a Riemannian metric g, a 1-form 8 and a
cubic differential C, so that the following equations hold

(12) Ky=+1+2|C|2+,8, 0C=(B-ixpB)®C, dB=0.

As usual, i = /=1, 0 denotes the “del-bar” operator with respect to the
integrable almost complex structure J induced on ¥ by [g] and the orientation,
*g, 0g and Ky denote the Hodge-star, co-differential and Gauss curvature
with respect to g, respectively. Recall that |C|, denotes the point-wise tensor
norm of C' with respect to the Hermitian metric induced by g on the third
power of the canonical bundle of ¥. As a consequence, we use a result of
Labourie [26] to prove that if V is a spacelike minimal Lagrangian connection
on a compact oriented surface ¥ defining a flat projective structure p(V), then
(3, p) is a properly convex projective surface. Moreover, the zero-section is a
totally geodesic submanifold of (T*X, hy) if and only if V is the Levi-Civita
connection of a hyperbolic metric.

We also show that a minimal Lagrangian connection defines a flat projective
structure if and only if 8 vanishes identically. In particular, we recover Wang’s
equation (1.1) in the projectively flat case. In the projectively flat case
Labourie [26] interpreted the first two equations as an instance of Hitchin’s
Higgs bundle equations [24]. In the case with § # 0 the above triple of
equations falls into the general framework of symplectic vortex equations [13]
(see also [3]). Furthermore, it appears likely that the above equations also
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admit an interpretation in terms of affine differential geometry, but this will
be addressed elsewhere.

The last two of the equations (1.2) say that locally there exists a (real-
valued) function r so that e=2"C' is holomorphic. As a consequence of this
we show that the only examples of minimal Lagrangian connections on the
2-sphere are Levi-Civita connections of metrics of positive Gauss curvature.

Furthermore, if (X, [g]) is a compact Riemann surface of negative Euler
characteristic x(X), then the metric g of the triple (g,3,C) is uniquely
determined in terms of ([g], 8, C). This leads to a quasi-linear elliptic PDE
of vortex type, which belongs to a class of equations solved in [17] using
the technique of sub — and supersolutions (see also [14] for the case when
vanishes identically). Here instead, we use the calculus of variations and prove
existence and uniqueness of a smooth minimum of the following functional
defined on the Sobolev space W12(X)

_ 1
brr WD) SR, w5 / dul?, — 2u — Ke? + re " dA,,,
2

where k,7 € C®(X) satisfy kK < 0, 7 > 0 and gy denotes the hyperbolic
metric in the conformal equivalence class [g].

An immediate consequence of (1.2) is that the area of a spacelike minimal
Lagrangian connection V — by which we mean the area of o(X) C (T*X, hy)
— satisfies the inequality

Area(V) > —2mx(X).

Therefore, we call a spacelike minimal Lagrangian connection with area
—2mx(X) area minimising. We obtain:

Theorem 7.9. Let X be a compact oriented surface with x(X) < 0. Then
we have:

(i) there exists a one-to-one correspondence between area minimising
Lagrangian connections on TY and pairs ([g],B) consisting of a
conformal structure [g] and a closed 1-form 8 on X;

(ii) there exists a one-to-one correspondence between non-area minimising
minimal Lagrangian connections on TS and pairs ([g], C) consisting
of a conformal structure [g] and a non-trivial cubic differential C on
¥ that satisfies 0C = (8 — ixg ) @ C for some closed 1-form (.

Using the classification of properly convex projective structures by Loftin
[30] and Labourie [26], it follows that every properly convex projective
structure on ¥ arises from a unique spacelike minimal Lagrangian connection,
paralleling the result of Hildebrand.

1.3. Related work

After the first version of this article appeared on the arXiv, Daniel Fox
informed the author about his interesting paper [17], which contains some
closely related results. Here we briefly compare our results which were arrived
at independently. In a previous eprint [16] (see also [18]), Fox introduced the
notion of an AH (affine hypersurface) structure which is a pair comprising a
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projective structure and a conformal structure satisfying a compatibility con-
dition which is automatic in two dimensions. He then proceeds to postulate
Einstein equations for AH structures, which are motivated by Calderbank’s
work on Einstein—-Weyl structures on surfaces [5]. Subsequently in [17], Fox
classifies the Einstein AH structures on closed oriented surfaces and in partic-
ular, observes that in the case of negative Euler-characteristic they precisely
correspond to the properly convex projective structures. On the 2-sphere S?
he recovers the Einstein—-Weyl structures of Calderbank. On S2, the Einstein
AH structures and the minimal Lagrangian connections “overlap” in the
space of metrics of constant positive Gauss—curvature. In the case of negative
Euler characteristic, the minimal Lagrangian connections are however strictly
more general than the Einstein AH structures. Indeed, in this case, the
projective structures arising from minimal Lagrangian connections provide a
new and previously unstudied class of projective structures.

This new class of (possibly) curved projective structures may be thought
of as a generalization of the notion of a (flat) properly convex projective
structure. One would expect that this class exhibits interesting properties,
similar to those of properly convex projective structures. As a first result in
this direction, it is shown in [34], that the geodesics of a minimal Lagrangian
connection naturally give rise to a flow admitting a dominated splitting (a
certain weakening of the notion of an Anosov flow). In particular, this flow
provides a generalization of the geodesic flow induced by the Hilbert metric
on the quotient surface of a divisible convex set.

Furthermore, in joint work in progress by the author and A. Cap [8],
the notion of a minimal Lagrangian connection is extended to all so-called
|1|-graded parabolic geometries. This is a class of geometric structures
which, besides projective geometry, includes (but is not restricted to) con-
formal geometry, (almost) Grassmannian geometry and (almost) quaternionic
geometry.
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2. Preliminaries

Throughout the article ¥ will denote an oriented smooth 2-manifold without
boundary. All manifolds and maps are assumed to be smooth and we adhere
to the convention of summing over repeated indices.

2.1. The coframe bundle

We denote by v : F — ¥ the bundle of orientation preserving coframes
whose fibre at p € ¥ consists of the linear isomorphisms f : T, — R? that
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are orientation preserving with respect to the fixed orientation on ¥ and
the standard orientation on R2. Recall that v : F — X is a principal right
GL*(2, R)-bundle with right action defined by the rule R,(f) = f-a=a"lof
for all @ € GL™(2,R). The bundle F is equipped with a tautological R2-
valued 1-form w = (w’) defined by ws = f o v}, and this 1-form satisfies

the equivariance property R:w = a~'w. A torsion-free connection V on 7%
corresponds to a gl(2, R)-valued connection 1-form 6 = (6}) on F satisfying
the structure equations

(2.1) dw = -0 Aw,

where © denotes the curvature 2-form of §. The Ricci curvature of V is the
(not necessarily symmetric) covariant 2-tensor field Ric(V) on ¥ satisfying

Ric(V)(X,Y) = tr (z N Vit e V[Z,X]Y) . ZeI(TM),

for all vector fields X,Y on X. Denoting by Ric*(V) the symmetric (re-
spectively, the anti-symmetric) part of the Ricci curvature of V, so that
Ric(V) = Ric™(V) + Ric™(V), the (projective) Schouten tensor of V is
defined as

Schout(V) = Ric+(V) — %Ric_(V).

Since the components of w are a basis for the v-semibasic forms on F,! it
follows that there exist real-valued functions S;; on F' such that

v*Schout(V) = w'Sw = Sjjw' ® u?,
where S = (5;;). Note that
RS =a'Sa

for all @ € GL(2,R), since w!Sw is invariant under R,. In terms of the
functions S;; the curvature 2-form © = () can be written as?

(2.3) O = (8}Snj — 88wy ) w* A,

or explicitly

(2821 — S12 Sa2 1,2
(2.4) 0= ( S 521_2512>w Aw?.

1Recall that a 1-form o € Q'(M) is semibasic for the projection 7 : M — N if a
vanishes on vector fields that are tangent to the w-fibres.

2For a matrix S = (S;;) we denote by S(i;) its symmetric part and by Sj;;) its anti-
symmetric part, so that Si; = S(;) + Sjij)-
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2.2. The orthonormal coframe bundle

Recall that if g is a Riemannian metric on the oriented surface ¥, the Levi-
Civita connection (¢7) of g is the unique connection on the coframe bundle
v: F — ¥ satisfying

dw® = —g0§ Aw,
e ok
9ij = 9ikP; + 9kjiPi
where we write v*g = gijwi ® w! for real-valued functions 9ij = gj; on F.

Differentiating these equations implies that there exists a unique function
K, the Gauss curvature of g, so that

d(pz- + @t A <p§ = gipKqw' A wF.
We may reduce F' to the SO(2)-subbundle F, consisting of orientation
preserving coframes that are also orthonormal with respect to g , that is,
the bundle defined by the equations g;; = d;;. On F the identity dg;; = 0
implies the identities ¢} = go% =0 as well as go% + ¢? = 0. Therefore, writing
¢ = 3, we obtain the structure equations

dw; = —wa A ¢,
(2.5) dws = —p Awr,
dQD = —AgWwi A wa,

where w; = ijwj. Continuing to denote the basepoint projection F; — X
by v, the area form dA, of g satisfies v*dA; = w1 A we. Also, note that
a complex-valued 1-form a on ¥ is a (1,0)-form for the complex structure
J induced on ¥ by g and the orientation if and only if v*« is a complex
multiple of the complex-valued form w = w; + iws. In particular, denoting
by K the canonical bundle of ¥ with respect to J, a section A of the ¢-th
tensorial power of K satisfies v*A = aw’ for some unique complex-valued
function a on F,. Denote by S3(T*X) the trace-free part of S3(T*%) with
respect to [g], where S3(T*X) denotes the third symmetrical power of the
cotangent bundle of ¥. The proof of the following lemma is an elementary
computation and thus omitted.

Lemma 2.1. Suppose W € T (S3(T*X)). Then there ezists a unique cubic
differential C € T'(K3) so that Re(C) = W. Moreover, writing v*W =
W;jrw; ®w; @wy, for unique real-valued functions w;j, on Fy, totally symmetric
in all indices, the cubic differential satisfies v*C = (w111 + iwaeg)wd.

In complex notation, the structure equations of a cubic differential C €
I'(K3) can be written as follows. Writing v*C = cw? for a complex-valued
function c on Fy, it follows from the SO(2)-equivariance of cw® that there
exist complex-valued functions ¢’ and ¢” on Fy such that

dec = dw + "W + 3icy,
where we write w = w; — iws. Note that the Hermitian metric induced by g
on K g has Chern connection D given by

c — dc — 3icep.
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In particular, the (0,1)-derivative of C with respect to D is represented by
¢, that is, v*(D%'C) = ¢'w? ® w. Since d = D%!, we obtain
(2.6) v (3C) = '’ @ w.
Also, we record the identity
’U*|C|§ = |c|.

Moreover, recall that for u € C°°(X) we have the following standard
identity for the change of the Gauss curvature of a metric g under conformal
rescaling

Koy =€ 2" (Kg — Agu),
where Ay = — (64d + ddy) is the negative of the Laplace-Beltrami operator
with respect to g. Also,
dAgu, = €®dA,
for the change of the area form dAg,
Aguy = e A,
for A4 acting on functions and

_ —2u
6e2ug =e 6g

g

for the co-differential acting on 1-forms. Finally, the norm of C' changes as

|Clzeug = €~*|CI5-

2.3. The cotangent bundle and induced structures

Recall that we have a GL1 (2, R) representation ¢ on Ry — the real vector
space of row vectors of length two with real entries — defined by the rule
o(a)¢ = a~! for all £ € Ry and a € GL™(2,R). The cotangent bundle of &
is the vector bundle associated to the coframe bundle F' via the represent-
ation p, that is, the bundle obtained by taking the quotient of F' X Rg by
the GLT (2, R)-right action induced by o. Consequently, a 1-form on ¥ is
represented by an Re-valued function £ on F which is GL* (2, R)-equivariant,
that is, ¢ satisfies R} = €a for all a € GLT(2,R).

Using 6 we may define a Riemannian metric hy as well as a symplectic
form Qy on T*X as follows. Let

7m:F xRy = (F x Ry) /GL*(2,R) ~ T*%
denote the quotient projection. Writing
P =dE — €0 — Ewe — WSt
or in components ¥ = (1;) with
Py = de; — €67 — Ejuwie; — S,

we consider the covariant 2-tensor field Ty = 1w := 1; ® w’. Note that the
m-semibasic 1-forms on F' X Ro are given by the components of w and d§ — &6,
or, equivalently, by the components of w and . Indeed, the components of
w are semibasic by the definition of w. Moreover, if X, for v € gl(2,R) is a
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fundamental vector field for the coframe bundle F' — X, that is, the vector
field associated to the flow Reyp (1), then

1
(d€ = €0)(X,) = ~€0(X) + lim — ((Roxp())"€ — €)

= —tv +lim - (€ exp(tv) — &) = ~Ev+£v =0,

where we have used that the connection # maps a fundamental vector field
X, to its generator v € gl(2,R). Since the fundamental vector fields span
the vector fields tangent to fibres of =, it follows that the components of
d¢ — €0 are m-semibasic. Moreover,

(2.7) R =déa— €aa ' 0a — aa ' wéa — wi(a ) a’Sta = va,

(2.8) Riw=a'w,

for all @ € GL*(2,R), it follows that the m-semibasic tensor field Ty is
invariant under the GL™ (2, R)-right action and hence there exists a unique

symmetric covariant 2-tensor field Ay and a unique anti-symmetric covariant
2-tensor field 2y on T*Y such that

* (hv + Qv) =Ty.
Using the structure equation (2.1), we compute
Qv = dé AW’ — &6 AWt — EEjw’ Aw — Sjiw’ Awt
=d& A w4 §idwi = Sijwi Aw!
= d(&w*) — Spijw’ A
The 1-form éw = &w' on F x Ry is m-semibasic and R, invariant, hence the
m-pullback of a unique 1-form 7 on 7Y which is the tautological 1-form of
T*3. Recall that the canonical symplectic form on T*¥ is Qy = d7, hence
Qv defines a symplectic structure on 7Y which is the canonical symplectic
structure twisted with the (closed) 2-form 3Ric™ (V)
1
Oy = Qo+ T* (gRic_(V)> ,

where T : T*Y — X denotes the basepoint projection. In particular, denoting
by o : ¥ — T*X the zero Y-section, the definition of the Schouten tensor
gives

0" Qv = %Ric‘(V).
This shows:

Proposition 2.2. The zero section of T*X. is a Qv -Lagrangian submanifold
if and only if V has symmetric Ricci tensor.

Which motivates:

Definition 2.3. A torsion-free connection V on T'Y is called Lagrangian if
Ric™ (V) vanishes identically.
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Also, we obtain for the symmetric part
T*hy =Y ow := Y1 o w' + Py o w?

where o denotes the symmetric tensor product. Since the four 1-forms
1,92, w!,w? are linearly independent, it follows that Ay is non-degenerate
and hence defines a pseudo-Riemannian metric of split signature (1,1, —1,—1)
on T*X.

Remark 2.4. The motivation for introducing the pair (hy, Qv ) is its projective
invariance, i.e., suitably interpreted, the pair (hy,{2yv) does only depend on
the projective equivalence class of the connection V. Moreover, the metric
hy is anti-self-dual and Einstein. We refer the reader to [15] as well as [6]
for further details.

From the definition of the Schouten tensor and hy we immediately obtain
(2.9) o*hy = —Ric (V).

Following standard pseudo-Riemannian submanifold theory, we call a tangent
vector v timelike if hy(v,v) < 0 and spacelike if hy(v,v) > 0. Thus (2.9)
motivates:

Definition 2.5. A torsion-free connection V on TX is called timelike if
Rict (V) is positive definite and spacelike if Rict (V) is negative definite.

3. Twisted Weyl connections

We will see that timelike/spacelike minimal Lagrangian connections are
twisted Weyl connections. In this section we study some properties of this
class of connections that we will need later during the classification of
spacelike minimal Lagrangian connections.

Let [g] be a conformal structure on the smooth oriented surface . By a
[g9]-Weyl connection on ¥ we mean a torsion-free connection on T'Y. preserving
the conformal structure [g]. It follows from Koszul’s identity that a [g]-Weyl
connection can be written in the following form

WAV =9V + g8l —BxId—1d® 8,

where g € [g], B € Q1(2) is a 1-form and 3% denotes the g-dual vector field
to 8. We will use the notation 9!V to denote a general [g]-Weyl connection.

Definition 3.1. A twisted Weyl connection V on (X, [g]) is a connection on
the tangent bundle of ¥ which can be written as V = 9V + o for some [g]-
Weyl connection 9!V and some 1-form o with values in End(TY) satisfying
the following properties:

(i) a(X) is trace-free and [g]-symmetric for all X € I'(T'Y);
(i) a(X)Y = a(Y)X for all X,Y € I(T%).

Note that if « satisfies the above properties, then Y9V + « is torsion-free.
Moreover, the covariant 3-tensor obtained by lowering the upper index of
a with a metric g € [g] gives a section of I'(S3(T*X)). Conversely, every
End(TX)-valued 1-form on ¥ satisfying the above properties arises in this
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way. In other words, fixing a Riemannian metric g € [g] allows to identify
the twist term a with a cubic differential.

Fixing a metric g € [g], the connection form 6 = (67) of a twisted Weyl
connection is given by

0 = o} + (begg;u — by — 6b; + ay) o,

where the map (g;;) : F — S?(R2) represents the metric g, the map (b;) :
F — R; represents the 1-form 8 and the map (aj;) : F' — R? ® S?(Rz)
represents the 1-form . Moreover, (goz) denote the Levi-Civita connection

forms of g. Reducing to the bundle Fy of g-orthonormal orientation preserving
coframes, the connection form becomes
0 = —B *gB — ¥ + a}1w1 +ajpw2  ajaw' + agown
p—*8 =B afiwi +afwe  afpwi +ajaws |
where we use the identity v* (xg) = —bawi + biwz. By definition, on Fy the
functions a;k satisfy the identities
agk = azj, allzj =0, 5kia§l = 6kja§l.

Thus, writing ¢; = al; and cz = a2,, we obtain

0 — -B *gB — ¢ + Clwi — Cow2  —CaWi1 — C1W2
p—*B8 =B —Cow1 — Clwy —cCiwi +cowz |

In order to compute the curvature form of # we first recall that we write
v*B = b;w; and since b;w; is SO(2)-invariant, it follows that there exist unique
real-valued functions b;; on F; such that

dby = briwr + b1aws + by,

dby = ba1w1 + baawa — b1p.
Recall also that the area form of g satisfies v*dAy = w1 A w2 and since
*xq1 = dAy, we get

V"0 = —(b11 + b22),
as well as
v* (d*gﬂ) = (b11 + b22)w1 N wa.

Since c¢; + ico represents a cubic differential on 3., there exist unique real-
valued functions c;; on F}; such that

de1 = criwr + craw2 — 3c20p,
dece = co1wi + coowa + 3cip.

Consequently, a straightforward calculation shows that the curvature form
O = df + 0 A 0 satisfies

(3.1)
o— —dg KydAg+dxg B — %|a|gw1 A wa
~ \—KgdAg — dxg B+ 3laffwi Aws —dp

2(bica + bac1) — (c12 + c21)  2(b1c1 — bac2) + (c22 — c11) w1 A ws
2(bic1 — bacg) + (ca2 —c11)  2(—bica — baci) + (c12 + ¢21) ’
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where we use the identity v*|a|2 = 4 ((c1)? + (c2)?).

3.1. A characterisation of twisted Weyl connections

We obtain a natural differential operator Djy acting on the space 2((X) of
torsion-free connections on T2

Dy : A(Z) = Q*(8), V — trgRic(V)dA,.

Note that this operator does indeed only depend on the conformal equivalence
class of g. A twisted Weyl connection V on (X, [g]) can be characterised by
minimising the integral of Djg among its projective equivalence class p(V).

Proposition 3.2. Suppose V' =9V + a is a twisted Weyl connection on
the compact Riemann surface (X, [g]). Then

. _ _ 2
odnf [ Dy (V) = 4mx(D) ~ e}

and 4mx () — ||a||2 is attained precisely on V'
Remark 3.3. Note that
lolz = [ laf2da,
does only depend on the conformal equivalence class of g.

Proof of Theorem 3.2. Write V' = (98)V + o for some Riemannian metric
g € [g], some 1-form (B and some End(7'Y)-valued 1-form o on ¥ satisfying
the properties of Theorem 3.1. From (2.4) and the definition of the Schouten
tensor it follows that

v* (try Ric(V')dA,) = 03 — 62,

where © = (@;) denotes the curvature form of V' pulled-back to Fy. Thus,
equation (2.4) gives

(3.2) try Ric(V')dAg = 2K, + 2d x, B — |o|2dA,
and hence
(3.3) / tr, Ric(V')dA, = 4rx(%) — [l

b

by the Stokes and the Gauss—Bonnet theorem.

It is a classical result due to Weyl [39] that two torsion-free connections
V1, V2 on TY are projectively equivalent if and only if there exists a 1-form
v on ¥ such that V! — V2 = y® Id + Id ® . It follows that the connections
in the projective equivalence class of V' can be written as

V=V +70Id+1d®~y
with v € Q1(X). A simple computation gives
(3.4) Ric(V) = Ric(V’) + 4% — Sym V'y + 3d~,
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where Sym : ['(T*Y ® T*X) — I['(S?(T*X)) denotes the natural projection.
We compute

try SymV'y dAy = try Sym (9V+g®ﬁti —ﬂ®Id—Id®,6’+a)7dAg

= dxg 7+ (20(8%) — v(8") —7(8Y) d4,
=d*g 7,

where we used that «(X) is trace-free and [g]-symmetric for all X € I'(TY).
Since the last summand of the right hand side of (3.4) is anti-symmetric, we
obtain

/ trg Ric(V)dA, = / trg Ric(V) + / try y2dA, — / trg SymV'y dA,
) ) ) p)
= 4mx(D) — ol + 112 - [ g,
thus the claim follows from the Stokes theorem. O

In [32] the following result is shown, albeit phrased in different language:

Proposition 3.4. Let (X, [g]) be a Riemann surface. Then every torsion-
free connection on TY is projectively equivalent to a unique twisted [g]- Weyl
connection.

Let B(X) denote the space of projective structures on ¥. Using The-
orem 3.2 and Theorem 3.4 we immediately obtain:

Theorem 3.5. Let (%, [g]) be a compact Riemann surface. Then

sup inf | tr,Ric(V)dA, = 4nx(X2).
st [ tr, Rie(V)dd = trx(2)

Remark 3.6. A twisted Weyl connection V on (X, [g]) defines an AH structure
(p(V), [g]) in the sense of [16, 17, 18], where p(V) denotes the projective equi-
valence class arising from V. Moreover, the twisted Weyl connection agrees
with the aligned representative of the associated AH structure (p(V),[g]). In
particular, the equations (3.2) and (3.3) have counterparts in the equations
(5.8) and (7.12) of [17]. Also, the Theorem 3.4 corresponds to the existence
of a unique aligned representative for an AH structure from [17].

4. Submanifold theory of Lagrangian connections

We now restrict attention to torsion-free connections on 7' having sym-
metric Ricci tensor, so that the zero-section o : ¥ — T™¥ is a Lagrangian
submanifold. If furthermore V is timelike/spacelike, we obtain an induced
metric g = Fo*hy = £Ric(V) and the immersion o : ¥ — T*¥ has a well-
defined normal bundle and second fundamental form. In particular, we want
to compute when o : ¥ — T*XY is minimal, that is, the trace with respect to
g of its second fundamental form vanishes identically.
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4.1. Algebraic preliminaries

Before we delve into the computations, we briefly review the relevant algebraic
structure of the theory of oriented surfaces in an oriented Riemannian — and
oriented split-signature Riemannian four manifold (M,g). We refer the
reader to [4] and [11] for additional details.

First, let X : ¥ — (M, g) be an immersion of an oriented surface ¥ into
an oriented Riemannian 4-manifold. The bundle of orientation compatible
g-orthonormal coframes of (M, g) is an SO(4)-bundle 7 : Ft — M. The
Grassmannian G;r (R*) of oriented 2-planes in R* is a homogeneous space
for the natural action of SO(4) and the stabiliser subgroup is SO(2) x SO(2).
Consequently, the pullback bundle X *Fg+ — Y admits a reduction Fx C
X*F," with structure group SO(2) x SO(2), where the fibre of Fx at p € £
consists of those coframes mapping the oriented tangent plane to ¥ at X (p)
to some fixed oriented 2-plane in R*, while preserving the orientation.

The second fundamental form of X is a quadratic form on 7Y with values
in the rank two normal bundle of X. Therefore, it is represented by a
map Fx — S%(Rg) ® R? which is equivariant with respect to some suitable
representation of SO(2) x SO(2) on S?(Rg) x R2. The relevant representation
is defined by the rule

o(ra,r8)(A)(x,y) = r_gA(raz,r0y), «,y€E R?,

where A € S%(Rz) ® R? is a symmetric bilinear form on R? with values in
R?2 and Ta,Tg denote counter-clockwise rotations in R? by the angle o, S,
respectively. As usual, we decompose the SO(2) x SO(2)-module S?(R3) ® R?
into irreducible pieces. This yields

0=2¢0,-1Ps21Ds1,
where for (n,m) € 72 the complex one-dimensional SO(2) x SO(2)-represen-
tation ¢y, is defined by the rule

Sl Ta, T8) = gl(ne+mp)

Explicitly, the relevant projections S?(Ry) ® R? — C are
1 i
(41)  poo1(4) =5 (4h + 4h) + 5 (4] +43,),
L/ 1 2 i/ 2 1
(4.2) p2,—1(4) = 1 <A11 — Ay + 2A12) t1 (All — Ay — 21412) ,
1 i
(43)  paa(d) = ; (4 — AL +24%) +  (Af - 45, +241)

and where we write A(e;,e;) = Afjek with respect to the standard basis
(e1,e2) of R2.

The canonical bundle K of X with respect to the complex structure
induced by the metric X*g and orientation is the bundle associated to
the representation ¢1 9. Moreover, the conormal bundle, thought of as a
complex line bundle, is the bundle N associated to the representation ¢p ;.
Consequently, the second fundamental form of X defines a section H of
the normal bundle which is the mean curvature vector of X, as well as a
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quadratic differential @) with values in the conormal bundle and a quadratic
differential () with values in the normal bundle. Consequently, we obtain a
quartic differential Q1@ _ on X which turns out to be holomorphic, provided
X is minimal and g has constant sectional curvature, see [11].

If we instead consider a split-signature oriented Riemannian 4-manifold
(M, g), the bundle of orientation compatible g-orthonormal coframes of (M, g)
is an SO(2,2)-bundle 7 : F,/ — M. Here, as usual, we take SO(2,2) to be
the subgroup of SL(4, R) stabilising the quadratic form

q(z) = (21)* + (z2)® — (11)® — (12)?,

where (z,y) € R?>2. Now the action of SO(2,2) on the Grassmannian
G5 (R??) of oriented 2-planes in R?? is not transitive, it is however transitive
on the open submanifolds of oriented timelike/spacelike 2-planes. In both
cases, the stabiliser subgroup is SO(2) x SO(2) as well. Therefore, the
submanifold theory of a timelike /spacelike oriented surface in an oriented split-
signature Riemannian four manifold is entirely analogous to the Riemannian
case. In particular, we also encounter the mean curvature vector H and the
quadratic differentials Q.

4.2. The mean curvature form

Knowing what to expect, we now carry out the submanifold theory of
timelike/spacelike Lagrangian connections. Note however, that in addition
to the split-signature metric hy, we also have a symplectic form Qy. The
symplectic form allows to identify the conormal bundle to a Lagrangian
spacelike/timelike immersion with the cotangent bundle of ¥. In particular we
may think of the mean curvature vector H as a 1-form, the conormal-bundle
valued quadratic differential ()1 as a cubic differential and the normal-bundle
valued quadratic differential Q_ as a (1,0)-form.

The product P := F x Ry is a principal right GL* (2, R)-bundle over T*%,
where the GL*(2, R)-right action is given by (f,€)-a = (a~! o £, &a) for all
a € GL*(2,R) and (f,£) € P. We define two R2-valued 1-forms on P

p::%(¢t+w) and C::%(wt—w),
so that the metric hy satisfies

mhy = p'p = C'C = ()7 + (0*)* = (¢1)* = (¢*)*.
From the equivariance properties (2.7) and (2.8) of ¥ and w, we compute

«(p)_1 at+at at—at\ [p
Remark 4.1. The reader may easily verify that the representation GL* (2, R) —

GL(4,R) defined by (4.4) embeds GL (2, R) as a subgroup of SO(2,2).

Recall that the Lie algebra of the split-orthogonal group O(2,2) consists
of matrices of the form
u v
(52
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where p and ¥ are skew-symmetric. Consequently, there exist unique 0(2)-
valued 1-forms p,¥ on F' X R and a unique gl(2, R)-valued 1-form v on
F' x Ry such that

o )

In order to compute these connection forms we first remark that since the
function S = (S;;) represents the (symmetric) Ricci tensor of V, there must
exist unique real-valued functions S;;; = Sjix, on F so that

Clearly, the function (S;;x) : F — S%(Rz2) ® Ry represents V Ric(V) with k
being the derivative index.

Lemma 4.2. We have
pij = —Ejiws) + O] = Siagw”,
vij = —&kwidij — §wy) — O(ij) + Sklif) W
Jij = —€iwy] + O] + Sisgiw

where we write w; = ijwj and 0;; = JikGf.

Proof. Since the connection forms are unique, the proof amounts to plugging
the above formulae into the structure equations (4.5) and verify that they
are satisfied. This is tedious, but an elementary computation and hence is
omitted. O

Recall that the components of ¢y and w — and hence equivalently the
components of p and { — span the 1-forms on P that are semi-basic for the
projection 7 : P — T*X. In particular, if € is a 1-form on T*X, then there
exists a unique map (ej,ez) : P — Ra 2 so that 7*e = e1p + e2(. Since 7*e
is invariant under the GL* (2, R) right action, the function (e1, e2) satisfies
the equivariance property determined by (4.4). Phrased differently, the
cotangent bundle of T*¥ is the bundle associated to 7 : P — T™*X via the
representation o : GLT(2, R) — Ry 2 defined by the rule

t o o—1 ot -1
6 e @)=(e 8); (3T Gie)
for all a € GL+(2, R) and (61,62) in ]R,272.

We will next use this fact to exhibit the conormal bundle of the immersion
0:Y — T*% as an associated bundle to a natural reduction of the pullback
bundle o* P. Note that by construction, the pullback bundle 0*P — X is just
the frame bundle v : F — ¥ and that on o*P ~ F we have 9! = —Sw, thus

p=%(Ig—S)w and C=—%(Iz+5)w.

If we assume that V is timelike/spacelike, then the Ricci tensor of V is pos-
itive/negative definite and hence the equations S = +I, define a reduction
Fy — ¥ with structure group SO(2) whose basepoint projection we continue
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to denote by v. Note that by construction, Fiy — ¥ is the bundle of orienta-
tion preserving orthonormal coframes of the induced metric g = £Ric(V).
In particular, from (4.6) we see that the pullback bundle o*(T™(T%*YX)) is
the bundle associated to v : Fy — X via the SO(2)-representation on Rs o
defined by the rule

(4.7) o(@) (& &) = (&ae* &0)

for all a € SO(2) and (&1,&2) in Rg 2. Furthermore, on Fy we obtain ¢ = Fw?
and hence

0~

in the timelike case and

0-6

in the spacelike case. Recall that if a is a 1-form on ¥ then there exists
a unique Ra-valued function a on F' — and hence on Fy as well — so that
v*a = aw. It follows as before that T*X is the bundle associated to Fy via
the SO(2)-representation defined by the rule

(4.10) e(a)(€) = &d’
for all a € SO(2) and & € Ry. Using (4.7), (4.8) and (4.9), we see that the
conormal bundle

N; :==o"(T*(T*%))/T*Z
of o is (isomorphic to) the bundle associated to Fy via the representa-
tion (4.10) as well. We thus have an isomorphism N} ~ T*¥ between the
conormal bundle of the immersion o : ¥ — T*% and the cotangent bundle
T*X. Of course, the metric g on X provides an isomorphism 7*Y% ~ T'> and
hence N, ~ T*3, where N, denotes the normal bundle of 0. The second
fundamental form of o is a quadratic form on T’ with values in the normal
bundle, thus here naturally a section of S?(T*X) ® T*X.

Lemma 4.3. Let o : ¥ — T*X be timelike/spacelike. Then the second
fundamental form A of o is represented by the functions A;j, = Askj, where

1
(4.11) Aijr, = :F§ (Skji — Sijk — Sikj) -

Proof. We will only treat the spacelike case, the timelike case is entirely
analogous up to some sign changes. In our frame adaption on Fy we have
¢ =0 and p = w. Consequently,
0=d(=-v'Ap—I9AN(=—Aw

or in components

0= Vji N\ wj.
Cartan’s lemma implies that there exist unique real-valued functions A;;; =
A;r;j on Fy so that

vji = Aijkwi
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and by standard submanifold theory the functions A;;; represent the second
fundamental form of o. In order to compute the functions A;;z, we use that
in our frame adaption S;; = —d;; and hence

0= dSU = Sijkwk - 61k0§ - 5kJ6‘f = Sijkwk - 20(”)
Since £ = 0 we thus get from Theorem 4.2

1 1 1
Vji = =0(je) + Skljawn = <—§Sz'jk + 5 5kji — §5ikj) Wk,

and the claim follows. O

Denoting by S¥ the functions on F representing the inverse of the Ricci
curvature of V, so that S S;;, = d;, we thus have:

Theorem 4.4. A timelike/spacelike Lagrangian connection V is minimal if
and only if

(4.12) 8% (28ki; — Siji) = 0.

Proof. By standard submanifold theory, the immersion o : ¥ — T*X is
minimal if and only if the trace of the second fundamental form with respect
to the induced metric ¢ = +Ric(V) vanishes identically. O

Remark 4.5. Note that in index notation the minimality condition (4.12) is
equivalent to

1 ..
M = SR (2ViRji — ViRij) =0,

where R;; denotes the Ricci tensor of V and RY its inverse. We call the
1-form 1 the mean curvature form of V.

Ezample 4.6. Let (3, g) be a two-dimensional Riemannian manifold. The
Levi-Civita connection V of g has Ricci tensor Ric(g) = Kg, where K
denotes the Gauss curvature of g. Thus, if K is positive/negative, then V is
a timelike/spacelike Lagrangian connection and Theorem 4.4 immediately
implies that V is minimal. In fact, we will show later (Theorem 6.1) that on
the 2-sphere metrics of positive Gauss curvature are the only examples of
minimal Lagrangian connections.

Recall that a (non-degenerate) submanifold of a (pseudo-)Riemannian
manifold is called totally geodesic if its second fundamental form vanishes
identically. We call a timelike/spacelike connection V totally geodesic if
0:Y — (T*%, hy) is a totally geodesic submanifold. We also get:

Corollary 4.7. Let V be a timelike/spacelike Lagrangian connection. Then
V is totally geodesic if and only if its Ricci tensor is parallel with respect to

V.

Proof. The second fundamental form vanishes identically if and only if
Sjki = Sijk — Sikj-

Since the Ricci tensor is symmetric, the left hand side is symmetric in

J,k, but the right hand side is anti-symmetric in j, k, thus S;; vanishes
identically. O
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4.3. Minimality and the Liouville curvature

The minimality condition for a timelike/spacelike Lagrangian connection can
also be expressed in terms of the Liouville curvature of V. To this end we
decompose the structure equation®

(4.13) dS;; = Sijkwk + Sikeg-g i Skjef
into (we compute modulo 0;)
2

1
dSi; = (_(Sijk + Sikj + Sjki) + 3

3
2 k
= ( Rijk + gL(isj)k w",

where we define

1
Sy = g(Sikj + Sjki)) Wk

1
Rk = 3 (Sijk + Siks + Siki)
and

2 1
L= §€Jk (Sijk — 5 (Sikj + Sjki)) :

Remark 4.8. The equivariance properties of the function S = (S;;) yield
R:L = Ladet a, where we write L = (L;). Since

R; (wl A w2) = (deta Hw! A w?,

it follows that the there exists a unique 1-form A\(V) on ¥ taking values in
A?(T*X), such that

v*A(V) = (Llwl = L2w2> Qw! Aw?.
The A%(T*X)-valued 1-form was discovered by R. Liouville and hence we call

it the Liouville curvature of V. Liouville showed that the vanishing of A(V)
is the complete obstruction to V being projectively flat.

Writing g = £Ric(V) for the induced metric, we define 8 € Q'(X) by
B = ; try SymVg,

where Sym : I' (T*E ® S%(T*X)) — I' (S3(T*X)) denotes the natural projec-
tion. We have:

Proposition 4.9. A timelike/spacelike Lagrangian connection V on TY is
minimal if and only if

(4.14) AV) =F2%,8QdA,.
Proof. In order to prove the claim we work on the orthonormal coframe

bundle of g which is cut out of the coframe bundle F' by the equations
Sij = £0;;. By definition, the functions S;;; represent V Ric(V) and hence

3We define & = (i) by €ij = —€ji with e12 = 1 and €% denote the components of the
transpose inverse of €.
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the functions R;ji, represent £SymVg. Therefore, on Fy, writing v*3 = bw;,
the components b; of 8 are

3 .
(4.15) b = +507 Ryjt.
Now on Fj the equation (4.14) becomes

(Liwi + Laws) ® w1 Awa = F2 (—bawi + biwa) ® w1 A wa

which is equivalent to
3 3
L= Z(le + R2o2) and Lo = ~1 (Ri11 + Ro21) ,

where we have used that v*(xy8) = —bow; + biwy as well as v*dA; = w1 Aws
and (4.15). On the other hand Theorem 4.4 implies that the minimality is
equivalent to

5 (28 — Sigk) = 87 Rige + 87 5L aens = 5 Les
= 8% Ryj, + 67 @(Lksij + Ligx;) — %(Liejk + Ljsik))
= 6" Ryj1, — géiﬂ'Lisjk = 0.
Written out, this gives the two conditions
(4.16) Ri11 + Rao1 + ile = Ri12 + Rz — %Ll =0,

3
which proves the claim. O

Remark 4.10. Theorem 4.9 shows that a timelike/spacelike minimal Lag-
rangian connection is projectively flat if and only if the 1-form 3 vanishes
identically.

5. Minimal Lagrangian connections

We will next compute the structure equations of a timelike/spacelike minimal
Lagrangian connection V. As before, we work on the orthonormal coframe
bundle F, of the induced metric ¢ = £Ric(V). The submanifold theory
discussed in §3 tells us that the second fundamental form of o : ¥ —
(T*X, hy) is described in terms of a cubic differential and a (1,0)-form. Using
the definition (4.2) of the (1,0)-form, the expression (4.11) for the second
fundamental form and the minimality conditions (4.16), one easily computes
that on Fj; the (1,0)-form is represented by the complex-valued function

3 .
b= :I:g ((R111 + R221) — i(Ru12 + Ra22)) -

Hence comparing with (4.15), we conclude that b = b; — ibe. Note that if we
define the (1,0)-form

B0 := B +ixg B,
then we have v*B10 = (b) —ibg)(w; +iwz), thus the (1,0)-form obtained from
the normal bundle valued quadratic differential ) by using the symplectic
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form Qv is B0. Likewise, Q. gives the cubic differential C on ¥ which is
represented on Fy by the complex-valued function

1
c= :Fg ((R111 — 3R122) +i(—3R112 + R222)) -
From Theorem 2.1 and
. . 3 m
v* (SymgRic(V)) = (Rijk - 55(ink)zm5l ) wi @ wj @ w

we easily compute that the cubic differential C satisfies Re(C) = :F%SymOVg,
where the subscript 0 denotes the trace-free part with respect to g.
The structure equations can now be summarised as follows:

Proposition 5.1. Let ¥ be an oriented surface and V a timelike/spacelike
minimal Lagrangian connection on TY. Then we obtain a triple (g,5,C) on X
consisting of a Riemannian metric g = +Ric(V), a 1-form § = gtrg SymVg
and a cubic differential C so that Re(C) = ¥3SymVg. Furthermore, the
triple (g, B8, C) satisfies the following equations

(5.1) Kg=%1+2|CJ2 + 8,8,
(5.2) 0C = (B—ix, B) ®C,
(5.3) dg =0.

Proof. In our frame adaption where S;; = +0;; on Fj, we obtain from (4.13)
2
0= dSij = (Rmk + gL(iEj)k) w = 5zk9;€ SE (5@95
Therefore, writing 6;; = ikO;?’, we have
1 2
(54) 9("]) = :F§ Rijk =F gL(iej)k Wi«

For later usage we introduce the notation c¢; = ¥(%R111 — %Rmz) and
cy = :F(—gRllg + %Rzzg), so that ¢ = ¢; + ico. Equation (5.4) written out
gives

1 3 1
011 = :F_Rlllwl F <—R112 ol _R222) w2,

2 4 4
1 3 1 3 1
5(912 +62)=F <§R112 = §R222) w1 F <§R122 = §R111) wa,
O35 = <§R My ) Ip
22 =+ 4 122 4 111 | w1 + 2 222W32.
Defining

1 1 3
p="~0xF §R222w1 + (ZRHI + ZR122) w2,

we compute

— _ 1?2 —eowl — o2
(5.5) 0:( B *b s0>+<c1w1 cow’ - —Cow Clwz)-

i *gﬁ -B —cow! —c1w? —crw! + cow
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The motivation for the definition of ¢ is that we have
dwi; = —was Ay and dwy =—p Aws,

hence ¢ is the Levi-Civita connection form of g. In particular, we see
that timelike/spacelike minimal Lagrangian connections are twisted Weyl
connections. Since Ric(V) = +g, it follows that the curvature 2-form of 0
must satisfy

. . 0 Fwi A wsa
(5.6) @_d0+0/\6_<$w1/\w2 X )

In order to evaluate this condition we first recall that we write v*5 = b;w;
and

db; = briw; + biawa + baep,
dbs = boyw1 + bagwa — b1,

for unique real-valued functions b;; on Fy. From (5.5) and (5.6) we obtain
dg = —% (d611 + dbz2) = % (B12 AN O21 + 021 AN b12) =0
showing that 3 is closed, hence (5.3) is verified. Likewise, we also obtain
dp = %(deﬂ — db2) + d*gf8
= (b11 + bo2)w1 Awa + % ((011 — O22) A (B21 + 012)) F w1 Awe
=— (2 ((01)2 + (02)2) — (b1 + bo2) £ 1) w1 A wa.
Writing K for the Gauss curvature of g, this last equation is equivalent to
Kg=21+42|C|2 + 48,

which verifies (5.1).
In order to prove (5.2), we use

v* (B —i%g B) = (b1 + ibg)(w' — iw?).
In light of (2.6) the condition (5.2) is equivalent to the condition
(5.7) de Aw = bcw A w + 3icp A w,

where we use the complex notation b = b; —ibg, ¢ = ¢1 +ice and w = wy +iws.
Again, from (5.5) we compute

1
w =g [(011 — O22) — i (612 + 621)],
hence
de Aw =d(ew) — edw = —612 A 621

i . .
+ 5 (011 A (012 — 021) + 022 A (021 — 612)) — (c1 + ic2)(dwy + idws).
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Using (5.5) and the structure equations (2.5) this gives

de Aw = 3cowr A @ + 3ciwa A @ — 2(bica + bacr)wi A wa
+i (—3010.)1 A @+ 3cowa A + 2(b161 = b202)w1 A LUQ) ]

which is equivalent to

de Aw = (b1 +ib2)(c1 +ic2) (w1 — iwa) A (w1 + iw2)
+ 3i(e1 +ic2)p A (w1 + iws),
that is, equation (5.7). This completes the proof. O

Conversely, unravelling our computations backwards, we also get:

Proposition 5.2. Suppose a triple (g, 8, C) on an oriented surface ¥ satisfies
the equations (5.1),(5.2),(5.3). Then the connection form (5.5) on Fy defines
a timelike/spacelike minimal Lagrangian connection V on TY with Ric(V) =
+g.

We immediately obtain:

Corollary 5.3. Let X be an oriented surface. Then there exists a one-to-one
correspondence between timelike/spacelike minimal Lagrangian connections
on TY and triples (g,3,C) satisfying (5.1),(5.2),(5.3).

Proof. Clearly, the map sending a torsion-free minimal Lagrangian connection
V into the set of triples (g, 3, C) satisfying the above structure equations,
is surjective. Now suppose the two triples (g1, 51,C1) and (g2, 82,C2) on X
satisfy the above structure equations and define the same torsion-free spacelike
minimal Lagrangian connection V on T¥. Then g; = +Ric(V) = g2 and
consequently we obtain 31 = (2 as well as C; = (5, since these quantities
are defined in terms of VRic(V) by using the metric g; = go. O

Remark 5.4. Theorem 4.10 immediately implies that a minimal Lagrangian
connection is projectively flat if and only if the cubic differential C' is holo-
morphic.

Another consequence of the structure equation is:

Proposition 5.5. Let V be a timelike/spacelike Lagrangian connection that
is totally geodesic. Then V is the Levi-Civita connection of a metric g of
Gauss curvature K, = £1.

Proof. The Lagrangian connection V is totally geodesic if and only if the
second fundamental form vanishes identically or equivalently, if 8 and C
vanish identically. In this case (5.5) implies that 6 is the Levi-Civita connec-
tion of g and the structure equation (5.1) gives that g has Gauss curvature
+1. O

Remark 5.6. As we have mentioned previously in Theorem 3.6, a twisted Weyl
connection on (X, [g]) defines an AH structure (p(V), [g]). Moreover, a twisted
Weyl connection arising from a triple (g, 8, C) satisfying 0C = (5 — ixgB)®C
defines an associated AH structure (p(V), [g]) which is naive Einstein in the
terminology of [16, 17, 18]. Therefore, every minimal Lagrangian connection
defines a naive Einstein AH structure.
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6. The spherical case

The system of equations governing minimal Lagrangian connections are easy
to analyse on the 2-sphere S2:

Proposition 6.1. A connection on the tangent bundle of S? is minimal
Lagrangian if and only if it is the Levi-Civita connection of a metric of
positive Gauss curvature.

Proof. Let V be a minimal Lagrangian connection on T'S? with associated
triple (g, 3, C). Since S is closed and H'(S2) = 0, the 1-form 3 is exact and
hence there exists a smooth real-valued function r on S? such that g = dr.
Hence we have
0C = (dr —ix,dr) ® C.

Observe that dr —ix, dr = 20r, therefore, the cubic differential e=2"C
is holomorphic. Since, by Riemann-Roch, there are no non-trivial cubic
holomorphic differentials on the 2-sphere, C' must vanish identically. The
connection form (5.5) of V thus becomes

0 — —dr *gdr — ¢
@ — *gdr —dr ’
where ¢ denotes the Levi-Civita connection form of g. We conclude that V
is a Weyl connection given by

V=9V+g9g®I9Vr —dr®Id — Id ® dr,

where 9Vr denotes the gradient of r with respect to g. Since the Levi-Civita
connection of a Riemannian metric g transforms under conformal change
as [2, Theorem 1.159|

P29y =9V — g IVf +df @ Id + Id @ df,

we obtain V = ®*P(=21)9V | thus showing that V is the Levi-Civita connection
of a Riemannian metric. Moreover, since Ric(V) must be positive or negative
definite, the Gauss curvature of the metric e 2"g cannot vanish and hence
is positive by the Gauss—Bonnet theorem. Finally, Theorem 4.6 shows that
conversely the Levi-Civita connection of a Riemannian metric of positive
Gauss curvature defines a minimal Lagrangian connection, thus completing
the proof. O

7. The case of negative Euler-characteristic

Before we address the classification of minimal Lagrangian connections on
compact surfaces of negative Euler characteristic, we observe that every
projectively flat spacelike minimal Lagrangian connection defines a properly
convex projective structure. Indeed, Labourie gave the following character-
isation of properly convex projective manifolds:

Theorem 7.1 (Labourie [26], Theorem 3.2.1). Let (M,p) be an oriented
flat projective manifold. Then the following statements are equivalent:

(i) p is properly convex;
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(ii) there exists a connection V € p preserving a volume form and whose
Ricci curvature is negative definite.

We immediately obtain:

Corollary 7.2. Let V be a projectively flat spacelike minimal Lagrangian
connection on the oriented surface . Then V defines a properly convex
projective structure.

Proof. In Theorem 4.10 we have seen that a minimal Lagrangian connection
V is projectively flat if and only if 8 vanishes identically. In the projectively
flat case the connection 1-form 0 of V thus is (see (5.5))

0 — 0 —op n aw! — cw? —cow! — cw?
"\l 0 —cow! —cw? —cw! +caw? )
In particular, the trace of 6 vanishes identically and hence V preserves

the volume form of g. Since Ric(V) = —g, the claim follows by applying
Labourie’s result. O

7.1. Classification

In Section 5 we have seen that a triple (g,5,C) on an oriented surface
¥ satisfying (5.1),(5.2),(5.3) uniquely determines a minimal Lagrangian
connection on 7. In this section we will show that in the case where
¥ is compact and has negative Euler characteristic x(X), the conformal
equivalence [g] of g and the cubic differential C also uniquely determine
(9,8, C) and hence the connection, provided C' does not vanish identically.
In the case where C' does vanish identically the connection is determined
uniquely in terms of [g] and 3.

We start by showing that there are no timelike minimal Lagrangian
connections on a compact oriented surface of negative Euler-characteristic
(the reader may also compare this with [17, Theorem 5.4]).

Proposition 7.3. Suppose V' is a minimal Lagrangian connection on the
compact oriented surface ¥ satisfying x(X) < 0. Then V' is spacelike.

Proof. Suppose V' were timelike and let g = Ric(V’). Then we obtain
/2 tr, Ric(V')d4, = 2 /2 dA, = 2 Area(S, g) > 0
and hence Theorem 3.2 and Theorem 3.5 imply that

47x(X) = sup inf | tr,Ric(V)dA, > 0,
x(%) pem&)v‘a’ o (V)d4,

a contradiction. O

Without loosing generality we henceforth assume that the torsion-free
minimal Lagrangian connection V on a compact oriented surface ¥ with

Xx(2) < 0 is spacelike. We will show that the triple (g, 3, C) defined by V is
uniquely determined in terms of [g] and (8, C).
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Suppose (g, 3, C) with 3 closed satisfy
Kg=—1+2|C|2 + 548
Let go denote the hyperbolic metric in [g] and write g = e*“go, so that
e (1 — Agyu) = -1+ 2e_6“|C’|_30 + e 2454, B.
We obtain
—Agu =14 6g,8 — e + 2e_4"|C|§0.

Omitting henceforth reference to gy we will show:

Theorem 7.4. Let (X, go) be a compact hyperbolic Riemann surface. Suppose
B € QL(X) is closed and C is a cubic differential on ¥.. Then the equation

(7.1) —Au=1+68—e* +2¢7%|C|?
admits a unique solution u € C*°(X).

Using the Hodge decomposition theorem it follows from the closedness of
B that we may write 8 = 7 + dv for a real-valued function v € C*°(X) and
a unique harmonic 1-form v € Q'(X). Since + is harmonic, it is co-closed,
hence (7.1) becomes

Au = —1 — 6dv + e®* — 2e"|C> = =1 4+ Av + e** — 2e74|C|2.
Writing v’ := u — v, we obtain
Au = —1 + 2+ _ 964w )| )2,

Using the notation k = —e* < 0 and 7 = e~#|C|?, as well as renaming
u:=u, we see that (7.4) follows from:

Theorem 7.5. Let (X, go) be a compact hyperbolic Riemann surface. Suppose
k,T € C®(X) satisfy k <0 and 7 > 0. Then the equation

(7.2) —Au =1+ ke® +2re
admits a unique solution u € C*°(X).

Remark 7.6. This theorem can also be proved using the technique of sub —
and supersolutions, see [17, Chapter 9]. Here we instead use techniques
from the calculus of variations.

In order to prove this theorem we define an appropriate functional & -
on the Sobolev space W12(%). As usual, we say a function u € W12(X) is
a weak solution of (7.2) if for all ¢ € C*°(X)

(7.3) 0= /E ~(du,dg) + (14 me™ + 27e) pdA.

Note that this definition makes sense. Indeed, it follows from the Moser—
Trudinger inequality that the exponential map sends the Sobolev space
Wh2(%) into LP(X) for every p < oo, hence the right hand side of (7.3) is
well defined.
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Lemma 7.7. Suppose u € WH2(X) is a critical point of the functional
= 1
8,7 Wl’Z(E) - R, ur 5/ |du|2 — 2u — ke 4+ re 4 A.
P

Then u € C*°(X) and u solves (7.2).

Proof. For u,v € WH2(X) we define 7, ,(t) = u + tv for t € R. We consider
the curve I'y , = Ex 7 0 Yy : R — R so that

(74) Tuolt) = % / (dul? + 2¢(du, dv) + £2|dv[?
b))
— 2(u + tv) — kXU 4 reduttv)gg,

The curve Iy, ,(t) is differentiable in ¢ with derivative

%I‘u,v(t) = /E(du, dv) + t|dv|? — v — vre2(Ht) _ 9yreduttvlgg
Note that this last expression is well-defined. Again, it follows from the
Moser-Trudinger inequality that e2(**%) ¢ L[2(X) for all u,v € W12(X)
and t € R. Since W12(Z) ¢ L3(X) it follows that ve?(®+) is in L1(X) by
Holder’s inequality and thus so is ve~*(#+%) In particular, assuming that u
is a critical point and setting t = 0 after differentiation gives

d

Oza

Cyo(t) = / (du, dv) — v — vre®™ — 2vTe M dA.

=0 »

Since C*®(X) C W12(X) it follows that u is a weak solution of (7.2). Since the
right hand side of (7.2) is in LP(X) for all p < oo, it follows from the Caldéron-
Zygmund inequality that v € W2P(X) for any p < co. Therefore, by the
Sobolev embedding theorem, u is an element of the Hélder space Ch%(X)
for any a < 1. Since the right hand side of (7.2) is Holder continuous in u, it
follows from Schauder theory that u € C?(X), so that u is a classical solution
of (7.2). Iteration of the Schauder estimates then gives that u € C*°(X). O

Since 7 > 0 we have &, > &4 o where here 0 stands for the zero-function.
The functional &, appears in the variational formulation of the equation
for prescribed Gauss curvature x of a metric g = e“go on X. In particular,
&0 is well-known to be coercive and hence so is & ;. In addition, we have:

Lemma 7.8. The functional &, , is strictly conver on WH2(X).

Proof. Let u,v € W12(X) be given. Using the notation of the previous
lemma, we observe that Iy, () is twice differentiable in ¢ with derivative

d2
de?
Note again that by Sobolev embedding v? € L?(X) for v € W1?(Z) and

that both e2(*t%) and e=*(u+) are in L?(X), hence the right hand side
of the equation (7.5) is well-defined by Hoélder’s inequality. In particular,

(75) F’u,,’u (t) = / |d'U|2 _ 2’(}2532(u+tv) + 8’027'8_4(u+tv)dA.
P
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computing the second variation gives
2

&l W0l = 1

gh',,'r (U i t’U)
t=

0
= / |dv|?dA + 2/ v2 (41 — eSUk)e™HUdA
b b

2
> ||d'U||L2(2),
where we have used that 7 > 0 and k < 0. Since for a non-zero constant

function v we obviously have & (u)[v,v] > 0 it follows that the quadratic
form & is positive definite on W'?(X). Hence, the claim is proved. [

Proof of Theorem 7.5. We have shown that &, is a continuous strictly
convex coercive functional on the reflexive Banach space W12(X), hence &,
attains a unique minimum on W2(X), see for instance [36]. Since we know
that the minimum is smooth, Theorem 7.5 is proved. O

We define the area of a timelike/spacelike connection to be the area of
o(X) C (T*%, hy). We have:

Theorem 7.9. Let V be a minimal Lagrangian connection on the compact
oriented surface ¥ with x(X) < 0. Then we have

Area(V) = —2mx (%) + 2||C’||§.

Proof. We have seen that the Gauss curvature of the metric o*hy = g =
—Ric(V) defined by a minimal Lagrangian connection V on ¥ satisfies

Kg=—1+2|CJ2 + §48.
Integrating against dA, and using the Stokes and Gauss—Bonnet theorem
gives
2mx(5) = —Area(V) +2[C]2,
thus proving the claim. O
Remark 7.10. An obvious consequence of Theorem 7.9 is the area inequality
(7.6) Area(V) > —27mx (%)

holding for minimal Lagrangian connections. Recall that if V is project-
ively flat, then the projective structure defined by V is properly convex.
Labourie [26] associated to every properly convex projective surface (X,p) a
unique minimal mapping from the universal cover  to the symmetric space
SL(3,1R)/SO(3) which satisfies the very same area inequality, that is (7.6),
see [27]. Moreover, it is shown in [27] that equality holds if and only if p is
defined by the Levi-Civita connection of a hyperbolic metric.

Definition 7.11. We call a minimal Lagrangian connection V area minim-
ising if V has area —2mx(X).

Remark 7.12. Theorem 7.9 shows that a minimal Lagrangian connection
V is area minimising if and only if the induced cubic differential vanishes
identically. We have shown in Theorem 5.5 that in the projectively flat case
— when 3 vanishes identically — this translates to V being the Levi-Civita
connection of a hyperbolic metric, a statement in agreement with [27].
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Theorem 7.4 shows that the triple (g, 3,C) is uniquely determined in
terms of the conformal equivalence class [g], the cubic differential C and the
1-form B on X. Since C can locally be rescaled to be holomorphic, its zeros
must be isolated and hence 8 is uniquely determined by C provided C' does
not vanish identically. Therefore, applying Theorem 5.3 shows:

Theorem 7.13. Let X be a compact oriented surface with x(X) < 0. Then
we have:

(i) there exists a one-to-one correspondence between area minimising
Lagrangian connections on TY and pairs ([g],B) consisting of a
conformal structure [g] and a closed 1-form B on X;

(ii) there exists a one-to-one correspondence between non-area minimising
minimal Lagrangian connections on TS and pairs ([g], C) consisting
of a conformal structure [g] and a non-trivial cubic differential C on
Y that satisfies OC = (B —i%y 8) ® C for some closed 1-form .

7.2. Concluding remarks

Remark 7.14. We have proved that on a compact oriented surface X of
negative Euler characteristic we have a bijective correspondence between
projectively flat spacelike minimal Lagrangian connections and pairs ([g], C)
consisting of a conformal structure [g] and a holomorphic cubic differential C
on ¥. By the work of Labourie [26] and Loftin [30], the latter set is also in
bijective correspondence with the properly convex projective structures on X.
Since by Theorem 7.2 every projectively flat spacelike minimal Lagrangian
connection defines a properly convex projective structure, we conclude that
every such projective structure arises from a unique projectively flat spacelike
minimal Lagrangian connection.

Remark 7.15. It is tempting to speculate that a compact oriented projective
surface (X, p) of negative Euler characteristic contains at most one minimal
Lagrangian connection. Some partial results in this direction have been
obtained in [31, 33].

Remark 7.16. Recall that the universal cover ¥ of a properly convex projective
surface (X, p) is a convex subset of RIP2. Pulling back the minimal Lagrangian
connection V € p to the universal cover gives a section of A — 3, where now,
by the work of Libermann [28], the total space of the affine bundle A — ¥ is
contained in the submanifold of the para-Kéhler manifold A9 C RP? ® RP?*
consisting of non-incident point-line pairs. In particular, we obtain a minimal
Lagrangian immersion IR A, recovering the result of Hildebrand [22, 23]
in the case of two dimensions. Therefore, using the result of Loftin [30], one
should be able to show that every properly convex projective manifold arises
from a minimal Lagrangian connection.

Remark 7.17. The case of the 2-torus can be treated with similar tech-
niques, except for the possible occurrence of Lorentzian minimal Lagrangian
connections. This will be addressed elsewhere.
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Remark 7.18. In higher dimensions, the class of totally geodesic Lagrangian
connections contains the Levi-Civita connection of Einstein metrics of non-
zero scalar curvature. We also refer the reader to [7, 21] for a study of
Einstein metrics in projective geometry.

Remark 7.19. In [32], the author has introduced the notion of an extremal
conformal structure for a projective manifold (M, p). In two-dimensions, the
naive Einstein AH structures of [17] appear to provide examples of projective
surfaces admitting an extremal conformal structure. This may be taken up
in future work.
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