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Holomorphic differentials, thermostats and
Anosov flows

thomas mettler and gabriel p. paternain

Abstract. We introduce a new family of thermostat flows on the unit
tangent bundle of an oriented Riemannian 2-manifold. Suitably repara-
metrised, these flows include the geodesic flow of metrics of negative
Gauss curvature and the geodesic flow induced by the Hilbert metric on
the quotient surface of divisible convex sets. We show that the family
of flows can be parametrised in terms of certain weighted holomorphic
differentials and investigate their properties. In particular, we prove that
they admit a dominated splitting and we identify special cases in which
the flows are Anosov. In the latter case, we study when they admit an
invariant measure in the Lebesgue class and the regularity of the weak
foliations.

1. Introduction

We introduce a new family of flows on the unit tangent bundle SM of a closed
oriented Riemannian 2-manifold (M, g) of negative Euler characteristic. The
flows are (generalised) thermostat flows and are generated by C∞ vector
fields of the form F := X + (a− V θ)V , where X,V denote the geodesic and
vertical vector fields on SM , θ is a 1-form on M – thought of as a real-valued
function on SM – and a represents a differential A of degree m ⩾ 2 on M .
The triple (g,A, θ) determining the flow is subject to the equations

(1.1) Kg = −1+ δgθ+(m− 1)|A|2g and ∂A =
(
m− 1

2

)
(θ − i ⋆g θ)⊗A,

where i =
√
−1 and where Kg denotes the Gauss–curvature, δg the co-

differential and ⋆g the Hodge-star with respect to g and the orientation. The
case m = 3 of these equations appeared previously in [31] (assuming θ is
closed), where it is related to certain torsion-free connections on TM which
admit an interpretation as Lagrangian minimal surfaces. Here we prove
that our flows admit a dominated splitting and moreover, that this family
of flows admits a parametrisation in terms of holomorphic data. Indeed,
we show that a triple (g,A, θ) satisfying the equations (1.1) determines a
holomorphic line bundle structure on the smooth complex line bundle Lm :=
Λ2(TM)(m−1)/2⊗C, so that the “weighted differential” P = (det g)−(m−1)/4⊗
A is a holomorphic section of Lm ⊗Km

M and such that a certain negative
curvature condition holds. Here KM denotes the canonical bundle of (M, g).
Conversely, given a closed hyperbolic Riemann surface (M, [g]), a holomorphic
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line bundle structure on Lm and a holomorphic section P of Lm ⊗ Km
M

satisfying a certain negative curvature condition, we construct a triple (g,A, θ)
solving (1.1) and hence one of our flows, by using the uniformisation theorem
and by solving an algebraic equation only.

In [41], Wojtkowski introduced W-flows by suitably reparametrising the
geodesics of a Weyl connection (or conformal connection). We show that
the case where A vanishes identically corresponds to W-flows associated
to conformal connections on the tangent bundle of a surface that have
negative definite symmetrised Ricci curvature. In particular, we recover [41,
Theorem 5.2], by showing that the flow associated to a triple (g, 0, θ)
solving (1.1) is Anosov. This is achieved by providing sufficiency conditions
for a general thermostat flow to admit a dominated splitting and to have
the Anosov property, see Theorem 3.5 and Theorem 3.7.

We then turn to the case where θ vanishes identically, so that A is
holomorphic, hence we have
(1.2) Kg = −1 + (m− 1)|A|2g and ∂A = 0.
Note that applying standard quasi-linear elliptic PDE techniques we obtain a
unique solution g to (1.2) for every holomorphic differential A on (M, [g]), see
Theorem 5.3. The equations (1.2) admit an interpretation as coupled vortex
equations, see in particular [10, §5]. The case m = 2 was considered in [33]
in the context of Anosov thermostats admitting smooth weak bundles (see
Section 6 for more details). In the case m = 3, the first equation is known
as Wang’s equation in the affine sphere literature. In [38], Wang related
its solution to a complete hyperbolic affine 2-sphere in R3, in particular g
is known as the Blaschke metric. Moreover, for m = 3, a pair (g,A) on
M solving (1.2) defines a properly convex projective structure on M and
hence turns M into a properly convex projective surface, see [25] and [29].
The universal cover Ω of a properly convex projective surface of negative
Euler characteristic is a strictly and properly convex domain in the projective
plane RP2 which admits a cocompact action by a group Γ of projective
transformations. Consequently, we obtain a (two-dimensional) divisible
convex set. Since Ω is convex, it is equipped with the Hilbert metric and
moreover, the Hilbert metric descends to define a Finsler metric on the
quotient surface M ≃ Ω/Γ, see in particular [21] for a nice survey of
these ideas. We observe that the geodesic flow of the Finsler metric is
a C1 reparametrisation of the flow we associate to the pair (g,A). Benoist
has shown [3] that if (Ω,Γ) is a divisible convex set (not necessarily two-
dimensional), then the geodesic flow of the Finsler metric F induced on
Ω/Γ – henceforth just called the Hilbert geodesic flow – is Anosov if and
only if Ω is strictly convex. Since the Anosov property is invariant under
reparametrisation, we may ask if the thermostat flow associated to a pair
(g,A) solving (1.2) is Anosov for all m ⩾ 2. This is indeed the case, we
obtain:
Theorem 5.1. Let (g,A) be a pair satisfying the coupled vortex equations
∂̄A = 0 and Kg = −1 + (m− 1)|A|2g. Then the associated thermostat flow is
Anosov.
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The hyperbolicity properties of thermostats satisfying (1.1) are not appar-
ent. To expose them, we first conjugate the derivative cocycle to another one
in which we can see the effect of equations (1.1). This conjugation requires
a careful choice of gauge, but once that is established, standard methods
using quadratic forms give rise to a dominated splitting. To upgrade this
dominated splitting to hyperbolic as in the case of Theorem 5.1 requires an
additional ingredient in the form of Theorem 5.2 below which asserts that
Kg < 0; this gives control on the potentially problematic size of A.

In the same way as geodesic flows are paradigms of conservative systems,
thermostats may be seen as paradigms of dissipative systems. The special
case of Gaussian thermostats (a = 0) has provided interesting models in
nonequilibrium statistical mechanics [11, 12, 35]. The next theorem shows
that Anosov thermostat flows determined by the coupled vortex equations
are indeed dissipative except when A = 0.

Theorem 5.5. Let (g,A) be a pair satisfying the coupled vortex equations
∂̄A = 0 and Kg = −1 + (m − 1)|A|2g. Then the associated thermostat
flow preserves an absolutely continuous measure if and only if A vanishes
identically.

We remark that due to a theorem of Ghys [13] Anosov thermostat flows
are Hölder orbit equivalent to the geodesic flow of (any) negatively curved
metric of M and hence transitive (to be precise, [13] establishes a topological
equivalence and the Hölder orbit equivalence follows from [20, Theorem
19.1.5]).

In [3], Benoist also observes that the regularity of the weak foliations of
the Hilbert geodesic flow coincides with the regularity of the boundary of
the divisible convex set (Ω,Γ). By a result of Benzécri [5], the boundary has
regularity C2 if and only if Ω is an ellipsoid, in which case the induced Finsler
metric is Riemannian and hyperbolic. Hence one might speculate that if a
solution to the coupled vortex equations (1.2) gives rise to an Anosov flow
having a weak foliation of regularity C2, then A vanishes identically. While
we cannot prove this in general, we use Theorem 5.5 to resolve the odd case:

Theorem 7.1. Suppose an Anosov thermostat given by the coupled vortex
equations has a weak foliation of class C2 and m is odd. Then A vanishes
identically.

The orbits of our flow – when projected to the surface M – define what
is known as a path geometry on M , that is, a prescription of a path on
M for every direction in each tangent space. In the case where A vanishes
identically the paths are the geodesics of a hyperbolic metric and in the case
where m = 3 the paths are the geodesics of a properly convex projective
structure. In both cases, the path geometry is flat, by which we mean it is
locally equivalent to the path geometry of great circles on the 2-sphere. In
the final section of the article we show:

Theorem 8.3. Let (g,A) be a pair satisfying the coupled vortex equations
∂̄A = 0 and Kg = −1 + (m− 1)|A|2g. Then the path geometry defined by the
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thermostat associated to (g,A) is flat if and only if m = 3 or A vanishes
identically.

Holomorphic differentials appear naturally in higher Teichmüller theory
and here we briefly provide some context for our results while referring the
reader to the recent survey [39] by Wienhard for a nice introduction to
this currently very active research topic. Generalizing Teichmüller space,
Hitchin [18] identified a connected component H(M,G) – nowadays called
the Hitchin component – in the representation variety Hom (π1M,G) /G,
where M is a connected closed oriented surface of negative Euler character-
istic and G a real split Lie group. Fixing a conformal structure [g] on M ,
Hitchin used the theory of Higgs bundles [19] to provide a parametrisation of
H(M,G) in terms of holomorphic differentials on (M, [g]). While Hitchin’s
parametrisation of H(M,G) relies on the choice of an arbitrary conformal
structure [g] on M , Labourie [26] was recently able to construct a canonical
parametrisation of H(M,G) in the case where G is PSL(3,R), PSp(4,R) or
the split form G2,0 of the exceptional group G2 (see also [25] and [29] for the
case G = PSL(3,R)). More precisely, Labourie obtains a mapping class group
equivariant identification of H(M,G) with the fibre bundle over Teichmüller
space whose fibre at J is H0(M,K3

M,J), H0(M,K4
M,J) and H0(M,K6

M,J)
respectively. By the work of Goldman [17] and Choi–Goldman [8] the
component H(M,PSL(3,R)) consists of (conjugacy classes of) monodromy
representations of properly convex projective structures on M and this
together with the work of Labourie [25, 26] and Loftin [29] yields the afore-
mentioned description of properly convex projective structures in terms of
pairs ([g], A) with A a holomorphic cubic differential.

Using the equivariant flag curve of Labourie [24], Potrie–Sambarino [34]
associate several Anosov flows to every representation ρ in a certain neigh-
bourhood of the Fuchsian locus in H(M,PSL(n,R)), n ⩾ 4. In particular,
using the canonical embeddings

H(M,PSp(4,R)) ⊂ H(M,PSL(4,R)) and H(M,G2,0) ⊂ H(M,PSL(7,R)),

the work of Labourie [24, 26] and Potrie–Sambarino [34] yields examples
of Anosov flows for certain quartic and sixtic holomorphic differential on
(M, [g]). It would be interesting to know how these flows relate to the flows
introduced here. We plan to investigate this in future work.
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2. Preliminaries on general thermostats

Let M be a closed oriented surface equipped with a Riemannian metric g,
SM its unit circle bundle and π : SM →M the canonical projection. The
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latter is in fact a principal SO(2)-bundle and we let V be the infinitesimal
generator of the action of SO(2).

Given a unit vector v ∈ TxM , we will denote by Jv the unique unit vector
orthogonal to v such that {v, Jv} is an oriented basis of TxM . There are
two semibasic 1-forms ω1 and ω2 on SM , which are defined by the formulas:

(ω1)(x,v)(ξ) := g
(
d(x,v)π(ξ), v

)
;

(ω2)(x,v)(ξ) := g
(
d(x,v)π(ξ), Jv

)
.

The form ω1 is the canonical contact form of SM whose Reeb vector field is
the geodesic vector field X.

A basic theorem in 2-dimensional Riemannian geometry asserts that there
exists a unique 1-form ψ on SM – the Levi-Civita connection form of g –
such that ψ(V ) = 1 and

(2.1)
dω1 = −ω2 ∧ ψ,
dω2 = −ψ ∧ ω1,

dψ = −(Kg ◦ π)ω1 ∧ ω2,

where Kg denotes the Gaussian curvature of g. In fact, the form ψ is given
by

ψ(x,v)(ξ) = g

(
DZ

dt
(0), Jv

)
,

where Z : (−ε, ε) → SM is any curve with Z(0) = (x, v), Ż(0) = ξ and DZ
dt

is the covariant derivative of Z along the curve π ◦ Z.
For later use it is convenient to introduce the vector field H uniquely

defined by the conditions ω2(H) = 1 and ω1(H) = ψ(H) = 0. The vector
fields X,H, V are dual to ω1, ω2, ψ and as a consequence of (2.1) they satisfy
the commutation relations

(2.2) [V,X] = H, [V,H] = −X, [X,H] = KgV.

The equations (2.1) also imply that the vector fields X,H and V preserve
the volume form ω1 ∧ dω1 and hence the Liouville measure. Note that the
flow of H is given by R−1 ◦ φ0t ◦ R, where R(x, v) = (x, Jv) and φ0t is the
geodesic flow of g.

Let λ be an arbitrary smooth function on SM . For several of the results
that we will describe below, we will not need λ to be a special polynomial in
the velocities. We consider a (generalised) thermostat flow on (M, g), that
is, a flow φ defined by

(2.3) Dγ̇

dt
= λ(γ, γ̇)Jγ̇.

It is easy to check that
F := X + λV

is the generating vector field of φ.
Now let Θ := −ω1 ∧ dω1 = ω1 ∧ ω2 ∧ ψ. This volume form generates the

Liouville measure dµ of SM .
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Lemma 2.1. We have:

(2.4)
LFΘ = V (λ)Θ;
LHΘ = 0;
LV Θ = 0.

Proof. Note that for any vector field Y , LY Θ = d(iY Θ), by Cartan’s formula.
Since iVΘ = ω1 ∧ ω2 = π∗Ωa, where Ωa is the area form of M , we see that
LVΘ = 0. Similarly, LXΘ = LHΘ = 0. Finally LFΘ = LXΘ + LλVΘ =
d(iλV Θ) = V (λ)Θ. □

2.1. Jacobi equations

It is easy to derive the ODEs governing the behaviour of dφt using the bracket
relations above. Given ξ ∈ T(x,v)SM (the initial conditions), if we write

dφt(ξ) = xF + yH + uV

then
ẋ = λ y;
ẏ = u;
u̇ = V (λ)ẏ − κy,

where κ := Kg −Hλ+ λ2.

2.2. Quotient cocycle

We consider the rank two quotient vector bundle E = TSM/RF . We use the
notation [ξ] with ξ ∈ TSM for the elements of E. Note that dφt descends to
the quotient to define a mapping

ρ : E ×R→ E, ([ξ], t) 7→ ρ([ξ], t) = [dφt(ξ)]

satisfying ρt◦ρs = ρt+s for all t, s ∈ R. The basis of vector fields (F,H, V ) on
SM defines a vector bundle isomorphism TSM ≃ SM×R3 and consequently
an identification E ≃ SM × R2. Therefore, for each t ∈ R, we obtain a
unique map Ψt : SM → GL(2,R) defined by the rule

ρt((x, v), w) = (φt(x, v),Ψt(x, v)w)

for all ((x, v), w) ∈ E ≃ SM × R2. The map Ψ : SM × R → GL(2,R)
satisfies

Ψt+s(x, v) = Ψs(φt(x, v))Ψt(x, v)
for all (x, v) ∈ SM and t, s ∈ R, and hence defines an GL(2,R)-valued
cocycle on SM with respect to the R-action defined by φ. Explicitly, Ψt is
the matrix whose action on R2 is given by

Ψt(x, v) :
(
y(0)
ẏ(0)

)
7→
(
y(t)
ẏ(t)

)
where ÿ(t)− V (λ)(φt(x, v))ẏ(t) + κ(φt(x, v))y(t) = 0.

Note that for thermostats the 2-plane bundle spanned by H and V is in
general not invariant under dφt.
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2.3. Infinitesimal generators and conjugate cocycles

Given a cocycle Ψt : SM×R→ GL(2,R) we define its infinitesimal generator
B : SM → gl(2,R) as

B(x, v) := − d

dt

∣∣∣∣
t=0

Ψt(x, v).

The cocycle Ψt can be recovered from B as the unique solution to
d

dt
Ψt(x, v) +B(φt(x, v))Ψt(x, v) = 0, Ψ0(x, v) = Id.

For the case of thermostats, it is immediate to check that

B =
(
0 −1
κ −V λ

)
.

Given a smooth map P : SM → GL(2,R) (a gauge) we can define a new
cocycle by conjugation as

Ψ̃t(x, v) = P−1(φt(x, v))Ψt(x, v)P(x, v).

It is easy to check that the infinitesimal generator B̃ of Ψ̃t is related to B by

(2.5) B̃ = P−1
BP+P−1FP.

3. Dominated splitting and hyperbolicity for thermostats

We are interested in the questions: when is this cocycle hyperbolic? When
does it have a dominated splitting? We start with some definitions.

Definition 3.1. The cocycle Ψt is free of conjugate points if any non-trivial
solution of the Jacobi equation ÿ − V (λ)ẏ + κy = 0 with y(0) = 0 vanishes
only at t = 0.

Definition 3.2. The cocycle Ψt is said to be hyperbolic if there exists
a splitting E = Eu ⊕ Es where Eu, Es are continuous ρ-invariant line
subbundles of TSM , and constants C > 0 and 0 < ζ < 1 < η such that for
all t > 0 we have

∥Ψ−t|Eu∥ ⩽ C η−t and ∥Ψt|Es∥ ⩽ C ζt.

We also say:

Definition 3.3. The cocycle Ψt is said to have a dominated splitting if there
is a continuous ρ-invariant splitting E = Eu ⊕ Es, and constants C > 0 and
0 < τ < 1 such that for all t > 0 we have

∥Ψt|Es(x,v)∥∥Ψ−t|Eu(φt(x,v))∥ ≤ C τ t.

Obviously hyperbolicity implies dominated splitting. It also implies that
there are no conjugate points [9]. Moreover the cocycle Ψt is hyperbolic if and
only if the thermostat flow φ is Anosov (cf. for instance [40, Proposition
5.1] where it is proved that the subbundles Es,u of E lift to subbundles of
TSM to give the usual definition of Anosov flow). We shall say that φ has
a dominated splitting if Ψt has a dominated splitting (this is the adequate
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notion of dominated splittings for flows, see e.g. [1, Definition 1]). For the
case of flows on 3-manifolds, as it is our case, the existence of a dominated
splitting can produce hyperbolicity if one has additional information on the
closed orbits. Indeed [1, Theorem B] implies that if all closed orbits of φ
are hyperbolic saddles, then SM = Λ ∪T where Λ is a hyperbolic invariant
set and T consists of finitely many normally hyperbolic irrational tori.

A very convenient way to establish the aforementioned properties for
cocycles is to use quadratic forms as in [28, 41, 42]. In particular, we
have [42, Proposition 4.1 & Theorem 4.4]:
Proposition 3.4 (Wojtkowski). Let Q be a continuous non-degenerate
quadratic form on E. Suppose furthermore that the derivative

Q̇([ξ]) := d

dt

∣∣∣∣
t=0

Q([dφt(ξ)])

exists for all [ξ] ∈ E. Then Ψt has a dominated splitting if Q̇([ξ]) > 0 for all
[ξ] ̸= 0 with Q([ξ]) = 0. If the stronger property Q̇([ξ]) > 0 for all [ξ] ̸= 0
holds, then Ψt is hyperbolic.

In what follows it will be helpful to understand how the spaces Eu,s are
constructed using Q. This is explained in detail in [42, Proposition 4.1], so
here we just give a brief summary adapted to our situation. We let L+(x, v)
denote the set of all 1-dimensional subspaces W such that Q(x,v) is positive
on W . The condition on the quadratic form Q ensures that Ψt acts as a
contraction on L+ and hence there is a unique point of intersection

(3.1) Eu(x, v) =
⋂
t>0

Ψt(φ−t(x, v))L+(φ−t(x, v)).

All our quadratic forms Q below will have the property that Q(0, b) = 0
(using the identification E ≃ SM ×R2) and hence we can construct Eu (and
Es) simply by applying the procedure (3.1) to the vertical subspace R(0, 1),
that is,

(3.2) Eu(x, v) = lim
t→∞

Ψt(φ−t(x, v))R
(

0
1

)
.

Let us put these ideas to use. Define K = κ+ FV λ.

Proposition 3.5. Assume K < 0. Then φ is Anosov.

Proof. We let (a, b) denote the standard coordinates on R2. Using the
identification E ≃ SM ×R2 we define a quadratic form on E by the rule

Q(x,v)(a, b) = (b− V (λ)a)a.
Then

Qφt(x,v)(Ψt(a, b)) = (ẏ − V (λ)y)y,
where y is the unique solution of

ÿ − V (λ)ẏ + κy = 0,
with y(0) = a and ẏ(0) = b. A simple calculation shows that

Q̇ = d

dt
Qφt(x,v)(Ψt(a, b)) = −Ky2 + (ẏ − V (λ)y)ẏ.
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Since K < 0 we see that
d

dt

∣∣∣∣
t=0

Qφt(x,v)(Ψt(a, b)) > 0

for (a, b) ̸= 0 and such that Q(x,v)(a, b) = 0. Then Theorem 3.4 immediately
implies that Ψt has a dominated splitting. We can upgrade that to hyperbolic
as follows. If we let z := ẏ − V (λ)y, then the quadratic form is just zy.
By the construction of the subspaces Es,u (cf. (3.1)) we see that Es,u

do not contain neither z = 0, nor y = 0. Hence there exist continuous
functions rs,u : SM → R such that H + rs,uV ∈ Es,u. Moreover, we see that
ru−V λ > 0 and rs−V λ < 0. Consider now a solution with initial conditions
(y(0), ẏ(0)) ∈ Eu. Then z = (ru − V λ)y and ż = −Ky = −K(ru − V λ)−1z.
This gives exponential growth for z and hence the desired exponential growth
for Ψt on Eu. Arguing in a similar way with Es, we deduce that Ψt is
hyperbolic. □

Remark 3.6. By considering the quadratic form Q = yẏ we can deduce with
a similar proof that if κ < 0 the thermostat flow φ is Anosov. This is because
Q̇ = ẏ2 − κy2 + V (λ)yẏ. We have ru > 0 and hyperbolicity follows from
ẏ = ruy when (y(0), ẏ(0)) ∈ Eu.

In fact we can generalise this further as follows.

Theorem 3.7. Let p : SM → R be a smooth function such that

κp := κ+ Fp+ p(p− V λ) < 0.

Then φ has a dominated splitting. If in addition κp + (V λ)2
4 < 0, then the

flow is Anosov.

Proof. The quadratic form to consider is Q = zy, where z := ẏ − py. A
calculation shows that

Q̇ = z2 − κpy
2 + zyV λ.

We see that Q̇ > 0 whenever zy = 0, but (y, z) ̸= 0. The claim in the
theorem again follows from Theorem 3.4. Also note that

Q̇ =
(
z − yV λ

2

)2
−
(
κp +

(V λ)2

4

)
y2 > 0,

unless (z, y) = 0. Hence the flow is Anosov by Theorem 3.4. □

Remark 3.8. Let us see the main issue with upgrading the last theorem to
“hyperbolic” as in the proof of Theorem 3.5. Certainly we get continuous
(Hölder in fact) functions rs,u. To be definite consider the case of Eu and
initial conditions (y(0), ẏ(0)) ∈ Eu. Then ẏ = ruy and z = (ru − p)y with
ru − p > 0 as before. But now ż = (V λ− p)z − κpy = (V λ− p− κp

ru−p)z. To
get exponential growth we either need:

(3.3) ru > 0, or V λ− p−
κp

ru − p
> 0
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and it is not clear how to get any of these conditions in this generality. In
the special cases above p = 0 or p = V λ, we do get one of these conditions.
In all these cases the function r = ru,s satisfies the Riccati equation

Fr + r2 − rV λ+ κ = 0,

which is easily derived using the invariance of Es,u and the Jacobi equation
ÿ − V (λ)ẏ + κy = 0. Observe that h := r − p satisfies the Riccati equation

(3.4) Fh+ h2 + h(2p− V λ) + κp = 0.

Using (3.2) we can also give a construction of functions ru,s at the level of
the Riccati equation as follows. Fix (x, v) and consider for each R > 0, the
unique solution uR to the Riccati equation along φt(x, v)

u̇+ u2 − uV λ+ κ = 0

satisfying uR(−R) = ∞. Then (3.2) translates easily into

(3.5) ru(x, v) = lim
R→∞

uR(0).

Note that ru(φt(x, v)) = limR→∞ uR(t). These limiting solutions exist
whenever the cocycle Ψt has no conjugate points [2]. It is easy to check that
in all the cases we consider below, the cocycle Ψt is free of conjugate points.

Remark 3.9. This remark attempts to clarify the role of the function p in
terms of conjugate cocycles and infinitesimal generators as in Subsection
Section 2.3. As we have already pointed out, the infinitesimal generator B
for a thermostat is given by

B =
(
0 −1
κ −V λ

)
.

Consider a gauge transformation P : SM → GL(2,R) given by

P =
(
1 0
p 1

)
.

A calculation using (2.5) shows that the conjugate cocyle Ψ̃t via P has
infinitesimal generator given by

B̃ =
(
−p −1
κp −V λ+ p

)
.

The cocycles Ψt and Ψ̃t share the same dominated splitting/hyperbolicity
properties by virtue of being conjugate, but the form of B̃ exposes clearly
the origins of these properties via κp < 0 (cf. [42, Introduction]). The
trace of both matrices, which is −V λ (minus divergence of F ), indicates the
dissipative nature of thermostats.
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4. Applications

We consider now some special choices of λ. To this end let θ be a 1-form on
M which we may equivalently think of as a function θ : SM → R satisfying
V V θ = −θ. For later use we record that the co-differential of θ and its
Hodge-star satisfy
(4.1) π∗δgθ = −(Xθ +HV θ), π∗(⋆gθ) = −V (θ)ω1 + θω2.

Moreover, let A be a differential of degree m on M with m ⩾ 2. By this
we mean a section of the m-th tensorial power of the canonical bundle KM

of (M, g). Likewise, we may equivalently think of a differential A of degree
m on M as a real-valued function a : SM → R satisfying V V a = −m2a,
explicitly, we obtain

π∗A = (V a/m+ ia) (ω1 + iω2)m ,
so that
(4.2) π∗|A|2g = (V a)2/m2 + a2

The thermostat flows we investigate are of the form λ = a− V θ. We will
see next that they admit a dominated splitting provided a natural pair of
equations is satisfied by the triple (g,A, θ). In order to derive these equations
we first need a Lemma.

Lemma 4.1. We have

(4.3) ∂A =
(
m− 1

2

)
(θ − i ⋆g θ)⊗A

iff
(4.4) 0 = XV a−mHa− (m− 1)(θV a−maV θ).

Remark 4.2. Note that applying V we see that (4.4) is equivalent to
(4.5) 0 = (1−m) (HV a+mXa− (m− 1) (mθa+ V (θ)V (a))) .

Proof of Theorem 4.1. We use the complex notation ã = V a/m + ia and
ω = ω1 + iω2. Since V V a = −m2a, we compute that there exist unique
complex-valued functions ã′ and ã′′ so that

dã = ã′ω + ã′′ω + imãψ.

In particular, we have π∗(∂A) = ã′′ω ⊗ ωm. Since
da = X(a)ω1 +H(a)ω2 + V (a)ψ,

d(V a) = X(V (a))ω1 +H(V (a))ω2 −m2aψ,

we obtain
ã′′ = 1

2 (XV a/m−Ha) + i

2 (HV a/m+Xa) .
We also have

π∗ (θ − i ⋆g θ) = (θ + iV θ)ω.
Hence (4.3) is equivalent to

ã′′ −
(
m− 1

2

)
(θ + iV θ)(V (a)/m+ ia) = 0.
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Taking the real part gives (4.4). □

Remark 4.3. Recall that a torsion-free connection on TM preserving a
conformal structure [g] is called a Weyl connection or conformal connection.
More precisely, ∇ preserves [g] if for some (and hence any) g ∈ [g], there
exists a 1-form θ, so that

∇g = 2θ ⊗ g.

Remark 4.4 (The case m = 1). We could also consider the case λ = a− V θ
with a representing a differential of degree m = 1, that is, a (1,0)-form. We
exclude this case since it corresponds to the case where A vanishes identically
by defining θ′ = V a and considering λ′ = −V (θ′ − θ) = λ. Flows defined by
λ = −V θ = were studied previously under the name W -flows as they arise
naturally by reparametrising the geodesics of a Weyl connection, see [41].
In particular in [41, Theorem 5.2] it is proved that W -flows are Anosov
provided Kg−δgθ < 0. A simple computation gives that K = Kg−δgθ hence
we recover [41, Theorem 5.2] by applying Theorem 3.5. In particular,
we see that if A is a holomorphic 1-form and g satisfies Kg < 0, then the
associated thermostat flow is Anosov.

We now want to apply Theorem 3.7 to the case λ = a− V θ for some good
choice of p.

Lemma 4.5. Suppose λ = a− V θ and take p = V a/m+ θ. Then κp ≡ −1
if and only if the following two equations are identically satisfied

(4.6) Kg = −1 + δgθ + (m− 1)|A|2g
and

(4.7) ∂A =
(
m− 1

2

)
(θ − i ⋆g θ)⊗A.

Proof. Taking p = V a/m+ θ gives

κp = κ+ Fp+ p(p− V λ) = Kg −Hλ+ λ2 + Fp+ p(p− V λ)
= Kg −Ha+HV θ + a2 − 2aV θ + (V θ)2 + (X + (a− V θ)V )(V a/m+ θ)
+ p(p− V θ)

= Kg +HV θ +Xθ − (m− 1)
(
a2 + (V a)/m2

)
+ (XV a/m−Ha− (m− 1)(θV a/m− aV θ))

= Kg − δgθ − (m− 1)|A|2g +
1
m

(XV a−mHa− (m− 1)(θV a−maV θ)) ,

where we have used (4.1), (4.2) and V V a = −m2a as well as V V θ = −θ.
Using Theorem 4.1 we see that κp ≡ −1 provided (4.6) and (4.7) are
identically satisfied. Conversely, suppose κp ≡ −1. Since Kg − δgθ − (m−
1)|A|2g is constant along the fibres of SM →M , we obtain

0 = V κp =
(1−m

m

)(
HV a+mXa− (m− 1) (mθa+ V (θ)V (a))

)
.



DIFFERENTIALS, THERMOSTATS AND ANOSOV FLOWS 13

Theorem 4.1 and Theorem 4.2 therefore imply that (4.7) must hold. Hence
we also identically have

κp = −1 = Kg − δgθ − (m− 1)|A|2g,

which is equivalent to (4.6). □

Combining Theorem 3.7 and Theorem 4.5 we thus immediately obtain:

Corollary 4.6. Let (g,A, θ) be a triple on M satisfying (4.6) and (4.7).
Then the associated thermostat flow admits a dominated splitting.

We also observe:

Proposition 4.7. Consider a pair (g,A) with A holomorphic and Kg < 0.
Then the associated thermostat flow has a dominated splitting. Moreover, for
m = 2, the flow is Anosov.

Proof. The fact that there is a dominated splitting follows from κp < 0. For
m = 2 we note that

κp = Kg − |A|2g = Kg − a2 − (V a)2/4.

Thus κp + (V a)2/4 < 0 and the Anosov property follows from Theorem 3.7.
□

4.1. Parametrising thermostat flows arising from differentials

It turns out that the thermostat flows defined by triples (g,A, θ) satis-
fying (4.6) and (4.7) can be parametrised in terms of complex geomet-
ric data. For m ⩾ 2 define the (smooth) complex line bundle Lm :=
Λ2(TM)(m−1)/2 ⊗ C.

Lemma 4.8. There exists a canonical bijection between the following sets:
(i) the holomorphic line bundle structures on Lm;
(ii) the [g]-conformal connections on TM .

Before we prove Theorem 4.8, we first recall some basic facts about
conformal connections. Let us fix a Riemannian metric g ∈ [g]. It follows
from Koszul’s identity that the [g]-conformal connections are of the form

(g,θ)∇ = g∇+ g ⊗ θ♯ − θ ⊗ Id− Id⊗ θ

where θ ∈ Ω1(M), g∇ denotes the Levi-Civita connection of g and θ♯ the
g-dual vector field of θ. Moreover, for u ∈ C∞(M), we have [6, Theorem
1.159]

exp(2u)g∇ = g∇− g ⊗ g∇u+ du⊗ Id + Id⊗ du

from which one easily computes
(exp(2u)g,θ+du)∇ = (g,θ)∇.

Since (g,θ)∇g = 2 θ ⊗ g and (g,θ)∇e2ug = 2 (θ + du)⊗ e2ug, we conclude that
the [g]-conformal connections are in one-to-one correspondence with Weyl
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structures, where by a Weyl structure we mean an equivalence class [g, θ]
subject to the equivalence relation

(g, θ) ∼ (ĝ, θ̂) ⇐⇒ ĝ = e2ug and θ̂ = θ + du

for u ∈ C∞(M). For later usage we also record that the symmetric part of
the Ricci curvature of (g,θ)∇ satisfies

SymRic
(
(g,θ)∇

)
= (Kg − δgθ) g.

Proof of Theorem 4.8. Let ∂Lm : Γ(M,Lm) → Ω0,1(M,Lm) be a holomorphic
line bundle structure on Lm. Observe that (det g)−(m−1)/4 is a non-vanishing
section of Lm, hence

(det g)(m−1)/4 ⊗ ∂Lm(det g)−(m−1)/4

is a (0,1)-form on M . Thus there exists a unique 1-form θ on M so that

∂Lm(det g)−(m−1)/4 = −
(
m− 1

2

)
(θ − i ⋆g θ)⊗ (det g)−(m−1)/4.

If we instead consider the metric ĝ = e2ug for u ∈ C∞(M), then we obtain

∂Lm(det ĝ)−(m−1)/4 = −
(
m− 1

2

)(
θ̂ − i ⋆g θ̂

)
⊗ (det ĝ)−(m−1)/4

with θ̂ = θ+du. It follows that ∂Lm defines a Weyl structure onM . Moreover,
if two holomorphic line bundle structures ∂Lm and ∂′Lm

on Lm determine
the same Weyl structure [g, θ], then they satisfy

∂Lm(det g)−(m−1)/4 = ∂
′
Lm

(det g)−(m−1)/4

and hence also ∂Lm = ∂
′
Lm

.
Conversely, let (g,θ)∇ be a [g]-conformal connection, then

(g,θ)∇ (det g)−(m−1)/4 = − (m− 1) θ ⊗ (det g)−(m−1)/4 .

Extending (g,θ)∇ complex linearly, we obtain a connection on the complex line
bundle Lm whose curvature form is (since dimCM = 1) an End(Lm)-valued
(1,1)-form on M . Thus, standard results imply (c.f. [23, Prop. 1.3.7]) that
there exists a unique holomorphic line bundle structure ∂Lm on Lm so that
∂Lm = (g,θ)∇(0,1). Finally, we have

(g,θ)∇(0,1) (det g)−(m−1)/4 = −
(
m− 1

2

)
(θ − i ⋆g θ)⊗ (det g)−(m−1)/4

= ∂Lm(det g)−(m−1)/4.

Therefore, the Weyl structure determined by ∂Lm is [g, θ], thus proving the
claim. □

Given a section P of Lm ⊗Km
M we can define

|P |2g := |A|2g

where A := (det g)(m−1)/4 ⊗ P . It is straightforward to check that the
quadratic form

P := |P |2gg
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only depends on [g].
We now have:

Proposition 4.9. Let m ⩾ 2. On a compact oriented surface M with
χ(M) < 0 the following sets are in one-to-one correspondence:

(i) the triples (g,A, θ) consisting of a Riemannian metric g, a differential
A of degree m and a 1-form θ such that

Kg = −1 + δgθ + (m− 1)|A|2g and ∂A =
(
m− 1

2

)
(θ − i ⋆ θ)⊗A;

(ii) the triples ([g], ∂Lm , P ) consisting of a conformal structure [g], a
holomorphic line bundle structure ∂Lm on Lm and a holomorphic
section P of Lm ⊗Km

M having the property that the symmetric part
of the Ricci curvature of the conformal connection associated to ∂Lm

plus (1−m)P is negative definite.

Proof. Suppose (g,A, θ) is a triple satisfying

Kg = −1 + δgθ + (m− 1)|A|2g and ∂A =
(
m− 1

2

)
(θ − i ⋆g θ)⊗A.

We equip Lm with the holomorphic line bundle structure induced by the
conformal connection (g,θ)∇. Define P := (det g)−(m−1)/4 ⊗ A, then P is a
holomorphic section of Lm ⊗Km

M . Indeed, we compute

∂P = ∂Lm

(
(det g)−(m−1)/4

)
⊗A+ (det g)−(m−1)/4 ⊗ ∂KMA

= −
(
m− 1

2

)
(θ − i ⋆g θ)⊗ P +

(
m− 1

2

)
(θ − i ⋆g θ)⊗ P

= 0.

In addition, we observe that the symmetric part of the Ricci curvature of
(g,θ)∇ satisfies

Sym Ric
(
(g,θ)∇

)
+ (1−m)P =

(
Kg − δgθ + (1−m)|A|2g

)
g = −g

which is obviously negative definite. Clearly, the just described map from
the first set of triples into the second set of triples is injective.

Conversely, suppose Lm is equipped with a holomorphic line bundle struc-
ture ∂Lm and let P be a holomorphic section of Lm ⊗ Km

M . Assume fur-
thermore that the symmetric part of the Ricci curvature of the conformal
connection associated to ∂Lm plus (1 −m)P is negative definite. We will
next use these data to construct a triple (g,A, θ) solving the above equations.
Let g0 ∈ [g] denote the hyperbolic metric in the conformal equivalence class
and define

A0 := (det g0)(m−1)/4 ⊗ P.

Note that (det g0)(m−1)/4 is a non-vanishing section of L−1
m and hence A0 is

a section of Km
M . Since P is holomorphic it follows that there exists a unique

1-form θ0 on M such that

∂A0 =
(
m− 1

2

)
(θ0 − i ⋆ θ0)⊗A0.
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Now make the Ansatz g = e2ug0 for u ∈ C∞(M) and A = (det g)(m−1)/4 ⊗
P = A0eu(m−1). Then

∂A =
(
m− 1

2

)
(θ − i ⋆ θ)⊗A,

where θ = θ0 + du. Since

(4.8) Kexp(2u)g = e−2u (Kg −∆gu) ,

where ∆g = − (δgd+ dδg), we obtain

e−2u (−1−∆u) = −1 + e−2uδ (θ0 + du) + (m− 1)e−2u|A0|2,

where now all norms and operators are with respect to g0. This simplifies to
become an algebraic equation for u

e2u − (m− 1)|A0|2 = 1 + δθ0.

Clearly, this equation uniquely determines u provided 1+ δθ0 + (m− 1)|A0|2
is positive. Note that this happens if and only if

(−1− δθ0 + (1−m)|A0|2)g0 = SymRic
(
(g0,θ0)∇

)
+ (1−m)P

is negative definite, but (g0,θ0)∇ is just the conformal connection induced by
∂Lm . Finally, by construction, the triple associated to (g,A, θ) is ([g], ∂Lm , P ).

□

Remark 4.10 (W-Flows). The W-Flows of Wojtkowski [41] are also covered by
the thermostat flows defined by triples (g,A, θ) satisfying (4.6) and (4.7) in the
case where the conformal connection (g,θ)∇ defining the W-flow has negative
definite symmetric Ricci curvature, that is, satisfies (Kg − δgθ) < 0. Indeed,
suppose the pair (g, θ) satisfies (Kg − δgθ) < 0. Let u = 1

2 ln (δgθ −Kg) and
consider (ĝ, θ̂) = (e2ug, θ + du). Then the pairs (g, θ) and (ĝ, θ̂) define the
same conformal connection and hence equivalent W-flows. Using (4.8) and
the identity δexp(2u)g = e−2uδg for the co-differential acting on 1-forms, we
compute

Kĝ − δĝ θ̂ =
(

1
δgθ −Kg

)
(Kg −∆gu)−

(
1

δgθ −Kg

)
δg (θ + du) = −1.

Hence the triple (ĝ, 0, θ̂) satisfies (4.6) and (4.7). In particular, we see that
the geodesic flow of metrics of negative Gauss curvature also fit into our
family of flows.

5. The case of holomorphic differentials

We have seen that a triple (g,A, θ) solving (4.6) and (4.7) yields a holomorphic
section of Lm⊗Km

M with respect to some appropriate holomorphic line bundle
structure on Lm. We now restrict to the case where the differential A is
already holomorphic so that we obtain the coupled vortex equations

Kg = −1 + (m− 1)|A|2g and ∂A = 0.
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5.1. Anosov flows

It is possible to upgrade Theorem 4.6 in the case where A is holomorphic as
follows:

Theorem 5.1. Let (g,A) be a pair satisfying the coupled vortex equations
∂̄A = 0 and Kg = −1 + (m− 1)|A|2g. Then the associated thermostat flow is
Anosov.

Proof. We already know that there is a dominated splitting, so taking into
account Theorem 3.8, the strategy will be to show that ru > 0 and rs < 0.
We will do this using the following lemma.

Lemma 5.2. Let (g,A) be a pair satisfying the coupled vortex equations
∂̄A = 0 and Kg = −1 + (m− 1)|A|2g. Then −1 ⩽ Kg < 0.

Proof. The proof is quite similar to the proof of [4, Proposition 3.3], the
reader may also compare with [10, Theorem 5.1]. The claim is obviously
correct if A vanishes identically, hence we assume this not to be the case.
We first prove the inequality Kg ⩽ 0. As before let g0 denote the hyperbolic
metric in the conformal equivalence class of g and write g = e2ug0 for
u ∈ C∞(M). Using

(5.1) Kg = e−2u (−1−∆u) and |A|2g = e−2mu|A|2g0
gives

(5.2) 1 + ∆u = e2u − (m− 1)e−2(m−1)uα,

where we write α = |A|2g0 . The inequality Kg ⩽ 0 is equivalent to

(5.3) (m− 1)e−2muα ⩽ 1

and is clearly satisfied at the points where A vanishes. Therefore, taking the
logarithm of (5.3), we see that Kg ⩽ 0 follows from the non-negativity of the
smooth function

f = 2mu− log(m− 1)− logα,
which is defined on the open setM◦ := {x ∈M : A(x) ̸= 0}. Note that using
f the equation (5.2) becomes

(5.4) 1 + ∆u = e2u(1− e−f ).

As M is compact, the Gauss curvature Kg attains its maximum at some
point x0 and moreover x0 ∈ M◦. Consequently, the function f attains its
infimum at x0. A straightforward calculation gives ∆ logα = −2m, where
we use that A is holomorphic. At the minimum x0 of f we thus obtain

(5.5) 0 ⩽ ∆f(x0) = 2m (1 + ∆u(x0)) = 2m e2u(x0)
(
1− e−f(x0)

)
,

where we have used (5.4). It follows that f(x0) ⩾ 0 and hence f ⩾ 0 on all of
M◦. This shows that Kg ⩽ 0. It order to prove Kg < 0, we first remark that
the function f − 1 + e−f is non-negative on M◦. Consequently, (5.5) gives

∆gf ⩽ 2mf,



18 T. METTLER AND G.P. PATERNAIN

where ∆g = e−2u∆ denotes the Laplacian with respect to g. In particular,
it follows that for every point x ∈ M◦ there exists a constant c > 0, an
x-neighbourhood Ux and a flat metric g0 on Ux which lies in the conformal
equivalence of g, so that

(∆g0 − c) f ⩽ 0
on Ux. Therefore, by applying the strong maximum principle [16, The-
orem 3.5] to the operator ∆g0 − c, it follows that if f vanishes at some point
in Ux, then it vanishes on all of Ux and consequently on M◦. Since A is
holomorphic, its zeros are isolated and hence M◦ is dense in M . Since Kg is
continuous we conclude that if Kg vanishes at some point on M , then it van-
ishes identically on M , but this possibility is excluded by the Gauss–Bonnet
theorem. □

Remark 5.3. From (5.2) we see that u solves a PDE of the form ∆u = G(x, u)
where

G(x, u) = −1 + e2u − (m− 1)e−2(m−1)uα(x).
Since α ⩾ 0 we have G(x, u) ⩽ −1 + e2u and hence G(x, u) < 0 for u < 0.
On the other hand, for u > supx∈M 1

2 log(1 + (m− 1)α(x)) ⩾ 0 we get

G(x, u) > −1 + e2u − (m− 1)α(x) > 0.
Since

∂G

∂u
(x, u) = 2α(x)(m− 1)2e−2(m−1)u + 2e2u > 0

standard quasi-linear elliptic PDE methods (see for instance [37, Proposi-
tion 1.9]) imply that (5.2) has a unique smooth solution u for every smooth
non-negative function α. Consequently, for every holomorphic differential A
on (M, [g]) we obtain a unique solution (g,A) to the coupled vortex equations
Kg = −1 + (m− 1)|A|2g and ∂A = 0.

We now show that ru > 0 (the proof that rs < 0 is similar). Set h =
ru − V (a)/m. Then h satisfies

F (h) + h2 + hB − 1 = 0,
where

B := (2−m)
m

V (a).

Given (x, v) ∈ SM , consider for each R > 0, the unique solution hR to the
Riccati equation along φt(x, v):

ḣ+ h2 + hB − 1 = 0
satisfying hR(−R) = ∞. Using (3.5) we derive
(5.6) ru(x, v) = lim

R→∞
hR(0) + V (a)/m.

Let c := max(x,v) |B(x, v)| and ℓ :=
√

c2+4−c
2 . If we let fR := hR − ℓ, then

fR solves
(5.7) ḟ + wf = q,

where w := fR +B + 2ℓ and q := −ℓ2 −Bℓ+ 1. Observe that q ⩾ 0 by our
definitions of c and ℓ. We can solve the inhomogeneous linear equation (5.7)
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and use that q ⩾ 0 to derive fR(t) ⩾ 0 and thus hR(t) ⩾ ℓ. By taking limits,
and using (5.6), we obtain

ru(x, v) ⩾ ℓ+ V (a)/m.

By Theorem 5.2 we have c < (m− 2)/
√
m− 1 and V (a)/m > −1/

√
m− 1.

Thus

ru ⩾

√
c2 + 4− c

2 − 1√
m− 1

> 0

as desired. □

Remark 5.4. As we have seen, Theorem 4.6 asserts that given a triple (g,A, θ)
satisfying (4.6) and (4.7), the associated thermostat flow has a dominated
splitting. When θ = 0, Theorem 5.1 tells us that we can do better and in
fact the thermostat flow is Anosov. At the “other end”, that is, when A = 0,
we also know by Theorem 3.5 that the thermostat flow is also Anosov (in
this case K = Kg − δgθ = −1). These two “ends” are Anosov for different
reasons, connected with the discussion in Theorem 3.8. In the case θ = 0,
as we have just seen, one uses that ru > 0, that is, the first case in (3.3).
In the case A = 0, we use the second case in (3.3). It is conceivable that
the thermostat flow is always Anosov for any triple (g,A, θ) satisfying (4.6)
and (4.7), but at the time of writing it is not at all clear how to prove this.
It should be noted that for the special case of the geodesic flow it is well
known that a dominated splitting must be Anosov. We can see this fairly
quickly using quadratic forms as follows. Suppose ru,s : SM → R are two
continuous functions such that Xru,s + [rs,u]2 + Kg = 0 and ru − rs ̸= 0
everywhere. Define

Q = 2yẏ − ([ru]2 + [rs]2)y2.
Then a calculation shows

Q̇ = (ẏ − ruy)2 + (ẏ − rsy)2 > 0

unless y = ẏ = 0. Hence by Theorem 3.4 the geodesic flow is Anosov.

5.2. Dissipation and volume

We will now prove the following result stated in the introduction.

Theorem 5.5. Let (g,A) be a pair satisfying the coupled vortex equations
∂̄A = 0 and Kg = −1 + (m − 1)|A|2g. Then the associated thermostat
flow preserves an absolutely continuous measure if and only if A vanishes
identically.

Proof. Since the flow is of class C∞ and Anosov, an application of the smooth
Livšic theorem [27, Corollary 2.1] shows that φt preserves an absolutely
continuous measure if and only if φt preserves a smooth volume form.

We write the volume form as e−uΘ for some real-valued function u on
SM . Thus, using (2.4), we obtain

LF
(
e−uΘ

)
= −e−uF (u)Θ + e−uV (a)Θ = (−Fu+ V a)e−uΘ.
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Hence the claim follows by showing that if u solves Fu = V a, then a vanishes
identically. In order to show this we use the following L2 identity proved in
[22, Equation (5)] which is in turn an extension of an identity in [36] for
geodesic flows. The identity holds for arbitrary thermostats F = X + λV . If
we let Hc := H + cV where c : SM → R is any smooth function then

(5.8) 2⟨Hcu, V Fu⟩ = ∥Fu∥2 + ∥Hcu∥2 −⟨Fc+ c2 +Kg −Hcλ+ λ2, (V u)2⟩,

where u is any smooth function. All norms and inner products are L2 with
respect to the volume form Θ.

In our case λ = a and a calculation shows that if we pick c = V (a)/m,
then

Fc+ c2 +Kg −Hcλ+ λ2 = Kg + (1−m)|A|2g = −1,
hence for this choice of c, (5.8) simplifies to

(5.9) 2⟨Hcu, V Fu⟩ = ∥Fu∥2 + ∥Hcu∥2 + ∥V u∥2.

If Fu = V a, then V Fu = −m2a and we compute using that X and H
preserve Θ and that XV a−mHa = 0:

2 ⟨Hcu, V Fu⟩ = −2m2⟨Hu, a⟩ − 2m2⟨cV u, a⟩
= 2m2⟨u,Ha⟩ − 2m2⟨cV u, a⟩
= −2m2⟨Xu, V (a)/m⟩ − 2m2⟨cV u, a⟩
= −2m∥V a∥2,

where the last equation is obtained using that Xu = V a − aV u and c =
V (a)/m. Inserting this back into (5.9), we see that the equality obtained
can only hold if V a and hence a vanishes identically. □

6. The cases m = 2 and m = 3

In this section we consider the special cases of m = 2, 3 and their peculiarities.
These flows have appeared in different contexts and for different reasons and
in this section we explain these features.

6.1. The case m = 2

Consider a pair (g,A) where A is a quadratic differential with ∂̄A = 0 and
Kg = −1 + |A|2g. By Theorem 5.1, the associated thermostat flow is Anosov.
These flows have the distinctive feature that their weak bundles are of class
C∞. Indeed for this case p = V (a)/2, κp = −1 and equation (3.4) reduces to

Fh+ h2 − 1 = 0.

From this we clearly see that ru,s = ±1+V (a)/2 and hence the weak bundles

RF ⊕R(H + rs,uV )

are smooth. This class of thermostats flows was first considered in [33], where
the coupled vortex equations for m = 2 were derived assuming that the weak
foliations were smooth. Theorem 4.6 in [15] asserts that a smooth Anosov
flow on a closed 3-manifold with weak stable and unstable foliations of class
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C1,1, is smoothly orbit equivalent to a suspension or to a quasi-fuchsian
flow as described in [14, Théorème B]. (In our case, since we are working
with circles bundles the latter alternative holds.) A quasi-fuchsian flow ψ
depends on a pair of points ([g1], [g2]) in Teichmüller space, has smooth weak
stable foliation C∞-conjugate to the weak stable foliation of the constant
curvature metric g1 and smooth weak unstable foliation C∞-conjugate to
the weak unstable foliation of the constant curvature metric g2. Moreover,
ψ preserves a volume form if and only if [g1] = [g2]. The analogous result
on the thermostat side is provided by Theorem 5.5 which asserts that the
thermostat flow preserves a volume form iff A = 0. It is an interesting
question (first raised in [33]) to decide if the thermostat flows originating
from the coupled vortex equations ∂̄A = 0, Kg = −1 + |A|2g describe all
possible quasi-fuchsian flows ψ.

6.2. The case m = 3

Let now (g,A, θ) be a triple on M satisfying (4.6) and (4.7) with A being a
cubic differential. The connection form of the Levi-Civita connection on the
tangent bundle TM is (

0 −ψ
ψ 0

)
.

We define a 1-form on SM with values in gl(2,R)

Υ = (Υi
j) =

(
0 −ψ
ψ 0

)

+
(
(V (a)/3− θ)ω1 − (a+ V (θ))ω2 −(V (θ) + a)ω1 + (θ − V (a)/3)ω2
(V (θ)− a)ω1 − (θ + V (a)/3)ω2 −(θ + V (a)/3)ω1 + (a− V (θ))ω2

)
.

It is a consequence of the equivariance properties

V V a = −9a, V V θ = −θ, LV ω1 = ω2, and LV ω2 = −ω1

that the 1-form Υ is the connection 1-form of a unique (torsion-free) con-
nection ∇ on the tangent bundle TM . Moreover, since the interior product
iFΥ2

1 vanishes identically for λ = a− V θ, it follows that the geodesics of the
connection ∇ can be reparametrised to agree with the projections to M of
the orbits of the thermostat flow defined by λ, see [32, Lemma 3.1] for
details. Moreover, if θ is closed the connection ∇ admits an interpretation
as a Lagrangian minimal surface, see [31]. If A is holomorphic so that θ van-
ishes identically, then the connection ∇ defines a properly convex projective
structure on M , see the work of Labourie [25] and [30, 31]. This means
that the universal cover Ω of M is a properly convex open subset of the real
projective plane RP2 for which there exists a discrete group Γ of projective
transformations which acts cocompactly on Ω and so that M = Ω/Γ. Thus,
(Ω,Γ) is a divisible convex set. Moreover, the segments of the projective
lines RP1 contained in Ω project to M to agree with the (unparametrised)
geodesics of ∇. The universal cover Ω being a convex set, it is equipped
with the Hilbert metric. The geodesic flow of the Hilbert metric descends
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to SM and by a result of Benoist [3], is Anosov if and only if Ω is strictly
convex. In [3], it is also shown that a divisible convex set is strictly convex if
and only if the group dividing it is word-hyperbolic. Since the fundamental
group of a closed surface of negative Euler characteristic is word-hyperbolic,
it thus follows from known results that the thermostat flow associated to
a holomorphic cubic differential is a reparametrisation of an Anosov flow.
However, since the Anosov property is invariant under reparametrisation of
the flow, we conclude that the thermostat flow associated to a holomorphic
cubic differential is Anosov, which is the statement of our Theorem 5.1 for
the special case m = 3.

7. Regularity of weak foliations

As we previously mentioned, the case of m = 2 has the distinctive feature
of having weak bundles of class C∞. It is natural to ask what happens for
m ≥ 3. One approach to this question would be to compute the Godbillon–
Vey invariant following [33]. Unfortunately for m ≥ 3 this calculation does
not yield information conducive to an answer. However, for the case m odd,
we can use reversibility of the flow combined with Theorem 5.5 to derive:

Theorem 7.1. Suppose an Anosov thermostat given by the coupled vortex
equations has a weak foliation of class C2 and m is odd. Then A vanishes
identically.

Proof. When m is odd there is an important additional symmetry in the
flow: the flip σ given by (x, v) 7→ (x,−v). We note that this map is isotopic
to the identity. If φ denotes the thermostat flow then, σ ◦ φt = φ−t ◦ σ. This
relation easily implies that σ maps the weak stable foliation to the unstable
one. Hence, if one of them is of class C2, the other one is also of class C2.

As we have already mentioned, Theorem 4.6 in [15] asserts that a smooth
Anosov flow on a closed 3-manifold with weak stable and unstable foliations
of class C2, is smoothly orbit equivalent to a quasi-fuchsian flow ψ that
depends on a pair of points ([g1], [g2]) in Teichmüller space. The flow ψ
has smooth weak stable foliation C∞-conjugate to the weak stable foliation
of the constant curvature metric g1 and smooth weak unstable foliation
C∞-conjugate to the weak unstable foliation of the constant curvature metric
g2. But since σ is isotopic to the identity we must have [g1] = [g2] and ψ is
an ordinary geodesic flow preserving a volume form. Thus our thermostat
flow preserves a volume form and by Theorem 5.5 we must have A = 0. □

Remark 7.2. It is instructive to discuss Theorem 7.1 in the light of the
remarks in Section 6 for m = 3. As pointed out, in this case, the thermostat
flow is a C∞ parametrisation of the geodesic foliation of a Hilbert metric.
Benoist observes in [3] that the regularity of the weak foliations of the Hilbert
geodesic flow coincides with the regularity of the boundary. Hence if the
boundary of the strictly convex domain defining the Hilbert metric is C2,
then the associated thermostat flow also has C2 weak foliations and therefore
A = 0. This implies that the convex domain is an ellipsoid, thus recovering
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a result of Benzécri [5] for the case of 2-dimensional domains (note however,
that the proof in [5] is more direct and straightforward).

8. The path geometry defined by a thermostat

A thermostat naturally defines a path geometry and in this final section we
show that the path geometry associated to the thermostat coming from a
holomorphic differential A of degree m ⩾ 2 is flat if and only if A vanishes
identically or m = 3. The former case corresponds to the paths being the
geodesics of a hyperbolic metric and the latter case to the paths being the
geodesics of a convex projective structure. We first recall some elementary
facts about path geometries while referring the reader to [7] for further
details.

An (oriented) path geometry on an oriented surface M is given by an
oriented line bundle L on the projective circle bundle SM := (TM \ {0}) /R+

having the property that L together with the vertical bundle of the projection
map ν : SM →M spans the contact distribution of SM . The paths of L are
the projections of its integral curves to M . Note that the orientation of L
naturally equips its paths with an orientation.

Example 8.1. TakingM to be the oriented 2-sphere S2, we obtain a canonical
path geometry L0 whose paths are the great circles. In this case SS2 ≃ SO(3)
and L0 is the line bundle defined by ω2 = ψ = 0, where we write the
Maurer–Cartan form ωSO(3) of SO(3) as

ωSO(3) =

 0 −ω1 −ω2
ω1 0 −ψ
ω2 ψ 0


for left-invariant 1-forms ω1, ω2, ψ on SO(3). Moreover, we orient S2 such
that an orientation compatible volume form pulls back to SO(3) to become
a positive multiple of ω1 ∧ ω2 and orient L0 in such a way that ω1 is positive
on positive vectors of L0.

Definition 8.2. A path geometry L on M is called flat, if for every point
p ∈ M , there exists a neighbourhood Up and an orientation preserving
diffeomorphism f : Up → V onto some open subset V ⊂ S2, which maps
the positively oriented paths contained in Up onto positively oriented great
circles.

Let now F = X+λV be a thermostat on the unit tangent bundle SM of a
oriented Riemannian 2-manifold (M, g). We henceforth identify SM ≃ SM
in the obvious way. In doing so, we obtain a path geometry by defining
L := RF and by declaring vectors in L to be positive if they are positive
multiples of F .

Clearly, if a path geometry is flat, then it must have the property that
its paths agree with the geodesics of some projective structure. In [32,
Proposition 3.4] it is shown that the path geometry defined by a thermostat
X + λV shares its paths with the geodesics of some projective structure if
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and only if

(8.1) 0 = 3
2λ+ 5

3V V λ+ 1
6V V V V λ.

Using this fact we immediately obtain:
Theorem 8.3. Let (g,A) be a pair satisfying the coupled vortex equations
∂̄A = 0 and Kg = −1 + (m− 1)|A|2g. Then the path geometry defined by the
thermostat associated to (g,A) is flat if and only if m = 3 or A vanishes
identically.
Proof. Suppose the path geometry associated to (g,A) is flat. Recall that
for our choice λ = a we have V V a = −m2a, hence (8.1) gives

0 =
(1
6m

4 − 5
3m

2 + 3
2

)
a = 1

6(m− 1)(m+ 1)(m− 3)(m+ 3)a.

Consequently, a and hence A must vanish identically or m = 3.
Conversely, assume A is a cubic differential satisfying ∂A = 0 and Kg =

−1+2|A|2g. The path geometry associated to (g,A) defines a properly convex
projective structure on the oriented surface M . An oriented properly convex
projective surface is an example of a surface carrying a (G,X)-structure
where X = S2 is the oriented projective 2-sphere and G = SL(3,R) its group
of projective transformations, cf. [21]. In particular, it follows that the path
geometry associated to (g,A) is flat. □
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