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Holomorphic differentials, thermostats and
Anosov flows

THOMAS METTLER AND GABRIEL P. PATERNAIN

ABSTRACT. We introduce a new family of thermostat flows on the unit tangent
bundle of an oriented Riemannian 2-manifold. Suitably reparametrised, these
flows include the geodesic flow of metrics of negative Gauss curvature and the
geodesic flow induced by the Hilbert metric on the quotient surface of divisible
convex sets. We show that the family of flows can be parametrised in terms of
certain weighted holomorphic differentials and investigate their properties. In
particular, we prove that they admit a dominated splitting and we identify special
cases in which the flows are Anosov. In the latter case, we study when they
admit an invariant measure in the Lebesgue class and the regularity of the weak
foliations.

1. Introduction

We introduce a new family of flows on the unit tangent bundle SM of a closed
oriented Riemannian 2-manifold .M; g/ of negative Euler characteristic. The flows
are (generalised) thermostat flows and are generated by C1 vector fields of the
form F WD X C .a � V�/V , where X; V denote the geodesic and vertical vector
fields on SM , � is a 1-form on M – thought of as a real-valued function on SM
– and a represents a differential A of degree m > 2 on M . The triple .g; A; �/
determining the flow is subject to the equations

(1.1) Kg D �1Cıg�C .m�1/jAj2g and @A D

�
m � 1

2

� �
� � i ?g �

�
˝A;

where i D
p
�1 and where Kg denotes the Gauss–curvature, ıg the co-differential

and ?g the Hodge-star with respect to g and the orientation. The casem D 3 of these
equations appeared previously in [31] (assuming � is closed), where it is related to
certain torsion-free connections on TM which admit an interpretation as Lagrangian
minimal surfaces. Here we prove that our flows admit a dominated splitting and
moreover, that this family of flows admits a parametrisation in terms of holomorphic
data. Indeed, we show that a triple .g; A; �/ satisfying the equations (1.1) determines
a holomorphic line bundle structure on the smooth complex line bundle Lm WD
ƒ2.TM/.m�1/=2˝C, so that the “weighted differential” P D .detg/�.m�1/=4˝A
is a holomorphic section of Lm ˝KmM and such that a certain negative curvature
condition holds. Here KM denotes the canonical bundle of .M; g/. Conversely,
given a closed hyperbolic Riemann surface .M; Œg�/, a holomorphic line bundle
structure on Lm and a holomorphic section P of Lm ˝ KmM satisfying a certain
negative curvature condition, we construct a triple .g; A; �/ solving (1.1) and hence
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one of our flows, by using the uniformisation theorem and by solving an algebraic
equation only.

In [41], Wojtkowski introduced W-flows by suitably reparametrising the geodesics
of a Weyl connection (or conformal connection). We show that the case where A
vanishes identically corresponds to W-flows associated to conformal connections
on the tangent bundle of a surface that have negative definite symmetrised Ricci
curvature. In particular, we recover [41, Theorem 5.2], by showing that the flow
associated to a triple .g; 0; �/ solving (1.1) is Anosov. This is achieved by providing
sufficiency conditions for a general thermostat flow to admit a dominated splitting
and to have the Anosov property, see Theorem 3.5 and Theorem 3.7.

We then turn to the case where � vanishes identically, so that A is holomorphic,
hence we have

(1.2) Kg D �1C .m � 1/jAj
2
g and @A D 0:

Note that applying standard quasi-linear elliptic PDE techniques we obtain a unique
solution g to (1.2) for every holomorphic differentialA on .M; Œg�/, see Theorem 5.3.
The equations (1.2) admit an interpretation as coupled vortex equations, see in
particular [10, §5]. The case m D 2 was considered in [33] in the context of
Anosov thermostats admitting smooth weak bundles (see Section 6 for more details).
In the case m D 3, the first equation is known as Wang’s equation in the affine
sphere literature. In [38], Wang related its solution to a complete hyperbolic affine
2-sphere in R3, in particular g is known as the Blaschke metric. Moreover, for
m D 3, a pair .g; A/ on M solving (1.2) defines a properly convex projective
structure on M and hence turns M into a properly convex projective surface,
see [25] and [29]. The universal cover � of a properly convex projective surface
of negative Euler characteristic is a strictly and properly convex domain in the
projective plane RP2 which admits a cocompact action by a group � of projective
transformations. Consequently, we obtain a (two-dimensional) divisible convex set.
Since � is convex, it is equipped with the Hilbert metric and moreover, the Hilbert
metric descends to define a Finsler metric on the quotient surface M ' �=� , see
in particular [21] for a nice survey of these ideas. We observe that the geodesic flow
of the Finsler metric is a C 1 reparametrisation of the flow we associate to the pair
.g; A/. Benoist has shown [3] that if .�; �/ is a divisible convex set (not necessarily
two-dimensional), then the geodesic flow of the Finsler metric F induced on �=�
– henceforth just called the Hilbert geodesic flow – is Anosov if and only if � is
strictly convex. Since the Anosov property is invariant under reparametrisation, we
may ask if the thermostat flow associated to a pair .g; A/ solving (1.2) is Anosov
for all m > 2. This is indeed the case, we obtain:

Theorem 5.1. Let .g; A/ be a pair satisfying the coupled vortex equations N@A D 0
and Kg D �1C .m � 1/jAj2g . Then the associated thermostat flow is Anosov.

The hyperbolicity properties of thermostats satisfying (1.1) are not apparent. To
expose them, we first conjugate the derivative cocycle to another one in which we
can see the effect of equations (1.1). This conjugation requires a careful choice of
gauge, but once that is established, standard methods using quadratic forms give rise
to a dominated splitting. To upgrade this dominated splitting to hyperbolic as in the
case of Theorem 5.1 requires an additional ingredient in the form of Theorem 5.2
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below which asserts that Kg < 0; this gives control on the potentially problematic
size of A.

In the same way as geodesic flows are paradigms of conservative systems, ther-
mostats may be seen as paradigms of dissipative systems. The special case of
Gaussian thermostats (a D 0) has provided interesting models in nonequilibrium
statistical mechanics [11, 12, 35]. The next theorem shows that Anosov thermostat
flows determined by the coupled vortex equations are indeed dissipative except
when A D 0.

Theorem 5.5. Let .g; A/ be a pair satisfying the coupled vortex equations N@A D 0
and Kg D �1C .m � 1/jAj2g . Then the associated thermostat flow preserves an
absolutely continuous measure if and only if A vanishes identically.

We remark that due to a theorem of Ghys [13] Anosov thermostat flows are
Hölder orbit equivalent to the geodesic flow of (any) negatively curved metric of M
and hence transitive (to be precise, [13] establishes a topological equivalence and
the Hölder orbit equivalence follows from [20, Theorem 19.1.5]).

In [3], Benoist also observes that the regularity of the weak foliations of the
Hilbert geodesic flow coincides with the regularity of the boundary of the divisible
convex set .�; �/. By a result of Benzécri [5], the boundary has regularity C 2 if
and only if� is an ellipsoid, in which case the induced Finsler metric is Riemannian
and hyperbolic. Hence one might speculate that if a solution to the coupled vortex
equations (1.2) gives rise to an Anosov flow having a weak foliation of regularity
C 2, then A vanishes identically. While we cannot prove this in general, we use
Theorem 5.5 to resolve the odd case:

Theorem 7.1. Suppose an Anosov thermostat given by the coupled vortex equations
has a weak foliation of class C 2 and m is odd. Then A vanishes identically.

The orbits of our flow – when projected to the surface M – define what is known
as a path geometry on M , that is, a prescription of a path on M for every direction
in each tangent space. In the case where A vanishes identically the paths are the
geodesics of a hyperbolic metric and in the case where m D 3 the paths are the
geodesics of a properly convex projective structure. In both cases, the path geometry
is flat, by which we mean it is locally equivalent to the path geometry of great circles
on the 2-sphere. In the final section of the article we show:

Theorem 8.3. Let .g; A/ be a pair satisfying the coupled vortex equations N@A D 0
and Kg D �1C .m � 1/jAj2g . Then the path geometry defined by the thermostat
associated to .g; A/ is flat if and only if m D 3 or A vanishes identically.

Holomorphic differentials appear naturally in higher Teichmüller theory and
here we briefly provide some context for our results while referring the reader to
the recent survey [39] by Wienhard for a nice introduction to this currently very
active research topic. Generalizing Teichmüller space, Hitchin [18] identified a
connected component H .M;G/ – nowadays called the Hitchin component – in the
representation variety Hom .�1M;G/ =G, where M is a connected closed oriented
surface of negative Euler characteristic and G a real split Lie group. Fixing a
conformal structure Œg� on M , Hitchin used the theory of Higgs bundles [19] to
provide a parametrisation of H .M;G/ in terms of holomorphic differentials on
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.M; Œg�/. While Hitchin’s parametrisation of H .M;G/ relies on the choice of an
arbitrary conformal structure Œg� on M , Labourie [26] was recently able to con-
struct a canonical parametrisation of H .M;G/ in the case where G is PSL.3;R/,
PSp.4;R/ or the split form G2;0 of the exceptional group G2 (see also [25] and [29]
for the case G D PSL.3;R/). More precisely, Labourie obtains a mapping class
group equivariant identification of H .M;G/ with the fibre bundle over Teichmüller
space whose fibre at J is H 0.M;K3M;J /, H

0.M;K4M;J / and H 0.M;K6M;J / re-
spectively. By the work of Goldman [17] and Choi–Goldman [8] the component
H .M; PSL.3;R// consists of (conjugacy classes of) monodromy representations
of properly convex projective structures on M and this together with the work of
Labourie [25, 26] and Loftin [29] yields the aforementioned description of properly
convex projective structures in terms of pairs .Œg�; A/ with A a holomorphic cubic
differential.

Using the equivariant flag curve of Labourie [24], Potrie–Sambarino [34] associ-
ate several Anosov flows to every representation � in a certain neighbourhood of
the Fuchsian locus in H .M; PSL.n;R//, n > 4. In particular, using the canonical
embeddings

H .M; PSp.4;R// � H .M; PSL.4;R// and H .M;G2;0/ � H .M;PSL.7;R//;

the work of Labourie [24, 26] and Potrie–Sambarino [34] yields examples of Anosov
flows for certain quartic and sixtic holomorphic differential on .M; Œg�/. It would
be interesting to know how these flows relate to the flows introduced here. We plan
to investigate this in future work.
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2. Preliminaries on general thermostats

Let M be a closed oriented surface equipped with a Riemannian metric g, SM its
unit circle bundle and � W SM !M the canonical projection. The latter is in fact
a principal SO.2/-bundle and we let V be the infinitesimal generator of the action
of SO.2/.

Given a unit vector v 2 TxM , we will denote by Jv the unique unit vector
orthogonal to v such that fv; J vg is an oriented basis of TxM . There are two
semibasic 1-forms !1 and !2 on SM , which are defined by the formulas:

.!1/.x;v/.�/ WD g
�
d.x;v/�.�/; v

�
I

.!2/.x;v/.�/ WD g
�
d.x;v/�.�/; J v

�
:

The form !1 is the canonical contact form of SM whose Reeb vector field is the
geodesic vector field X .

A basic theorem in 2-dimensional Riemannian geometry asserts that there exists
a unique 1-form  on SM – the Levi-Civita connection form of g – such that
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 .V / D 1 and

(2.1)

d!1 D �!2 ^  ;

d!2 D � ^ !1;

d D �.Kg ı �/!1 ^ !2;

where Kg denotes the Gaussian curvature of g. In fact, the form  is given by

 .x;v/.�/ D g

�
DZ

dt
.0/; J v

�
;

where Z W .�"; "/! SM is any curve with Z.0/ D .x; v/, PZ.0/ D � and DZ
dt

is
the covariant derivative of Z along the curve � ıZ.

For later use it is convenient to introduce the vector field H uniquely defined by
the conditions !2.H/ D 1 and !1.H/ D  .H/ D 0. The vector fields X;H; V
are dual to !1; !2;  and as a consequence of (2.1) they satisfy the commutation
relations

(2.2) ŒV; X� D H; ŒV;H� D �X; ŒX;H� D KgV:

The equations (2.1) also imply that the vector fields X;H and V preserve the
volume form !1 ^ d!1 and hence the Liouville measure. Note that the flow of H is
given by R�1 ı �0t ıR, where R.x; v/ D .x; J v/ and �0t is the geodesic flow of g.

Let � be an arbitrary smooth function on SM . For several of the results that we
will describe below, we will not need � to be a special polynomial in the velocities.
We consider a (generalised) thermostat flow on .M; g/, that is, a flow � defined by

(2.3)
D P

dt
D �.; P/ J P:

It is easy to check that
F WD X C �V

is the generating vector field of �.
Now let ‚ WD �!1 ^ d!1 D !1 ^ !2 ^  . This volume form generates the

Liouville measure d� of SM .

Lemma 2.1. We have:

(2.4)

LF‚ D V.�/‚I

LH‚ D 0I

LV‚ D 0:

Proof. Note that for any vector field Y , LY‚ D d.iY‚/, by Cartan’s formula.
Since iV‚ D !1 ^ !2 D ���a, where �a is the area form of M , we see that
LV‚ D 0. Similarly, LX‚ D LH‚ D 0. Finally LF‚ D LX‚ C L�V‚ D

d.i�V‚/ D V.�/‚. □

2.1. Jacobi equations

It is easy to derive the ODEs governing the behaviour of d�t using the bracket
relations above. Given � 2 T.x;v/SM (the initial conditions), if we write

d�t .�/ D xF C yH C uV
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then
Px D �yI

Py D uI

Pu D V.�/ Py � �y;

where � WD Kg �H�C �2.

2.2. Quotient cocycle

We consider the rank two quotient vector bundle E D TSM=RF . We use the
notation Œ�� with � 2 TSM for the elements of E. Note that d�t descends to the
quotient to define a mapping

� W E �R! E; .Œ��; t/ 7! �.Œ��; t/ D Œd�t .�/�

satisfying �t ı �s D �tCs for all t; s 2 R. The basis of vector fields .F;H; V / on
SM defines a vector bundle isomorphism TSM ' SM �R3 and consequently an
identification E ' SM �R2. Therefore, for each t 2 R, we obtain a unique map
‰t W SM ! GL.2;R/ defined by the rule

�t ..x; v/; w/ D .�t .x; v/;‰t .x; v/w/

for all ..x; v/; w/ 2 E ' SM �R2. The map ‰ W SM �R! GL.2;R/ satisfies

‰tCs.x; v/ D ‰s.�t .x; v//‰t .x; v/

for all .x; v/ 2 SM and t; s 2 R, and hence defines anGL.2;R/-valued cocycle on
SM with respect to the R-action defined by �. Explicitly, ‰t is the matrix whose
action on R2 is given by

‰t .x; v/ W

�
y.0/

Py.0/

�
7!

�
y.t/

Py.t/

�
where Ry.t/ � V.�/.�t .x; v// Py.t/C �.�t .x; v//y.t/ D 0.

Note that for thermostats the 2-plane bundle spanned by H and V is in general
not invariant under d�t .

2.3. Infinitesimal generators and conjugate cocycles

Given a cocycle ‰t W SM �R! GL.2;R/ we define its infinitesimal generator
B W SM ! gl.2;R/ as

B.x; v/ WD �
d

dt

ˇ̌̌̌
tD0

‰t .x; v/:

The cocycle ‰t can be recovered from B as the unique solution to

d

dt
‰t .x; v/C B.�t .x; v//‰t .x; v/ D 0; ‰0.x; v/ D Id:

For the case of thermostats, it is immediate to check that

B D

�
0 �1

� �V �

�
:
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Given a smooth map P W SM ! GL.2;R/ (a gauge) we can define a new cocycle
by conjugation as

Q‰t .x; v/ D P�1.�t .x; v//‰t .x; v/P .x; v/:

It is easy to check that the infinitesimal generator QB of Q‰t is related to B by

(2.5) QB D P�1BP CP�1FP :

3. Dominated splitting and hyperbolicity for thermostats

We are interested in the questions: when is this cocycle hyperbolic? When does it
have a dominated splitting? We start with some definitions.

Definition 3.1. The cocycle‰t is free of conjugate points if any non-trivial solution
of the Jacobi equation Ry � V.�/ Py C �y D 0 with y.0/ D 0 vanishes only at t D 0.

Definition 3.2. The cocycle ‰t is said to be hyperbolic if there exists a splitting
E D Eu ˚Es where Eu; Es are continuous �-invariant line subbundles of TSM ,
and constants C > 0 and 0 < � < 1 < � such that for all t > 0 we have

k‰�t jEuk 6 C ��t and k‰t jEsk 6 C �t :

We also say:

Definition 3.3. The cocycle ‰t is said to have a dominated splitting if there is a
continuous �-invariant splittingE D Eu˚Es , and constants C > 0 and 0 < � < 1
such that for all t > 0 we have

k‰t jEs.x;v/kk‰�t jEu.�t .x;v//k � C �
t :

Obviously hyperbolicity implies dominated splitting. It also implies that there
are no conjugate points [9]. Moreover the cocycle ‰t is hyperbolic if and only if
the thermostat flow � is Anosov (cf. for instance [40, Proposition 5.1] where it is
proved that the subbundles Es;u of E lift to subbundles of TSM to give the usual
definition of Anosov flow). We shall say that � has a dominated splitting if ‰t has
a dominated splitting (this is the adequate notion of dominated splittings for flows,
see e.g. [1, Definition 1]). For the case of flows on 3-manifolds, as it is our case, the
existence of a dominated splitting can produce hyperbolicity if one has additional
information on the closed orbits. Indeed [1, Theorem B] implies that if all closed
orbits of � are hyperbolic saddles, then SM D ƒ [ T where ƒ is a hyperbolic
invariant set and T consists of finitely many normally hyperbolic irrational tori.

A very convenient way to establish the aforementioned properties for cocycles is
to use quadratic forms as in [28, 41, 42]. In particular, we have [42, Proposition
4.1 & Theorem 4.4]:

Proposition 3.4 (Wojtkowski). Let Q be a continuous non-degenerate quadratic
form on E. Suppose furthermore that the derivative

PQ.Œ��/ WD
d

dt

ˇ̌̌̌
tD0

Q.Œd�t .�/�/

exists for all Œ�� 2 E. Then ‰t has a dominated splitting if PQ.Œ��/ > 0 for all
Œ�� ¤ 0 with Q.Œ��/ D 0. If the stronger property PQ.Œ��/ > 0 for all Œ�� ¤ 0 holds,
then ‰t is hyperbolic.
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In what follows it will be helpful to understand how the spaces Eu;s are construc-
ted using Q. This is explained in detail in [42, Proposition 4.1], so here we just
give a brief summary adapted to our situation. We let LC.x; v/ denote the set of all
1-dimensional subspaces W such that Q.x;v/ is positive on W . The condition on
the quadratic form Q ensures that ‰t acts as a contraction on LC and hence there
is a unique point of intersection

(3.1) Eu.x; v/ D
\
t>0

‰t .��t .x; v//LC.��t .x; v//:

All our quadratic forms Q below will have the property that Q.0; b/ D 0 (using the
identification E ' SM �R2) and hence we can construct Eu (and Es) simply by
applying the procedure (3.1) to the vertical subspace R.0; 1/, that is,

(3.2) Eu.x; v/ D lim
t!1

‰t .��t .x; v//R

�
0

1

�
:

Let us put these ideas to use. Define K D � C FV �.

Proposition 3.5. Assume K < 0. Then � is Anosov.

Proof. We let .a; b/ denote the standard coordinates on R2. Using the identification
E ' SM �R2 we define a quadratic form on E by the rule

Q.x;v/.a; b/ D .b � V.�/a/a:

Then
Q�t .x;v/.‰t .a; b// D . Py � V.�/y/y;

where y is the unique solution of

Ry � V.�/ Py C �y D 0;

with y.0/ D a and Py.0/ D b. A simple calculation shows that

PQ D
d

dt
Q�t .x;v/.‰t .a; b// D �Ky2 C . Py � V.�/y/ Py:

Since K < 0 we see that
d

dt

ˇ̌̌̌
tD0

Q�t .x;v/.‰t .a; b// > 0

for .a; b/ ¤ 0 and such that Q.x;v/.a; b/ D 0. Then Theorem 3.4 immediately
implies that ‰t has a dominated splitting. We can upgrade that to hyperbolic
as follows. If we let z WD Py � V.�/y, then the quadratic form is just zy. By the
construction of the subspacesEs;u (cf. (3.1)) we see thatEs;u do not contain neither
z D 0, nor y D 0. Hence there exist continuous functions rs;u W SM ! R such that
HCrs;uV 2 Es;u. Moreover, we see that ru�V � > 0 and rs�V � < 0. Consider
now a solution with initial conditions .y.0/; Py.0// 2 Eu. Then z D .ru � V �/y
and Pz D �Ky D �K.ru�V �/�1z. This gives exponential growth for z and hence
the desired exponential growth for ‰t on Eu. Arguing in a similar way with Es ,
we deduce that ‰t is hyperbolic. □

Remark 3.6. By considering the quadratic form Q D y Py we can deduce with
a similar proof that if � < 0 the thermostat flow � is Anosov. This is because
PQ D Py2 � �y2 C V.�/y Py. We have ru > 0 and hyperbolicity follows from
Py D ruy when .y.0/; Py.0// 2 Eu.
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In fact we can generalise this further as follows.

Theorem 3.7. Let p W SM ! R be a smooth function such that

�p WD � C Fp C p.p � V �/ < 0:

Then � has a dominated splitting. If in addition �p C
.V �/2

4
< 0, then the flow is

Anosov.

Proof. The quadratic form to consider isQ D zy, where z WD Py�py. A calculation
shows that

PQ D z2 � �py
2
C zyV �:

We see that PQ > 0 whenever zy D 0, but .y; z/ ¤ 0. The claim in the theorem
again follows from Theorem 3.4. Also note that

PQ D

�
z �

yV �

2

�2
�

�
�p C

.V �/2

4

�
y2 > 0;

unless .z; y/ D 0. Hence the flow is Anosov by Theorem 3.4. □

Remark 3.8. Let us see the main issue with upgrading the last theorem to “hyper-
bolic” as in the proof of Theorem 3.5. Certainly we get continuous (Hölder in
fact) functions rs;u. To be definite consider the case of Eu and initial conditions
.y.0/; Py.0// 2 Eu. Then Py D ruy and z D .ru � p/y with ru � p > 0 as before.
But now Pz D .V � � p/z � �py D .V � � p �

�p

ru�p
/z. To get exponential growth

we either need:

(3.3) ru > 0; or V � � p �
�p

ru � p
> 0

and it is not clear how to get any of these conditions in this generality. In the special
cases above p D 0 or p D V �, we do get one of these conditions. In all these cases
the function r D ru;s satisfies the Riccati equation

F r C r2 � rV �C � D 0;

which is easily derived using the invariance of Es;u and the Jacobi equation Ry �
V.�/ Py C �y D 0. Observe that h WD r � p satisfies the Riccati equation

(3.4) FhC h2 C h.2p � V �/C �p D 0:

Using (3.2) we can also give a construction of functions ru;s at the level of the
Riccati equation as follows. Fix .x; v/ and consider for each R > 0, the unique
solution uR to the Riccati equation along �t .x; v/

PuC u2 � uV �C � D 0

satisfying uR.�R/ D1. Then (3.2) translates easily into

(3.5) ru.x; v/ D lim
R!1

uR.0/:

Note that ru.�t .x; v// D limR!1 uR.t/. These limiting solutions exist whenever
the cocycle ‰t has no conjugate points [2]. It is easy to check that in all the cases
we consider below, the cocycle ‰t is free of conjugate points.
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Remark 3.9. This remark attempts to clarify the role of the function p in terms of
conjugate cocycles and infinitesimal generators as in Subsection Section 2.3. As we
have already pointed out, the infinitesimal generator B for a thermostat is given by

B D

�
0 �1

� �V �

�
:

Consider a gauge transformation P W SM ! GL.2;R/ given by

P D

�
1 0

p 1

�
:

A calculation using (2.5) shows that the conjugate cocyle Q‰t via P has infinitesimal
generator given by

QB D

�
�p �1

�p �V �C p

�
:

The cocycles‰t and Q‰t share the same dominated splitting/hyperbolicity properties
by virtue of being conjugate, but the form of QB exposes clearly the origins of these
properties via �p < 0 (cf. [42, Introduction]). The trace of both matrices, which is
�V � (minus divergence of F ), indicates the dissipative nature of thermostats.

4. Applications

We consider now some special choices of �. To this end let � be a 1-form on
M which we may equivalently think of as a function � W SM ! R satisfying
V V� D �� . For later use we record that the co-differential of � and its Hodge-star
satisfy

(4.1) ��ıg� D �.X� CHV�/; ��.?g�/ D �V.�/!1 C �!2:

Moreover, let A be a differential of degree m on M with m > 2. By this we mean a
section of them-th tensorial power of the canonical bundleKM of .M; g/. Likewise,
we may equivalently think of a differential A of degree m on M as a real-valued
function a W SM ! R satisfying V Va D �m2a, explicitly, we obtain

��A D .Va=mC ia/ .!1 C i!2/
m ;

so that

(4.2) ��jAj2g D .Va/
2=m2 C a2

The thermostat flows we investigate are of the form � D a � V� . We will see
next that they admit a dominated splitting provided a natural pair of equations is
satisfied by the triple .g; A; �/. In order to derive these equations we first need a
Lemma.

Lemma 4.1. We have

(4.3) @A D

�
m � 1

2

� �
� � i ?g �

�
˝ A

iff

(4.4) 0 D XVa �mHa � .m � 1/.�Va �maV�/:
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Remark 4.2. Note that applying V we see that (4.4) is equivalent to

(4.5) 0 D .1 �m/ .HVaCmXa � .m � 1/ .m�aC V.�/V .a/// :

Proof of Theorem 4.1. We use the complex notation Qa D Va=m C ia and ! D
!1 C i!2. Since V Va D �m2a, we compute that there exist unique complex-
valued functions Qa0 and Qa00 so that

d Qa D Qa0! C Qa00! C im Qa :

In particular, we have ��.@A/ D Qa00! ˝ !m. Since
da D X.a/!1 CH.a/!2 C V.a/ ;

d.Va/ D X.V.a//!1 CH.V.a//!2 �m
2a ;

we obtain
Qa00 D

1

2
.XVa=m �Ha/C

i

2
.HVa=mCXa/ :

We also have
��
�
� � i ?g �

�
D .� C iV�/ !:

Hence (4.3) is equivalent to

Qa00 �

�
m � 1

2

�
.� C iV�/.V .a/=mC ia/ D 0:

Taking the real part gives (4.4). □

Remark 4.3. Recall that a torsion-free connection on TM preserving a conformal
structure Œg� is called a Weyl connection or conformal connection. More precisely,
r preserves Œg� if for some (and hence any) g 2 Œg�, there exists a 1-form � , so that

rg D 2� ˝ g:

Remark 4.4 (The case m D 1). We could also consider the case � D a � V�

with a representing a differential of degree m D 1, that is, a .1;0/-form. We
exclude this case since it corresponds to the case where A vanishes identically
by defining � 0 D Va and considering �0 D �V.� 0 � �/ D �. Flows defined
by � D �V� D were studied previously under the name W -flows as they arise
naturally by reparametrising the geodesics of a Weyl connection, see [41]. In
particular in [41, Theorem 5.2] it is proved that W -flows are Anosov provided
Kg � ıg� < 0. A simple computation gives that K D Kg � ıg� hence we
recover [41, Theorem 5.2] by applying Theorem 3.5. In particular, we see that if
A is a holomorphic 1-form and g satisfies Kg < 0, then the associated thermostat
flow is Anosov.

We now want to apply Theorem 3.7 to the case � D a � V� for some good
choice of p.

Lemma 4.5. Suppose � D a� V� and take p D Va=mC � . Then �p � �1 if and
only if the following two equations are identically satisfied

(4.6) Kg D �1C ıg� C .m � 1/jAj
2
g

and

(4.7) @A D

�
m � 1

2

� �
� � i ?g �

�
˝ A:
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Proof. Taking p D Va=mC � gives

�p D � C Fp C p.p � V �/ D Kg �H�C �
2
C Fp C p.p � V �/

D Kg �HaCHV� C a
2
� 2aV� C .V�/2 C .X C .a � V�/V /.Va=mC �/

C p.p � V�/

D Kg CHV� CX� � .m � 1/
�
a2 C .Va/=m2

�
C .XVa=m �Ha � .m � 1/.�Va=m � aV�//

D Kg � ıg� � .m � 1/jAj
2
g C

1

m
.XVa �mHa � .m � 1/.�Va �maV�// ;

where we have used (4.1), (4.2) and V Va D �m2a as well as V V� D �� . Using
Theorem 4.1 we see that �p � �1 provided (4.6) and (4.7) are identically satisfied.
Conversely, suppose �p � �1. Since Kg � ıg� � .m � 1/jAj2g is constant along
the fibres of SM !M , we obtain

0 D V�p D

�
1 �m

m

��
HVaCmXa � .m � 1/ .m�aC V.�/V .a//

�
:

Theorem 4.1 and Theorem 4.2 therefore imply that (4.7) must hold. Hence we also
identically have

�p D �1 D Kg � ıg� � .m � 1/jAj
2
g ;

which is equivalent to (4.6). □

Combining Theorem 3.7 and Theorem 4.5 we thus immediately obtain:

Corollary 4.6. Let .g; A; �/ be a triple on M satisfying (4.6) and (4.7). Then the
associated thermostat flow admits a dominated splitting.

We also observe:

Proposition 4.7. Consider a pair .g; A/ with A holomorphic and Kg < 0. Then
the associated thermostat flow has a dominated splitting. Moreover, for m D 2, the
flow is Anosov.

Proof. The fact that there is a dominated splitting follows from �p < 0. For m D 2
we note that

�p D Kg � jAj
2
g D Kg � a

2
� .Va/2=4:

Thus �p C .Va/2=4 < 0 and the Anosov property follows from Theorem 3.7. □

4.1. Parametrising thermostat flows arising from differentials

It turns out that the thermostat flows defined by triples .g; A; �/ satisfying (4.6)
and (4.7) can be parametrised in terms of complex geometric data. Form > 2 define
the (smooth) complex line bundle Lm WD ƒ2.TM/.m�1/=2 ˝C.

Lemma 4.8. There exists a canonical bijection between the following sets:

(i) the holomorphic line bundle structures on Lm;
(ii) the Œg�-conformal connections on TM .
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Before we prove Theorem 4.8, we first recall some basic facts about conformal
connections. Let us fix a Riemannian metric g 2 Œg�. It follows from Koszul’s
identity that the Œg�-conformal connections are of the form

.g;�/
r D

g
r C g ˝ �] � � ˝ Id � Id˝ �

where � 2 �1.M/, gr denotes the Levi-Civita connection of g and �] the g-dual
vector field of � . Moreover, for u 2 C1.M/, we have [6, Theorem 1.159]

exp.2u/g
r D

g
r � g ˝ g

ruC du˝ IdC Id˝ du

from which one easily computes
.exp.2u/g;�Cdu/

r D
.g;�/
r:

Since .g;�/rg D 2 � ˝ g and .g;�/re2ug D 2 .� C du/ ˝ e2ug, we conclude
that the Œg�-conformal connections are in one-to-one correspondence with Weyl
structures, where by a Weyl structure we mean an equivalence class Œg; �� subject
to the equivalence relation

.g; �/ � . Og; O�/ ” Og D e2ug and O� D � C du

for u 2 C1.M/. For later usage we also record that the symmetric part of the Ricci
curvature of .g;�/r satisfies

Sym Ric
�
.g;�/
r

�
D
�
Kg � ıg�

�
g:

Proof of Theorem 4.8. Let @Lm
W �.M;Lm/ ! �0;1.M;Lm/ be a holomorphic

line bundle structure on Lm. Observe that .detg/�.m�1/=4 is a non-vanishing
section of Lm, hence

.detg/.m�1/=4 ˝ @Lm
.detg/�.m�1/=4

is a .0;1/-form on M . Thus there exists a unique 1-form � on M so that

@Lm
.detg/�.m�1/=4 D �

�
m � 1

2

� �
� � i ?g �

�
˝ .detg/�.m�1/=4:

If we instead consider the metric Og D e2ug for u 2 C1.M/, then we obtain

@Lm
.det Og/�.m�1/=4 D �

�
m � 1

2

��
O� � i ?g O�

�
˝ .det Og/�.m�1/=4

with O� D � C du. It follows that @Lm
defines a Weyl structure on M . Moreover, if

two holomorphic line bundle structures @Lm
and @

0

Lm
on Lm determine the same

Weyl structure Œg; ��, then they satisfy

@Lm
.detg/�.m�1/=4 D @

0

Lm
.detg/�.m�1/=4

and hence also @Lm
D @
0

Lm
.

Conversely, let .g;�/r be a Œg�-conformal connection, then
.g;�/
r .detg/�.m�1/=4 D � .m � 1/ � ˝ .detg/�.m�1/=4 :

Extending .g;�/r complex linearly, we obtain a connection on the complex line
bundleLm whose curvature form is (since dim CM D 1) an End.Lm/-valued .1;1/-
form on M . Thus, standard results imply (c.f. [23, Prop. 1.3.7]) that there exists
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a unique holomorphic line bundle structure @Lm
on Lm so that @Lm

D .g;�/r.0;1/.
Finally, we have

.g;�/
r
.0;1/ .detg/�.m�1/=4 D �

�
m � 1

2

� �
� � i ?g �

�
˝ .detg/�.m�1/=4

D @Lm
.detg/�.m�1/=4:

Therefore, the Weyl structure determined by @Lm
is Œg; ��, thus proving the claim.

□

Given a section P of Lm ˝KmM we can define

jP j2g WD jAj
2
g

where A WD .detg/.m�1/=4 ˝ P . It is straightforward to check that the quadratic
form

P WD jP j2gg

only depends on Œg�.
We now have:

Proposition 4.9. Let m > 2. On a compact oriented surface M with �.M/ < 0

the following sets are in one-to-one correspondence:
(i) the triples .g; A; �/ consisting of a Riemannian metric g, a differential A

of degree m and a 1-form � such that

Kg D �1C ıg� C .m � 1/jAj
2
g and @A D

�
m � 1

2

�
.� � i ? �/˝ AI

(ii) the triples .Œg�; @Lm
; P / consisting of a conformal structure Œg�, a holo-

morphic line bundle structure @Lm
on Lm and a holomorphic section P

of Lm ˝ KmM having the property that the symmetric part of the Ricci
curvature of the conformal connection associated to @Lm

plus .1 �m/P is
negative definite.

Proof. Suppose .g; A; �/ is a triple satisfying

Kg D �1C ıg� C .m � 1/jAj
2
g and @A D

�
m � 1

2

� �
� � i ?g �

�
˝ A:

We equip Lm with the holomorphic line bundle structure induced by the conformal
connection .g;�/r. Define P WD .detg/�.m�1/=4 ˝ A, then P is a holomorphic
section of Lm ˝KmM . Indeed, we compute

@P D @Lm

�
.detg/�.m�1/=4

�
˝ AC .detg/�.m�1/=4 ˝ @KM

A

D �

�
m � 1

2

� �
� � i ?g �

�
˝ P C

�
m � 1

2

� �
� � i ?g �

�
˝ P

D 0:

In addition, we observe that the symmetric part of the Ricci curvature of .g;�/r
satisfies

Sym Ric
�
.g;�/
r

�
C .1 �m/P D

�
Kg � ıg� C .1 �m/jAj

2
g

�
g D �g
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which is obviously negative definite. Clearly, the just described map from the first
set of triples into the second set of triples is injective.

Conversely, suppose Lm is equipped with a holomorphic line bundle structure
@Lm

and let P be a holomorphic section of Lm ˝KmM . Assume furthermore that
the symmetric part of the Ricci curvature of the conformal connection associated
to @Lm

plus .1 �m/P is negative definite. We will next use these data to construct
a triple .g; A; �/ solving the above equations. Let g0 2 Œg� denote the hyperbolic
metric in the conformal equivalence class and define

A0 WD .detg0/.m�1/=4 ˝ P:

Note that .detg0/.m�1/=4 is a non-vanishing section of L�1m and hence A0 is a
section of KmM . Since P is holomorphic it follows that there exists a unique 1-form
�0 on M such that

@A0 D

�
m � 1

2

�
.�0 � i ? �0/˝ A0:

Now make the Ansatz g D e2ug0 for u 2 C1.M/ and A D .detg/.m�1/=4˝P D
A0eu.m�1/. Then

@A D

�
m � 1

2

�
.� � i ? �/˝ A;

where � D �0 C du. Since

(4.8) Kexp.2u/g D e�2u
�
Kg ��gu

�
;

where �g D �
�
ıgd C dıg

�
, we obtain

e�2u .�1 ��u/ D �1C e�2uı .�0 C du/C .m � 1/e�2ujA0j2;

where now all norms and operators are with respect to g0. This simplifies to become
an algebraic equation for u

e2u � .m � 1/jA0j2 D 1C ı�0:

Clearly, this equation uniquely determines u provided 1C ı�0 C .m � 1/jA0j2 is
positive. Note that this happens if and only if

.�1 � ı�0 C .1 �m/jA0j
2/g0 D Sym Ric

�
.g0;�0/r

�
C .1 �m/P

is negative definite, but .g0;�0/r is just the conformal connection induced by @Lm
.

Finally, by construction, the triple associated to .g; A; �/ is .Œg�; @Lm
; P /. □

Remark 4.10 (W-Flows). The W-Flows of Wojtkowski [41] are also covered by
the thermostat flows defined by triples .g; A; �/ satisfying (4.6) and (4.7) in the
case where the conformal connection .g;�/r defining the W-flow has negative
definite symmetric Ricci curvature, that is, satisfies .Kg � ıg�/ < 0. Indeed,
suppose the pair .g; �/ satisfies .Kg � ıg�/ < 0. Let u D 1

2
ln
�
ıg� �Kg

�
and

consider . Og; O�/ D .e2ug; � C du/. Then the pairs .g; �/ and . Og; O�/ define the same
conformal connection and hence equivalent W-flows. Using (4.8) and the identity
ıexp.2u/g D e�2uıg for the co-differential acting on 1-forms, we compute

K Og � ı Og
O� D

�
1

ıg� �Kg

� �
Kg ��gu

�
�

�
1

ıg� �Kg

�
ıg .� C du/ D �1:
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Hence the triple . Og; 0; O�/ satisfies (4.6) and (4.7). In particular, we see that the
geodesic flow of metrics of negative Gauss curvature also fit into our family of
flows.

5. The case of holomorphic differentials

We have seen that a triple .g; A; �/ solving (4.6) and (4.7) yields a holomorphic
section of Lm ˝ KmM with respect to some appropriate holomorphic line bundle
structure on Lm. We now restrict to the case where the differential A is already
holomorphic so that we obtain the coupled vortex equations

Kg D �1C .m � 1/jAj
2
g and @A D 0:

5.1. Anosov flows

It is possible to upgrade Theorem 4.6 in the case where A is holomorphic as follows:

Theorem 5.1. Let .g; A/ be a pair satisfying the coupled vortex equations N@A D 0
and Kg D �1C .m � 1/jAj2g . Then the associated thermostat flow is Anosov.

Proof. We already know that there is a dominated splitting, so taking into account
Theorem 3.8, the strategy will be to show that ru > 0 and rs < 0. We will do this
using the following lemma.

Lemma 5.2. Let .g; A/ be a pair satisfying the coupled vortex equations N@A D 0
and Kg D �1C .m � 1/jAj2g . Then �1 6 Kg < 0.

Proof. The proof is quite similar to the proof of [4, Proposition 3.3], the reader
may also compare with [10, Theorem 5.1]. The claim is obviously correct if A
vanishes identically, hence we assume this not to be the case. We first prove the
inequality Kg 6 0. As before let g0 denote the hyperbolic metric in the conformal
equivalence class of g and write g D e2ug0 for u 2 C1.M/. Using

(5.1) Kg D e�2u .�1 ��u/ and jAj2g D e�2mujAj2g0

gives

(5.2) 1C�u D e2u � .m � 1/e�2.m�1/u˛;

where we write ˛ D jAj2g0
. The inequality Kg 6 0 is equivalent to

(5.3) .m � 1/e�2mu˛ 6 1

and is clearly satisfied at the points where A vanishes. Therefore, taking the
logarithm of (5.3), we see that Kg 6 0 follows from the non-negativity of the
smooth function

f D 2mu � log.m � 1/ � log˛;

which is defined on the open set M ı WD fx 2M W A.x/ ¤ 0g. Note that using f
the equation (5.2) becomes

(5.4) 1C�u D e2u.1 � e�f /:

As M is compact, the Gauss curvature Kg attains its maximum at some point
x0 and moreover x0 2 M ı. Consequently, the function f attains its infimum at
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x0. A straightforward calculation gives � log˛ D �2m, where we use that A is
holomorphic. At the minimum x0 of f we thus obtain

(5.5) 0 6 �f .x0/ D 2m .1C�u.x0// D 2m e2u.x0/
�
1 � e�f .x0/

�
;

where we have used (5.4). It follows that f .x0/ > 0 and hence f > 0 on all of M ı.
This shows that Kg 6 0. It order to prove Kg < 0, we first remark that the function
f � 1C e�f is non-negative on M ı. Consequently, (5.5) gives

�gf 6 2mf;

where�g D e�2u� denotes the Laplacian with respect to g. In particular, it follows
that for every point x 2M ı there exists a constant c > 0, an x-neighbourhood Ux
and a flat metric g0 on Ux which lies in the conformal equivalence of g, so that�

�g0
� c

�
f 6 0

on Ux . Therefore, by applying the strong maximum principle [16, Theorem 3.5]
to the operator �g0

� c, it follows that if f vanishes at some point in Ux , then it
vanishes on all of Ux and consequently on M ı. Since A is holomorphic, its zeros
are isolated and hence M ı is dense in M . Since Kg is continuous we conclude
that if Kg vanishes at some point on M , then it vanishes identically on M , but this
possibility is excluded by the Gauss–Bonnet theorem. □

Remark 5.3. From (5.2) we see that u solves a PDE of the form �u D G.x; u/

where
G.x; u/ D �1C e2u � .m � 1/e�2.m�1/u˛.x/:

Since ˛ > 0 we have G.x; u/ 6 �1C e2u and hence G.x; u/ < 0 for u < 0. On
the other hand, for u > supx2M

1
2

log.1C .m � 1/˛.x// > 0 we get

G.x; u/ > �1C e2u � .m � 1/˛.x/ > 0:

Since
@G

@u
.x; u/ D 2˛.x/.m � 1/2e�2.m�1/u C 2e2u > 0

standard quasi-linear elliptic PDE methods (see for instance [37, Proposition 1.9])
imply that (5.2) has a unique smooth solution u for every smooth non-negative
function ˛. Consequently, for every holomorphic differential A on .M; Œg�/ we
obtain a unique solution .g; A/ to the coupled vortex equations Kg D �1C .m �
1/jAj2g and @A D 0.

We now show that ru > 0 (the proof that rs < 0 is similar). Set h D ru �

V.a/=m. Then h satisfies

F.h/C h2 C hB � 1 D 0;

where

B WD
.2 �m/

m
V.a/:

Given .x; v/ 2 SM , consider for each R > 0, the unique solution hR to the Riccati
equation along �t .x; v/:

PhC h2 C hB � 1 D 0
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satisfying hR.�R/ D1. Using (3.5) we derive

(5.6) ru.x; v/ D lim
R!1

hR.0/C V.a/=m:

Let c WD max.x;v/ jB.x; v/j and ` WD
p
c2C4�c
2

. If we let fR WD hR � `, then fR
solves

(5.7) Pf C wf D q;

where w WD fR C B C 2` and q WD �`2 � B`C 1. Observe that q > 0 by our
definitions of c and `. We can solve the inhomogeneous linear equation (5.7) and
use that q > 0 to derive fR.t/ > 0 and thus hR.t/ > `. By taking limits, and using
(5.6), we obtain

ru.x; v/ > `C V.a/=m:

By Theorem 5.2 we have c < .m�2/=
p
m � 1 and V.a/=m > �1=

p
m � 1. Thus

ru >
p
c2 C 4 � c

2
�

1
p
m � 1

> 0

as desired. □

Remark 5.4. As we have seen, Theorem 4.6 asserts that given a triple .g; A; �/
satisfying (4.6) and (4.7), the associated thermostat flow has a dominated splitting.
When � D 0, Theorem 5.1 tells us that we can do better and in fact the thermostat
flow is Anosov. At the “other end”, that is, when A D 0, we also know by
Theorem 3.5 that the thermostat flow is also Anosov (in this case K D Kg � ıg� D

�1). These two “ends” are Anosov for different reasons, connected with the
discussion in Theorem 3.8. In the case � D 0, as we have just seen, one uses
that ru > 0, that is, the first case in (3.3). In the case A D 0, we use the second
case in (3.3). It is conceivable that the thermostat flow is always Anosov for any
triple .g; A; �/ satisfying (4.6) and (4.7), but at the time of writing it is not at all
clear how to prove this. It should be noted that for the special case of the geodesic
flow it is well known that a dominated splitting must be Anosov. We can see this
fairly quickly using quadratic forms as follows. Suppose ru;s W SM ! R are
two continuous functions such that Xru;s C Œrs;u�2 C Kg D 0 and ru � rs ¤ 0

everywhere. Define
Q D 2y Py � .Œru�2 C Œrs�2/y2:

Then a calculation shows

PQ D . Py � ruy/2 C . Py � rsy/2 > 0

unless y D Py D 0. Hence by Theorem 3.4 the geodesic flow is Anosov.

5.2. Dissipation and volume

We will now prove the following result stated in the introduction.

Theorem 5.5. Let .g; A/ be a pair satisfying the coupled vortex equations N@A D 0
and Kg D �1C .m � 1/jAj2g . Then the associated thermostat flow preserves an
absolutely continuous measure if and only if A vanishes identically.
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Proof. Since the flow is of class C1 and Anosov, an application of the smooth
Livšic theorem [27, Corollary 2.1] shows that �t preserves an absolutely continuous
measure if and only if �t preserves a smooth volume form.

We write the volume form as e�u‚ for some real-valued function u on SM .
Thus, using (2.4), we obtain

LF
�
e�u‚

�
D �e�uF.u/‚C e�uV.a/‚ D .�FuC Va/e�u‚:

Hence the claim follows by showing that if u solves Fu D Va, then a vanishes
identically. In order to show this we use the following L2 identity proved in [22,
Equation (5)] which is in turn an extension of an identity in [36] for geodesic flows.
The identity holds for arbitrary thermostats F D XC�V . If we letHc WD H CcV
where c W SM ! R is any smooth function then

(5.8) 2hHcu; VFui D kFuk2CkHcuk2�hFcCc2CKg�Hc�C�2; .V u/2i;

where u is any smooth function. All norms and inner products are L2 with respect
to the volume form ‚.

In our case � D a and a calculation shows that if we pick c D V.a/=m, then

Fc C c2 CKg �Hc�C �
2
D Kg C .1 �m/jAj

2
g D �1;

hence for this choice of c, (5.8) simplifies to

(5.9) 2hHcu; VFui D kFuk
2
C kHcuk

2
C kV uk2:

If Fu D Va, then VFu D �m2a and we compute using that X and H preserve ‚
and that XVa �mHa D 0:

2 hHcu; VFui D �2m
2
hHu; ai � 2m2hcV u; ai

D 2m2hu;Hai � 2m2hcV u; ai

D �2m2hXu; V.a/=mi � 2m2hcV u; ai

D �2mkVak2;

where the last equation is obtained using that Xu D Va � aV u and c D V.a/=m.
Inserting this back into (5.9), we see that the equality obtained can only hold if Va
and hence a vanishes identically. □

6. The cases m D 2 and m D 3

In this section we consider the special cases of m D 2; 3 and their peculiarities.
These flows have appeared in different contexts and for different reasons and in this
section we explain these features.

6.1. The case m D 2

Consider a pair .g; A/ where A is a quadratic differential with N@A D 0 and Kg D
�1C jAj2g . By Theorem 5.1, the associated thermostat flow is Anosov. These flows
have the distinctive feature that their weak bundles are of class C1. Indeed for this
case p D V.a/=2, �p D �1 and equation (3.4) reduces to

FhC h2 � 1 D 0:
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From this we clearly see that ru;s D ˙1C V.a/=2 and hence the weak bundles

RF ˚R.H C rs;uV /

are smooth. This class of thermostats flows was first considered in [33], where the
coupled vortex equations for m D 2 were derived assuming that the weak foliations
were smooth. Theorem 4.6 in [15] asserts that a smooth Anosov flow on a closed
3-manifold with weak stable and unstable foliations of class C 1;1, is smoothly
orbit equivalent to a suspension or to a quasi-fuchsian flow as described in [14,
Théorème B]. (In our case, since we are working with circles bundles the latter
alternative holds.) A quasi-fuchsian flow  depends on a pair of points .Œg1�; Œg2�/
in Teichmüller space, has smooth weak stable foliation C1-conjugate to the weak
stable foliation of the constant curvature metric g1 and smooth weak unstable
foliation C1-conjugate to the weak unstable foliation of the constant curvature
metric g2. Moreover,  preserves a volume form if and only if Œg1� D Œg2�. The
analogous result on the thermostat side is provided by Theorem 5.5 which asserts
that the thermostat flow preserves a volume form iff A D 0. It is an interesting
question (first raised in [33]) to decide if the thermostat flows originating from
the coupled vortex equations N@A D 0, Kg D �1 C jAj2g describe all possible
quasi-fuchsian flows  .

6.2. The case m D 3

Let now .g; A; �/ be a triple on M satisfying (4.6) and (4.7) with A being a cubic
differential. The connection form of the Levi-Civita connection on the tangent
bundle TM is �

0 � 

 0

�
:

We define a 1-form on SM with values in gl.2;R/

‡ D .‡ ij / D

�
0 � 

 0

�
C

�
.V .a/=3 � �/!1 � .aC V.�//!2 �.V .�/C a/!1 C .� � V.a/=3/!2
.V .�/ � a/!1 � .� C V.a/=3/!2 �.� C V.a/=3/!1 C .a � V.�//!2

�
:

It is a consequence of the equivariance properties

V Va D �9a; V V� D ��; LV !1 D !2; and LV !2 D �!1

that the 1-form ‡ is the connection 1-form of a unique (torsion-free) connection
r on the tangent bundle TM . Moreover, since the interior product iF‡21 vanishes
identically for � D a � V� , it follows that the geodesics of the connection r
can be reparametrised to agree with the projections to M of the orbits of the
thermostat flow defined by �, see [32, Lemma 3.1] for details. Moreover, if � is
closed the connection r admits an interpretation as a Lagrangian minimal surface,
see [31]. If A is holomorphic so that � vanishes identically, then the connection r
defines a properly convex projective structure on M , see the work of Labourie [25]
and [30, 31]. This means that the universal cover � of M is a properly convex open
subset of the real projective plane RP2 for which there exists a discrete group � of
projective transformations which acts cocompactly on � and so that M D �=� .
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Thus, .�; �/ is a divisible convex set. Moreover, the segments of the projective lines
RP1 contained in� project toM to agree with the (unparametrised) geodesics of r.
The universal cover� being a convex set, it is equipped with the Hilbert metric. The
geodesic flow of the Hilbert metric descends to SM and by a result of Benoist [3],
is Anosov if and only if � is strictly convex. In [3], it is also shown that a divisible
convex set is strictly convex if and only if the group dividing it is word-hyperbolic.
Since the fundamental group of a closed surface of negative Euler characteristic
is word-hyperbolic, it thus follows from known results that the thermostat flow
associated to a holomorphic cubic differential is a reparametrisation of an Anosov
flow. However, since the Anosov property is invariant under reparametrisation of
the flow, we conclude that the thermostat flow associated to a holomorphic cubic
differential is Anosov, which is the statement of our Theorem 5.1 for the special
case m D 3.

7. Regularity of weak foliations

As we previously mentioned, the case of m D 2 has the distinctive feature of
having weak bundles of class C1. It is natural to ask what happens for m � 3.
One approach to this question would be to compute the Godbillon–Vey invariant
following [33]. Unfortunately for m � 3 this calculation does not yield information
conducive to an answer. However, for the case m odd, we can use reversibility of
the flow combined with Theorem 5.5 to derive:

Theorem 7.1. Suppose an Anosov thermostat given by the coupled vortex equations
has a weak foliation of class C 2 and m is odd. Then A vanishes identically.

Proof. When m is odd there is an important additional symmetry in the flow: the
flip � given by .x; v/ 7! .x;�v/. We note that this map is isotopic to the identity.
If � denotes the thermostat flow then, � ı�t D ��t ı � . This relation easily implies
that � maps the weak stable foliation to the unstable one. Hence, if one of them is
of class C 2, the other one is also of class C 2.

As we have already mentioned, Theorem 4.6 in [15] asserts that a smooth Anosov
flow on a closed 3-manifold with weak stable and unstable foliations of class C 2, is
smoothly orbit equivalent to a quasi-fuchsian flow  that depends on a pair of points
.Œg1�; Œg2�/ in Teichmüller space. The flow  has smooth weak stable foliation
C1-conjugate to the weak stable foliation of the constant curvature metric g1 and
smooth weak unstable foliation C1-conjugate to the weak unstable foliation of the
constant curvature metric g2. But since � is isotopic to the identity we must have
Œg1� D Œg2� and  is an ordinary geodesic flow preserving a volume form. Thus
our thermostat flow preserves a volume form and by Theorem 5.5 we must have
A D 0. □

Remark 7.2. It is instructive to discuss Theorem 7.1 in the light of the remarks in
Section 6 for m D 3. As pointed out, in this case, the thermostat flow is a C1

parametrisation of the geodesic foliation of a Hilbert metric. Benoist observes in
[3] that the regularity of the weak foliations of the Hilbert geodesic flow coincides
with the regularity of the boundary. Hence if the boundary of the strictly convex
domain defining the Hilbert metric is C 2, then the associated thermostat flow also
has C 2 weak foliations and therefore A D 0. This implies that the convex domain
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is an ellipsoid, thus recovering a result of Benzécri [5] for the case of 2-dimensional
domains (note however, that the proof in [5] is more direct and straightforward).

8. The path geometry defined by a thermostat

A thermostat naturally defines a path geometry and in this final section we show
that the path geometry associated to the thermostat coming from a holomorphic
differential A of degree m > 2 is flat if and only if A vanishes identically or m D 3.
The former case corresponds to the paths being the geodesics of a hyperbolic metric
and the latter case to the paths being the geodesics of a convex projective structure.
We first recall some elementary facts about path geometries while referring the
reader to [7] for further details.

An (oriented) path geometry on an oriented surface M is given by an oriented
line bundle L on the projective circle bundle SM WD .TM n f0g/ =RC having the
property that L together with the vertical bundle of the projection map � W SM !
M spans the contact distribution of SM . The paths of L are the projections of its
integral curves to M . Note that the orientation of L naturally equips its paths with
an orientation.

Example 8.1. Taking M to be the oriented 2-sphere S2, we obtain a canonical path
geometry L0 whose paths are the great circles. In this case SS2 ' SO.3/ and L0
is the line bundle defined by !2 D  D 0, where we write the Maurer–Cartan form
!SO.3/ of SO.3/ as

!SO.3/ D

0@ 0 �!1 �!2
!1 0 � 

!2  0

1A
for left-invariant 1-forms !1; !2;  on SO.3/. Moreover, we orient S2 such that
an orientation compatible volume form pulls back to SO.3/ to become a positive
multiple of !1 ^ !2 and orient L0 in such a way that !1 is positive on positive
vectors of L0.

Definition 8.2. A path geometry L on M is called flat, if for every point p 2M ,
there exists a neighbourhood Up and an orientation preserving diffeomorphism
f W Up ! V onto some open subset V � S2, which maps the positively oriented
paths contained in Up onto positively oriented great circles.

Let now F D X C �V be a thermostat on the unit tangent bundle SM of a
oriented Riemannian 2-manifold .M; g/. We henceforth identify SM ' SM in the
obvious way. In doing so, we obtain a path geometry by defining L WD RF and by
declaring vectors in L to be positive if they are positive multiples of F .

Clearly, if a path geometry is flat, then it must have the property that its paths
agree with the geodesics of some projective structure. In [32, Proposition 3.4] it is
shown that the path geometry defined by a thermostat X C �V shares its paths with
the geodesics of some projective structure if and only if

(8.1) 0 D
3

2
�C

5

3
V V �C

1

6
V V V V �:

Using this fact we immediately obtain:
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Theorem 8.3. Let .g; A/ be a pair satisfying the coupled vortex equations N@A D 0
and Kg D �1C .m � 1/jAj2g . Then the path geometry defined by the thermostat
associated to .g; A/ is flat if and only if m D 3 or A vanishes identically.

Proof. Suppose the path geometry associated to .g; A/ is flat. Recall that for our
choice � D a we have V Va D �m2a, hence (8.1) gives

0 D

�
1

6
m4 �

5

3
m2 C

3

2

�
a D

1

6
.m � 1/.mC 1/.m � 3/.mC 3/a:

Consequently, a and hence A must vanish identically or m D 3.
Conversely, assume A is a cubic differential satisfying @A D 0 and Kg D �1C

2jAj2g . The path geometry associated to .g; A/ defines a properly convex projective
structure on the oriented surface M . An oriented properly convex projective surface
is an example of a surface carrying a .G;X/-structure whereX D S2 is the oriented
projective 2-sphere and G D SL.3;R) its group of projective transformations,
cf. [21]. In particular, it follows that the path geometry associated to .g; A/ is
flat. □
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