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Gauge theory on projective surfaces and
anti-self-dual Einstein metrics in dimension four

MACIEJ DUNAJSKI AND THOMAS METTLER

ABSTRACT. Given a projective structure on a surface N , we show how to canon-
ically construct a neutral signature Einstein metric with non-zero scalar curvature
as well as a symplectic form on the total space M of a certain rank 2 affine
bundle M ! N . The Einstein metric has anti-self-dual conformal curvature and
admits a parallel field of anti-self-dual planes. We show that locally every such
metric arises from our construction unless it is conformally flat. The homogen-
eous Einstein metric corresponding to the flat projective structure on RP2 is the
non-compact real form of the Fubini-Study metric on M D SL.3;R/=GL.2;R/.
We also show how our construction relates to a certain gauge-theoretic equation
introduced by Calderbank.

1. Introduction

A projective structure on a smooth surface N is an equivalence class Œr� of torsion-
free connections on TN having the same unparametrised geodesics. Canonically
associated to a projective surface .N; Œr�/ is a rank 2 affine bundleM ! N which is
modelled on T �N and which arises as the complement of a certain RP1-subbundle
of the projectivised cotractor bundle P .E/! N of .N; Œr�/. The aim of this paper
is to canonically construct a pair .g;�/ onM , consisting of a neutral signature anti-
self-dual (ASD) Einstein metric g, as well as a symplectic form �. The pair .g;�/
is related by an endomorphism I W TM ! TM whose square is the identity and
hence it defines what is known as a bi-Lagrangian structure or almost para-Kähler
structure on M . We construct the pair .g;�/ by taking a GL.2;R)-quotient of
the Cartan geometry associated to .N; Œr�/ and in doing so, establish a one-to-one
correspondence between projective vector fields on .N; Œr�/ and sympletic Killing
vector fields on .M; g;�/. In addition, we observe that every Killing vector field of
.M; g/ is symplectic with respect to � and hence the lift of a projective vector field
on .N; Œr�/.

The sections of the affine bundle M ! N are in one-to-one correspondence
with the Œr� representative connections and hence the choice of a representative
connection r 2 Œr� provides a diffeomorphism T �N ! M . Pulling back the
pair .g;�/ with this diffeomorphism gives a pair .gr ; �r/ on T �N which – in
canonical local coordinates .xi ; �i / on the contangent bundle � W T �N ! N –
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takes the form

gr D
�
d�i �

�
�kij �k � �i�j �R.ij /

�
dxj

�
ˇ dxi ;

�r D d�i ^ dx
i
C
1

3
RŒij �dx

i
^ dxj :

Here � i
jk

denote the Christoffel symbols and R.ij /; RŒij � the components of the
symmetric – and anti-symmetric part of the Ricci curvature of r with respect to
the coordinates .xi /. The first two summands in the coordinate expression for
the metric gr give the classical Patterson-Walker metric hr which is canonically
defined on T �N from a torsion-free connection r on N . The metric gr is thus part
of a one-parameter family gr;ƒ of metrics on T �N defined by

(1.1) gr;ƒ D hr Cƒ�
2
C

�
1

ƒ

�
��RicC.r/;

where � denotes the tautological 1-form of T �N andƒ is any non-zero real number.
The family of metrics gr;ƒ already appeared in [?] where they are locally char-
acterized as the neutral signature type II Osserman metrics whose Jacobi operator
have non-zero eigenvalues. However, the relation of the metric gr D gr;1 to pro-
jective differential geometry is not noted there. The reader may also consult [?, ?]
and references cited therein for results about the classification of neutral signature
four-dimensional Osserman metrics. All the metrics in the family gr;ƒ are anti-
self-dual and Einstein with scalar curvature 24ƒ ¤ 0. Moreover, in Theorem 4.1
we show that all ASD Einstein metrics which admit a parallel ASD totally null
distributions are locally of the form (1.1). We also observe that if a connection r
has skew-symmetric Ricci tensor, then the limit ƒ! 0 of the above family gr;ƒ
yields an anti-self-dual Ricci flat metric which previously appeared in the work of
Derdziński [?].

In the final part of the article we relate the metric g to a certain gauge-theoretic
equation introduced by Calderbank in [?]. We also discuss some examples.

This paper mainly concerns itself with the two-dimensional case, but there
are obvious higher dimensional generalisations which we briefly discuss in an
Appendix.
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2. Preliminaries

2.1. Algebraic preliminaries

As usual, we let Rn the denote the space of column vectors of height n with real
entries and Rn the space of row vectors of length n with real entries. Matrix
multiplication Rn �Rn ! R is a non-degenerate pairing identifying Rn with the
dual vector space of Rn.
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Let RP2 D .R3 n f0g/=R� denote space of lines in R3 through the origin, i.e.,
two-dimensional real projective space. For any nonzero x 2 R3 let Œx� denote its
corresponding point in RP2. Let RP2 D .R3 n f0g/=R

� denote the dual projective
space and likewise for any nonzero � 2 R3 we denote by Œ�� its corresponding point
in RP2.

The group SL.3;R/ acts from the left on R3 by matrix multiplication and this
action descends to define a transitive left action on RP2. Likewise, SL.3;R/ acts
on R3 from the left by the rule

h � � D �h�1

for h 2 SL.3;R/ and this actions descends to define a transitive left action on RP2.
The stabiliser subgroup of Œx0� 2 RP2 where x0 D t .1 0 0/ will be denoted by H ,
so that RP2 ' SL.3;R/=H . The elements of H � SL.3;R/ are matrices of the
form

b Ì a D
�

det a�1 b

0 a

�
;

with a 2 GL.2;R/ and b 2 R2. Denoting by RP1 � RP2 the projective line
consisting of those elements Œ�� 2 RP2 which satisfy Œ�� � Œx0� D 0, the group
H acts faithfully from the left by affine transformations on the affine 2-space
A2 D RP2nRP1. Indeed, if we represent an element in A2 by a vector .1; �/ 2 R3
with � 2 R2, we obtain

.1; �/

�
det a�1 b

0 a

��1
D
�
det a;�ba�1 det aC �a�1

�
so that the induced affine transformation is

.b Ì a/ � � D �a�1 det a�1 � ba�1:

Consequently, we may naturally think of H as the 2-dimensional real affine group.

2.2. Projective structures

In this preliminary subsection we shall summarise basic facts about projective
structures on a surface which underlie the results of the paper; the reader may
consult [2] for additional details. LetN be a connected smooth surface. By an affine
torsion-free connection on N we mean a torsion-free connection on its tangent
bundle TN . The set of torsion-free connections on TN is an affine space modelled
on the smooth sections of the vector bundle V D TN ˝ S2.T �N/. We have a
canonical trace mapping V ! T �N and an inclusion

� W T �N ! V; � 7! � ˝ IdC Id˝ �:

Consequently, V decomposes into a direct sum V ' V0 ˚ T
�N , where V0 denotes

the trace-free part of V .
The curvature Rr of the connection r is defined by

Rr.X; Y /Z D rXrYZ � rYrXZ � rŒX;Y �Z

for all vector fields X; Y;Z on N . We define the Ricci curvature of r to be

Ric.r/.X; Y / D tr
�
Z ! Rr.Z;X/Y

�
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for all vector fields X; Y on N .1 The Ricci curvature need not be symmetric and we
denote by Ric˙.r/ its symmetric and anti-symmetric part.

A vector field K defined on some open set U � N is called affine for the torsion-
free connection r on TN if its local flow �t preserves the geodesics of r. The set
of such vector fields on U is a Lie subalgebra of the Lie algebra of vector fields on
U which we will denote by Ar.U /. Clearly, K 2 Ar.U / if and only if

(2.1) 0 D LKr WD lim
t!0

1

t

�
��t r � r

�
on U . A straightforward computation yields that (2.1) is equivalent to the vanishing
of the symmetric part of r2K. By definition, the map K 7! LKr takes values in
�.V / and hence defines a second order linear differential operator Lr W �.TN/!

�.V /.
A projective structure Œr� on N is an equivalence class of torsion–free connec-

tions on TN , where two such connections Or andr are called projectively equivalent
if they share the same unparametrised geodesics. By a classical result of Weyl [?]
this is equivalent to Or � r being pure trace, that is, the existence of a 1-form ‡ on
N such that

(2.2) OrXY D rXY C ‡.X/Y C ‡.Y /X;

for all vector fields X; Y on N . Consequently, the set of projective structures on N
is an affine space modelled on the smooth sections of V0.

Using index notation, the projective Schouten tensor P of r is defined by

Pij D R.ij / C
1

3
RŒij �;

where R.ij / denotes the symmetric part – and RŒij � the anti-symmetric part of the
Ricci curvature of r. If we change the connection in the projective class using (2.2)
then

(2.3) OPij D Pij � ri‡j C ‡i‡j ; OPŒij � D PŒij � � rŒi‡j �:

A vector fieldK defined on some open set U � N is said to be projective for Œr�
if its local flow �t preserves the unparametrised geodesics of Œr�. The set of such
vector fields on U is a Lie subalgebra of the Lie algebra of vector fields on U which
we will denote by PŒr�.U /. A vector field K belongs to PŒr�.U / if and only if

(2.4) 0 D LK Œr� WD .LKr/0

on U , where r 2 Œr�, and the explicit expression for LKr is given by (3.11). By
definition, the right hand side of (2.4) is a smooth section of V0 so that the map
K 7! LK Œr� defines a second order linear differential operator LŒr� W �.TN/!

�.V0/.
If N is orientable, we may restrict attention to connections in Œr� which preserve

an area form � on N , so that r� D 0. We shall refer to such connections as special
[?]. Note that special connections always exist globally. For special connections
the Schouten tensor is symmetric, that is PŒij � D 0. The residual freedom in special
connections within a given projective class is given by (2.2) where ‡ D df for

1This definition is common in projective differential geometry, but differs from the more standard
definition, where the Ricci curvature is defined as Ric.r/.X; Y / D tr

�
Z ! Rr.Z; Y /X

�
.
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some smooth real-valued function f on N . The special condition is preserved if
O� D e3f �.

2.3. The Cartan geometry of a projective surface

In [?] (see also [?] for a modern reference), Cartan associates to a projective
structure Œr� on a smooth surface N a Cartan geometry .� W PŒr� ! N; �/ of type
.SL.3;R/;H/ which consists of a principal rightH -bundle � W PŒr� ! N together
with a Cartan connection � 2 �1.PŒr�; sl.3;R// having the following properties:

(i) �.Xv/ D v for fundamental vector field Xv on PŒr�;
(ii) �u W TuPŒr� ! sl.3;R/ is an isomorphism for all u 2 PŒr�;

(iii) R�
h
� D Ad.h�1/� D h�1�h for all h 2 H ;

(iv) write

� D

�
� tr� �

! �

�
for an R2-valued 1-form ! D .!i /, an R2-valued 1-form � D .�i / and a
gl.2;R/-valued 1-form � D .�ij /. If Xx is a vector field on PŒr� having
the property that

!.Xx/ D x; �.Xx/ D 0; �.Xx/ D 0;

for some non-zero x 2 R2, then the the integral curve ofXx , when projected
toN , becomes a geodesic of Œr� and conversely every geodesic of Œr� arises
in this way;

(v) The curvature 2-form ‚ satisfies

(2.5) ‚ D d� C � ^ � D

�
0 L.! ^ !/

0 0

�
;

for a smooth curvature function L W PŒr� ! Hom
�
R2 ^R2;R2

�
.

Note the Bianchi-identity

d‚ D ‚ ^ � � � ^‚;

the algebraic part of which reads

(2.6) 0 D L.! ^ !/ ^ !:

A projective structure Œr� is called flat if locally Œr� is defined by a flat connection.
A consequence of Cartan’s construction is that a projective structure is flat if and
only if L vanishes identically.

Remark 2.1. Cartan’s bundle is unique in the following sense: If . O� W OPŒr� !
N; O�/ is another Cartan geometry of type .SL.3;R/;H/ satisfying the properties
(iii),(iv),(v), then there exists a H -bundle isomorphism  W PŒr� ! OPŒr� so that
 � O� D � .

Remark 2.2. Let w be any real number. The line bundle associated to PŒr� via
the H -representation �w W H ! GLC.1;R/, b Ì a 7! jdet ajw will be denoted
by E.w/. Following [2], we call its sections densities of projective weight w. In
particular, nowhere vanishing sections of E.1/ are known as projective scales.
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2.4. The choice of a representative connection

For what follows it is necessary to have an explicit construction of the Cartan
geometry .� W PŒr� ! N; �/ of a projective surface .N; Œr�/. This can be achieved
conveniently by fixing a representative connection r 2 Œr�. To this end let � W F !
N denote the coframe bundle of N whose fibre at at point p 2 N consists of the
linear isomorphisms u W TpN ! R2. The group GL.2;R/ acts transitively from
the right on each �-fibre by the rule Ra.u/ D u � a D a�1 ı u for all a 2 GL.2;R/.
This action turns � W F ! N into a principal right GL.2;R/-bundle. The bundle
F ! N is equipped with a tautological R2-valued 1-form ! D .!i / satisfying
the equivariance property .Ra/�! D a�1!, where the 1-form ! is defined by
!u D u ı �

0
u.

Suppose ' D .'ij / 2 �
1.F; gl.2;R// is the connection 1-form of r 2 Œr�, then

we have the structure equations

(2.7) d!i D �'ij ^ !
j ;

and

(2.8) d'kl C '
k
j ^ '

j

l
D
1

2

�
ıi
kPjl � ıj

kPil � 2PŒij �ıl
k
�
!i ^ !j ;

where – by slight abuse of notation – the R2˝R2-valued map P D .Pij / represents
the Schouten tensor of r. We define a right H -action on F �R2 by the rule

.u; �/ � .b Ì a/ D
�
det a�1a�1 ı u; �a det a � b det a

�
;

for all b Ì a 2 H and .u; �/ 2 F � R2. Denoting by � W F � R2 ! N the
basepoint projection of the first factor, this action turns � W F � R2 ! N into a
principal right H -bundle over N . On F �R2 we define the sl.3;R/-valued 1-form

(2.9) � D

�
�
1
3

tr' C �! �d� C �' � !tPt � �!�
! ' � 1

3
I tr' � !�

�
:

Then .� W F �R2 ! N; �/ is a Cartan geometry of type .SL.3;R/;H/ satisfying
the properties (iii) to (v) for the projective structure defined byr. It follows from the
uniqueness part of Cartan’s construction that .� W F �R2 ! N; �/ is isomorphic
to the Cartan geometry of .N; Œr�/.

2.5. The Patterson-Walker metric

In [?], Patterson and Walker use an affine torison-free connection r on a smooth
manifold to construct a split-signature metric on its cotangent bundle. Here we
briefly review their construction for the case of a surface N . As before, let � W
F ! N denote the coframe bundle of N with tautological 1-form ! and let '
denote the connection form of r. The cotangent bundle � W T �N ! N is the
bundle associated to the GL.2;R/-representation � on R2 defined by the rule
�.a/� D �a�1 for all a 2 GL.2;R/ and � 2 R2. The 1-forms on F �R2 that are
semi-basic for the projection � W F �R2 ! T �N ' .F �R2/= �� are spanned by
the components of ! and d� � �'. In particular, the equivariance properties of !; �
and � imply that the tensor field .d� � �'/ ! D

�
d�i � �k'

k
i

�
˝ !i is invariant



PROJECTIVE SURFACES AND ANTI-SELF-DUAL EINSTEIN METRICS 7

under the GL.2;R/-right action,

.Ra/
� .d� � �'/ ! D

�
d�a � �aa�1'a

�
a�1! D .d� � �'/ !:

It follows that there exists a unique split-signature metric hr and a unique 2-form
��0 on T �N such that

��hr D
�
d�i � �k'

k
i

�
ı !i and ���0 D �

�
d�i � �k'

k
i

�
^ !i :

Note that the 1-form �! is semi-basic for the projection � and invariant under the
GL.2;R/-right action, hence the pullback of a unique 1-form � on T �N which
is of course the tautological 1-form (or Liouville 1-form) of T �N . The structure
equation (2.7) gives

�d.�i!
i / D �d�i ^ !

i
C �k'

k
i ^ !

i ;

hence �0 D �d� is just the canonical symplectic form of T �N and independent
of r. The metric hr does however depend on r and is called the Patterson-Walker
metric or the Riemannian extension of r. In canonical local coordinates .xi ; �i / on
an open subset of the cotangent bundle it takes the form

(2.10) hr D d�i ˇ dx
i
� �kij �k dx

i
ˇ dxj ;

where � i
jk

denote the Christoffel symbols of r with respect to the coordinates .xi /.

2.6. Anti-self-duality

LetM be an oriented four–dimensional manifold with a metric g of signature .2; 2/.
The Hodge � operator is an involution on two-forms, and induces a decomposition

(2.11) ƒ2.T �M/ D ƒ2C.T
�M/˚ƒ2�.T

�M/

of two-forms into self-dual (SD) and anti-self-dual (ASD) components, which only
depends on the conformal class of g. The Riemann tensor of g has the symmetry
Rabcd D RŒab�Œcd� so can be thought of as a map R W ƒ2.T �M/ ! ƒ2.T �M/

which admits a decomposition under (2.11):

(2.12) R D

0BBBBBB@
CC � 2ƒ �

� C� � 2ƒ

1CCCCCCA :
Here C˙ are the SD and ASD parts of the (conformal) Weyl tensor, � is the
trace-free Ricci curvature, and �24ƒ is the scalar curvature which acts by scalar
multiplication. The metric g is ASD if CC D 0. It is ASD and Einstein if CC D 0
and � D 0. Finally it is ASD Ricci–flat (or equivalently hyper-symplectic) if
CC D � D ƒ D 0. In this case the Riemann tensor is also anti-self-dual.

Locally there exist real rank-two vector bundles S;S0 (spin-bundles) over M
equipped with parallel symplectic structures "; "0 such that

(2.13) TM Š S˝ S0
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is a canonical bundle isomorphism, and

g.v1 ˝ w1; v2 ˝ w2/ D ".v1; v2/"
0.w1; w2/

for v1; v2 2 �.S/ and w1; w2 2 �.S0/. A vector V 2 �.TM/ is called null if
g.V; V / D 0. Any null vector is of the form V D �˝� where �, and � are sections
of S and S0 respectively. An ˛–plane (respectively a ˇ–plane) is a two–dimensional
plane in TpM spanned by null vectors of the above form with � (respectively �)
fixed, and an ˛–surface (ˇ–surface) is a two–dimensional surface in � �M such
that its tangent plane at every point is an ˛–plane (ˇ–plane). The seminal theorem
of Penrose [?] states that a maximal, three dimensional, family of ˛–surfaces exists
in M iff CC D 0.

3. From projective to bi-Lagrangian structures

In this section we show how to canonically construct a bi-Lagrangian structure on
the total space of a certain rank 2 affine bundle over a projective surface .N; Œr�/.
Recall that the group H also acts faithfully on R2 by affine transformations defined
by the rule

(3.1) .b Ì a/ � � D �a�1 det a�1 � ba�1

for all � 2 R2 and b Ì a 2 H . Therefore, the bundle associated to PŒr� via
this affine H -action is a rank-2 affine bundle M ! N . We will refer to M as
the canonical affine bundle of .N; Œr�/.

By definition, an element of M is an equivalence class Œu; �� with u 2 PŒr� and
� 2 R2 subject to the equivalence relation

.u1; �1/ � .u2; �2/ ” u2 D u1�bÌa ^ �2 D .bÌa/�1��1; bÌa 2 H:

Clearly, every element of M has a representative .u; 0/, unique up to a GL.2;R/
transformation, where here GL.2;R/ � H consists of those elements b Ì a 2 H
satisfying b D 0. For simplicity of notation, we will henceforth write a instead of
0Ìa for the elements of GL.2;R/ � H . It follows that as a smooth manifold,M is
canonically diffeomorphic to the quotient PŒr�=GL.2;R/ and we let� W PŒr� !M

denote the quotient projection.

Remark 3.1. It can be shown that the sections of M ! N are in one-to-one
correspondence with the Œr�-representative connections. The submanifold geometry
in M of representative connections is studied in depth in two articles by the second
author [?, ?].

We use the standard fact that the tangent bundle of N is the bundle associated to
PŒr� via the natural H -action on sl.3;R/=h induced by the adjoint representation
of H on its Lie algebra h. An element in the Lie algebra sl.3;R/ of SL.3;R/ can
be written as

mx;�;˛ D

�
� tr˛ �

x ˛

�
;

where x 2 R2; � 2 R2; ˛ 2 gl.2;R/ and h consists of those elements for which
x D 0. Therefore, the elements in the quotient sl.3;R/=h ' R2 are uniquely
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represented by matrices of the form mx;0;0. Hence the induced action of H is

(3.2) .b Ì a/
�
0 0

x 0

�
.b Ì a/�1 D

�
0 0

.det a/ax 0

�
mod h:

In particular, since the cotangent bundle of N is the bundle associated to the
representation � W H ! GL.R2/ which is dual to the representation defined
by (3.2), it follows that � is defined by the rule

�.b Ì a/� D �a�1 det a�1;

for all � 2 R2 and b Ì a 2 H .
Since � is precisely the linear part of the affine H -action (3.1), we see that the

affine bundle M ! N is modelled on the cotangent bundle of N .

3.1. A bundle embedding

It turns out that we can embed PŒr� ! M as subbundle of the coframe bundle
F ! M of M . Here, we define a coframe at p 2 M to be a linear isomorphism
TpM ! R2 ˚ R2 and we denote the tautological R2 ˚ R2-valued 1-form on F
by �.

By definition ofM , a vector field X onM is represented by a unique .R2˚R2/-
valued function .XC; X�/ on PŒr� satisfying the equivariance condition

(3.3) R�aXC D XCa det a; R�aX� D .det a�1/a�1X�:

Therefore, we obtain a unique map  W PŒr� ! F having the property that for
every vector field X on M and for all u 2 PŒr�

 .u/.X.�.u/// D .XC.u/; X�.u//;

where .XC; X�/ is the function on PŒr� representing X . Clearly,  is a smooth
embedding. Furthermore, from (3.3) we obtain

 .u � a/ D  .u/ � �.a/

where � W H 3 GL.2;R/! Aut.R2˚R2/ is the Lie group embedding defined by
the rule

� .a/ .�; x/ D
�
�a det a; .det a�1/a�1x

�
:

Consequently, the pair . ; �/ embeds PŒr� ! M as a subbundle of the coframe
bundle of M whose structure group is isomorphic to GL.2;R/. Furthermore,
unraveling the definition of �, it follows that we have

(3.4)  �� D .�; !/:

The induced geometric structure on M defined by the reduction of the coframe
bundle of M is a bi-Lagrangian structure, so we will study these structures next.

3.2. Bi-Lagrangian structures

A bi-Lagrangian structure on smooth 4-manifold M (or more generally an even
dimensional manifold) consists of a symplectic structure � together with a splitting
of the tangent bundle of M into a direct sum of �-Lagrangian subbundles E˙

TM D EC ˚E�:
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A manifold equipped with a bi-Lagrangian structure will be called a bi-Lagrangian
manifold. The endomorphism I W TM ! TM defined by

v D vC C v� 7! vC � v�; v 2 TM; v˙ 2 E˙

is �-skew-symmetric, satisfies I 2 D Id and its ˙1-eigenbundle is E˙. Clearly,
I is the unique endomorphism of the tangent bundle having these properties and
therefore, we may equivalently think of a bi-Lagrangian structure as a pair .�; I /
consisting of a symplectic structure � and a �-skew-symmetric endomorphism
I W TM ! TM whose square is the identity.

Note also, that we may use the pair .�; I / to define a pseudo-Riemannian metric

g.v;w/ D �.v; I.w//; v; w 2 TM;

whose signature is .2; 2/ and for which I is skew-symmetric. Of course, a bi-
Lagrangian structure is also equivalently described in terms of the pair .g; I / or the
pair .g;�/.

Remark 3.2. What we call a bi-Lagrangian structure is also referred to as an almost
para-Kähler structure and a para-Kähler structure provided E˙ are both Frobenius
integrable. Note that in [?] the term bi-Lagrangian structure is reserved for the case
where both E˙ are Frobenius integrable.

Remark 3.3. We call a vector field defined on some open subset U � .M;�; I / bi-
Lagrangian if its (local) flow preserves both � and I . The set of such vector fields
on V is a Lie subalgebra of the Lie algebra of vector fields on V which we will
denote by B.�;I/.U /.

A bi-Lagrangian structure admits an interpretation as a reduction of the structure
group of the coframe bundle of M . To this end consider the symmetric bilinear
form of signature .2; 2/ on R2 ˚R2˝

.�1; x
1/; .�2; x

2/
˛
D �

1

2

�
�1x

2
C �2x

1
�

and the skew-symmetric non-degenerate bilinear form

i.�1; x
1/; .�2; x

2/hD
1

2

�
�1x

2
� �2x

1
�
:

The two bilinear forms are related by the endomorphism � sending .�; x/ 7! .�;�x/.
The endomorphism � satisfies �2 D Id and its 1-eigenspace is R2 ˚ f0g and its �1-
eigenspace is f0g ˚R2. By construction, both eigenspaces are null and Lagrangian,
that is, both bilinear forms vanish identically when restricted to the �-eigenspaces.
The group GL.2;R/ acts from the left on R2 ˚R2 by

a � .�; x/ D
�
�a�1; ax

�
and this action preserves both bilinear forms. We henceforth identify GL.2;R/ with
its image subgroup in Aut.R2 ˚R2/. In fact, GL.2;R/ is the largest subgroup of
Aut.R2 ˚R2/ preserving both bilinear forms.

Given a bi-Lagrangian structure .�; I / on M we say that a coframe u at p 2M
is adapted to .�; I / if for all v;w 2 TpM

�p.v; w/ Diu.v/; u.w/h and .u ı I / .v/ D .� ı u/ .v/:



PROJECTIVE SURFACES AND ANTI-SELF-DUAL EINSTEIN METRICS 11

The set of all coframes ofM adapted to .�; I / defines a reduction � W B.�;I/ !M

of the coframe bundle F !M of M with structure group GL.2;R/. Conversely,
every reduction of the coframe bundle of M with structure group GL.2;R/ defines
a unique pair .�; I /, consisting of a non-degenerate 2-form on M and a �-skew
symmetric endomorphism I W TM ! TM whose square is the identity. Note
however that � need not be closed.

The tautological R2 ˚ R2-valued 1-form � on B.�;I/ will be written as � D
.�; !/, so that � D .�i / is an R2-valued 1-form on B.�;I/ and ! D .!i / is an
R2-valued 1-form on B.�;I/. By construction, we have

��� D �� ^ ! WD ��i ^ !
i :

Furthermore, let OL˙ D .�0/
�1
.E˙/ � TB.�;I/, then the subbundle OLC is defined

by the equations � D 0 and the subbundle OL� is defined by the equations ! D 0.
A linear connection on F is said to be adapted to .�; I / if it pulls back to B.�;I/

to become a principal GL.2;R/-connection on B.�;I/. An adapted connection is
given by a gl.2;R/-valued equivariant 1-form � on B.�;I/ such that

d� D �� ^ � C
1

2
TC ..�; !/ ^ .�; !// ;

d! D �� ^ ! C
1

2
T� ..�; !/ ^ .�; !// ;

for some torsion map TC on B.�;I/ with values in Hom.ƒ2.R2 ˚ R2/;R2/ and
some torsion map T� on B.�;I/ with values in Hom.ƒ2.R2 ˚R2/;R2/, both of
which are equivariant with respect to the GL.2;R/ right action. It is an easy exercise
in linear algebra to check that for every bi-Lagrangian structure there exists a unique
adapted connection � so that

(3.5)
d� D �� ^ � C

1

2
TC .! ^ !/ ;

d! D �� ^ ! C
1

2
T� .� ^ �/ ;

with TC taking values in Hom.ƒ2R2;R2/ and T� taking values in Hom.ƒ2R2;R2/.
It follows that E˙ is integrable if and only if T˙ vanishes identically. Furthermore,
the identity d.� ^ !/ D 0 implies

TC.! ^ !/ ^ ! D 0 and T�.� ^ �/ ^ � D 0:

The linear connection � on the bundle of adapted frames induces connections on
the tensor bundles of M in the usual way. By construction, the induced connection
�r on TM is the unique (affine) connection with torsion � satisfying

�
r� D 0 and �

rI D 0 and �.XC; X�/ D 0;

for all X˙ 2 �.E˙/. To the to best of our knowledge, the connection �r was first
studied by Libermann [?], so we call � the Libermann connection. Of course, if �
vanishes identically, then �r is just the Levi-Civita connection of g.
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3.3. From projective to bi-Lagrangian structures

Denoting by B.�;I/ the bundle of adapted coframes of a bi-Lagrangian structure
.�; I / and by PŒr� the Cartan bundle of a projective structure Œr�, we obtain:

Theorem 3.4. Let .N; Œr�/ be a projective surface with Cartan bundle .� W PŒr� !
N; �/. Then there exists a bi-Lagrangian structure .�; I / on the quotient M D
PŒr�=GL.2;R/ having the following property: There exists a GL.2;R/-bundle
isomorphism  W PŒr� ! B.�;I/ so that

 �
�
�
1
3

tr � �

! � � 1
3

Id tr �

�
D �;

where .�; !/ denotes the tautological 1-form on B.�;I/ and � the Libermann
connection. Moreover, the E�-bundle of the bi-Lagrangian structure .�; I / is
always Frobenius integrable and the EC-bundle is Frobenius integrable if and only
if Œr� is flat.

Proof. We write

� D

�
� tr� O�

O! �

�
for the Cartan connection on PŒr�. From Section 3.1 we know that we have an
embedding . ; �/ of PŒr� !M as a GL.2;R/-subbundle � W B.�;I/ !M of the
coframe bundle of M . Furthermore,  satisfies

 �.�; !/ D . O�; O!/;

where .�; !/ denotes the tautological .R2 ˚R2/-valued 1-form on B.�;I/. There-
fore, we obtain a unique non-degenerate 2-form � on M and a unique �-skew-
symmetric endomorphism I W TM ! TM whose square is the identity. The 2-form
� pulled back to B.�;I/ becomes �� ^ !. The structure equations (2.5) imply that
we have

(3.6)
d O! D �.� C I tr�/ ^ O!;

d O� D �O� ^ .� C I tr�/C L. O! ^ O!/:

In particular, we obtain

d . O� ^ O!/ D Œ�O� ^ .� C I tr�/C L. O! ^ O!/� ^ O! � O� ^ Œ�.� C I tr�/ ^ O!�

D L . O! ^ O!/ ^ O! D 0;

where the last equality follows since N is two-dimensional. This shows that � is
symplectic, so that the pair .�; I / defines a bi-Lagrangian structure on M . The
equivariance properties of � and (3.6) imply that the  -pushforward of � C I tr� is
a principal right GL.2;R/-connection on B.�;I/ which satisfies (3.5) with T� � 0
and TC D L ı  �1. In particular, E� is always integrable and EC is integrable if
and only if L vanishes identically, that is, Œr� is flat. Denoting by � the Libermann
connection of .�; I /, we obtain from its uniqueness that

(3.7)  �� D � C I tr�;

which completes the proof. □
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Remark 3.5. Recall that if Xx is a vector field on PŒr� having the property that

!.Xx/ D x; �.Xx/ D 0; �.Xx/ D 0;

for some non-zero x 2 R2, then the the integral curve of Xx , when projected to
N , becomes a geodesic of Œr�. Conversely every geodesic of Œr� arises in this
way. Likewise, a geodesic of the Libermann connection arises as the projection
of an integral curve of a horizontal vector field on B.�;I/ which is constant on
the canonical 1-form. It follows that the geodesics on .N; Œr�/ correspond to the
geodesics of the Libermann connection on .M;�; I / that are everywhere tangent
to E�.

3.4. A local coordinate descripition

Recall from Section 2.3 that the choice of a representative connection r 2 Œr� gives
aH -bundle isomorphism PŒr� ' F �R2. In particular, we obtain a diffeomorphism
 r W .F �R2/=GL.2;R/!M . By construction, the quotient .F �R2/=GL.2;R/
is the cotangent bundle of N . Denoting the projection F � R2 ! T �N by � as
well, we obtain

(3.8)
. ı �/�g D �

�
�d� C �' � Pt! � �!�

�
ˇ !;

. ı �/�� D ! ^
�
�d� C �' � Pt! � �!�

�
;

where the R2 ˝ R2-valued map P D .Pij / on F represents the Schouten tensor
of r and ' the connection form of r. Using (3.8), we see that in terms of the
Patterson-Walker metric hr of r and the Liouville 1-form � of T �N , the metric
can be expressed as

(3.9) gr WD . r/
�g D hr C �

2
C ��RicC.r/

and for the symplectic form we obtain

�r WD . r/
�� D ��0 C

1

3
��Ric�.r/:

In canonical local coordinates .xi ; �i / on T �N , we thus have the expressions

(3.10)
gr D

�
d�i ˇ dx

i
�

�
�l�

l
ij � P.ij / � �i�j

�
dxi ˇ dxj

�
;

�r D d�i ^ dx
i
C PŒij �dx

i
^ dxj ;

where � i
jk

denote the Christoffel symbols and Pij the components of the Schouten
tensor of r with respect to the coordinates xi .

Remark 3.6. Besides taking the quotient of the Cartan bundle by GL.2;R/, one
might also consider the quotient by R2 ÌH , where H is the connected nonabelian
real Lie group of dimension two. This quotient – which is a formal analogue to the
construction of the conformal Fefferman metrics [?] – was studied in [?]. We also
refer the reader to [?] for a generalisation of this construction to higher dimensions
and its relation to the classical Patterson–Walker metrics [?].
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3.5. Lift of projective vector fields

Denoting by � WM ! N the basepoint projection, an immediate consequence of
Theorem 3.4 is:

Corollary 3.7. For every open set U � N the Lie algebra of projective vector
fields PŒr�.U / is isomorphic to the Lie algebra of bi-Lagrangian vector fields
B.�;I/.�

�1.U //.

Proof. By standard results about Cartan geometries (c.f. [?]), the projective vector
fields on U � .N; Œr�/ are in one-to-one correspondence with the vector fields
on ��1.U / � PŒr� whose flow preserves the Cartan connection � and which are
equivariant for the principal right action. Theorem 3.4 implies that such a vector
field corresponds to a vector field on  .��1.U // � B.�;I/ preserving both the
tautological form .�; !/ and the Libermann connection. Again, by standard results
about G-structures [?], such vector fields are in one-to-one correspondence with
vector fields on ��1.U / preserving both � and I . □

Corollary 3.7 can be strengthened in the sense that we show that every Killing
vector field for .M; g/ is also symplectic with respect to � and hence the lift of a
projective vector field on .N; Œr�/. As a warm up, we first consider a correspondence
between affine vector fields and Killing vector fields for the asscoiated Patterson–
Walker metric (2.10). Let r be an affine connection on N . Recall that a vector field
K on N is affine with respect to r if and only if
(3.11)

0 D .LKr/
k
ij �

@2Kk

@xi@xj
CKm

@

@xm
�kij � �

m
ij

@Kk

@xm
C �kim

@Km

@xj
C �kjm

@Km

@xi
;

where we write K D Ki @
@xi

in local coordinates .xi / on U � N and where � i
jk

denote the Christoffel symbols of r with respect to .xi /. Any vector field on N
corresponds to a linear function on T �N , which in canonical local coordinates
.xi ; �i / is given by Ki�i . This function, together with the canonical symplectic
structure on T �N gives rise to the Hamiltonian vector field

(3.12) eK D Ki @
@xi
� �j

@Kj

@xi
@

@�i
:

This vector field is sometimes referred to as the complete lift [?].

Proposition 3.8. Let K be an affine vector field for a connection r on U � N .
Then its complete lift (3.12) is a Killing vector field for the Patterson-Walker metric
(2.10).

Proof. Consider the one–parameter group of transformations generated by the
vector field (3.12)

xi �! xi C � Ki CO.�2/; �i �! �i � � �j
@Kj

@xi
CO.�2/:
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This yields

g �! g C �f�jK
idxjd�i � �iK

jdxid�j � .�j �i�kK
j /dxidxk

�2�
j

ik
�j .�mK

i /dxkdxm C �
j

ik
�m�jK

mdxidxk �Km.�m�
j

ik
/�jdx

idxkg CO.�2/

D g � � �kLK.�
k
ij /dx

i
ˇ dxj CO.�2/:

Therefore

(3.13) LeKg D ��kLK.�
k
ij /dx

i
ˇ dxj ;

and the result follows. □

Recall that a vector field K is projective for r if and only if .LKr/0 D 0, that
is, there exists a 1-form � on N such that

(3.14) .LKr/
k
ij D ıi

k�j C ıj
k�i :

Proposition 3.9. Let K be a projective vector field with �i D rif . Then

(3.15) K � �j
@Kj

@xi
@

@�i
C f �i

@

@�i

is a conformal Killing vector field for the Patterson-Walker metric (2.10).

Proof. The proof is similar to that of Proposition 3.8. The one-parameter group of
transformation generated by (3.15) is

xi �! xi C � Ki CO.�2/; �i �! �i � � �j
@Kj

@xi
� �f �i CO.�

2/;

which gives

g �! g � � �k .LKr/
k
ij dx

i
ˇ dxj � �kdx

k
ˇ df C �f g CO.�2/:

This does not change the conformal class iff K satisfies (3.14) with � D df . □

Finally we give the main result of this Section, and establish a one–to–one
correspondence between projective vector fields on .N; Œr�/, and Killing vector
fields on the Einstein lift on M .

Theorem 3.10. Let K be a projective vector field on .U; Œr�/, where U � N . Then

(3.16) K WD K � �j
@Kj

@xi
@

@�i
C �i

@

@�i

is a Killing vector field for gr which is symplectic with respect to the symplectic
form �r . Conversely, any Killing vector field for gr is a lift (3.16) from N of some
projective vector field.

Proof. The integrability conditions for (3.14) are [?] (note however that that our
sign conventions for the Schouten tensor differ from that in [?], so the sign of the
RHS of (3.17) is opposite to what is given in [?])

(3.17) LKPij D �ri�j :
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We shall also write K D QK CK�, where QK is the complete lift (3.12) and K� WD
�i@=@�i . Using (3.9) we compute

LKgr D LeKhr CLeK�ˇ �CLKRicC.r/CLK�hr CLK�.�ˇ �/

D ��k .LKr/
k
ij dx

i
ˇ dxj C 0 � .ri�j /dx

i
ˇ dxj C dxi ˇ d�i

��kij�kdx
i
ˇ dxj C .�idx

i /ˇ .�jdx
j / D 0;

where we have used (3.13), (3.14) and (3.17). Now verify the symplectic condition

LK�r D LeK.d�i ^ dxi /CLK�.d�i ^ dx
i /CLK.Pijdxi ^ dxj /

D .d�i ^ dx
i
� d�i ^ dx

i / D 0

as the complete lift eK is Hamiltonian with respect to d�i ^ dxi , and we have used
the skew part of the integrability conditions (3.17).

To prove the converse, consider a general vector field K D Ki@=@xi CQi@=@�i
on M , and impose the Killing equations. The d�i ˇ d�j components of these
equations imply that Kj D Kj .x1; x2/. The d�i ˇ dxj components yield the
general form (3.16), where �i are some unspecified functions on N . Finally the
dxi ˇdxj components imply that the vector fieldKi@=@xi onN is projective. □

4. Local characterization of the metric

In the previous section we have shown that the metric g constructed on the canonical
affine bundle of a projective surface .N; Œr�/ is isometric to the metric

(4.1) gr D hr C �
2
C ��RicC.r/

on the cotangent bundle � W T �N ! N of N , where r 2 Œr� is any representative
connection. The metric (4.1) has previously appeard in [?] as a member of a one-
parameter family gr;ƒ of split-signature metrics on T �N that one can associate to
a torsion-free connection on N . The metrics take the form

(4.2) gr;ƒ D hr Cƒ�
2
C

�
1

ƒ

�
��RicC.r/;

where ƒ is any non-zero real number. In particular, in [?] it is noted that the metrics
gr;ƒ are anti-self-dual2 and Einstein with scalar curvature 24ƒ, as can easily be
verified by direct computation. Moreover, under the assumption that r is non-flat,
the metrics gr;ƒ are locally characterized as the neutral signature four-dimensional
type II Osserman metrics whose Jacobi operator have non-zero eigenvalues. We
refer the reader to [?, Thm. 7.3] for details. Here we provide another characterisation.
Recall [?, ?, ?] that a distribution D � TM on a Riemannian manifold .M; g/
is called parallel if grXY 2 �.D/ if Y 2 �.D/, where gr is the Levi–Civita
connection of g. Thus, if D is parallel, then it is necessarily Frobenius integrable as
ŒX; Y � D grXY �

grYX 2 �.D/ if X; Y 2 �.D/.

Theorem 4.1. Let .M; g/ be an ASD Einstein manifold with scalar curvature 24
admitting a parallel ASD totally null distribution. Then .M; g/ is conformally flat,
or it is locally isometric to .T �N; gr/ for some torsion-free connection r on N .

2self-dual with respect to the orientation convention of [?].
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Proof. We shall rely on two isomorphisms: TM D S˝S0, and ƒ2� D SˇS. Let
the ASD totally null distribution correspond to an ASD two-form ‚ 2 �.ƒ2�/,
or equivalently to a section � 2 �.S/. The Frobenius integrability conditions
imply the local existence of two functions �1 and �2 on M such that Ker.‚/ D
spanf@=@�1; @=@�2g. We can rescale � so that the corresponding two–form is closed,
and proportional to dx1 ^ dx2 for some functions .x1; x2/ which are constant on
each ˇ–surface in the two parameter family. The functions .�1; �2/ are then the
coordinates on the ˇ–surface. The corresponding metric takes the form

g D d�i ˇ dx
i
C‚ij .x; �/dx

i
ˇ dxj

for some symmetric two-by-two matrix ‚. The anti–self–duality condition on
the Weyl tensor forces the components of ‚ to be at most cubic in .�1; �2/, with
some additional algebraic relations between the components. Imposing the Einstein
condition gives

‚ij D �i�j C Pj i � �kij �k;

where the functions �kij do not depend on the coordinates �1; �2 and are otherwise
arbitrary. Finally, the functions Pij are determined by (2.8). Comparing with the
coordinate expression (3.10) proves the claim. □

Remark 4.2. If r is a torsion-free connection on N with skew-symmetric Ricci
tensor, then (4.2) simplifies to become

gr;ƒ D hr Cƒ�
2:

In particular, the limit ƒ ! 0 is well-defined and hence the metric gr can be
deformed to a Ricci-flat anti-self-dual metric gr;0 D hr which appeared in [?].

Remark 4.3. Note that if we correspondingly define a charged symplectic form3

�r;ƒ D d�C

�
1

3ƒ

�
��Ric�.r/;

then the pair .gr;ƒ; �r;ƒ/ defines a bi-Lagrangian structure on T �N for every
ƒ ¤ 0. The symplectic form�r;ƒ is ASD with respect to our choice of orientation
and the metric (4.2). Moreover, denoting by gr the Levi-Civita connection of the
metric gr;ƒ, we obtain

g
r�r;ƒ D 4L

where L is the pull–back to M of the Liouville curvature �ijriPjkdxk ˝ .dx1 ^
dx2/ of Œr�, which vanishes if and only if r is projectively flat.

Remark 4.4. Straightforward calculations show that Theorem 3.10 carries over to
the case .gr;ƒ; �r;ƒ/ with respect to the lift

K WD K � �j
@Kj

@xi
@

@�i
C
1

ƒ
�i
@

@�i
:

3This terminology is motivated by the Hamiltonian description of a charged particle moving on a
manifold, where the canonical symplectic structure on the cotangent bundle needs to be modified by a
pull-back of a closed two-form (magnetic field) from the base manifold. In our case the two-form is
the skew-symmetric part of the Schouten tensor, and the inverse of the Ricci scalar plays a role of
electric charge. This magnetic term can always be set to zero by an appropriate choice of a connection
in a projective class - here we find it convenient not to make any choices at this stage.
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Remark 4.5. The existence of a neutral metric g with a two–plane distribution
imposes topological restrictions on M . If M is compact then [1, ?]

�ŒM� � 0 mod 2; �ŒM� � �ŒM� mod 4;

where �ŒM� and �ŒM� are the signature and Euler characteristic respectively.
C. LeBrun pointed out to the authors the following argument which shows that a
stronger statement is true in the case where the two-plane distribution D is totally
null with respect to g.4 We may assume that D is the graph of an isomorphism
V ! V 0, where TM D V ˚ V 0 is an orthogonal decomposition into time-like and
space-like sub-bundles with respect to some chosen background metric h on M .
After possibly passing to a double cover we can assume V and V 0 to be orientable.
Moreover, we may fix orientations so that the isomorphism V ! V 0 is orientation
reversing, thus equipping M with an orientation so that D is anti-self-dual. By
rotating clockwise in V and V 0 with respect to h, we obtain an almost complex
structure on M such that V becomes a complex line sub-bundle L, and so that V 0

becomes its dual bundle L�. Consequently, M admits an almost complex structure
J such that the canonical bundle of .M; J / is trivial. After possibly passing to a
double cover it therefore follows that M is oriented and spin and – assuming M is
compact – that

(4.3) 2�ŒM�C 3�ŒM� D 0:

Note that fixing the orientation so that D is self-dual leads to a sign change in (4.3)
as � changes sign when reversing the orientation whereas � does not. Also, note that
the existence of D forces M to be orientable hence (4.3) still holds true (assuming
our choice of orientation) without passing to the cover as � and � are both doubled
when passing to a double cover.

5. Gauge theory of Tractor Connection

In this Section we shall present a gauge–theoretic construction of the metric (1.1).
We shall introduce a projectively invariant equation on a connection, and a pair
of Higgs fields on an auxilary vector bundle E ! N . In the special case when
E is a rank–3 cotractor bundle (see Section 5.2 and the gauge group is SL.3;R/,
the horizontal lifts of the geodesic spray of r and the Higgs field will give rise
to an integrable ˛–plane (twistor) distribution on TM , where M D P .E/ with a
projective line removed from each fiber.

Let .N; Œr�/ be a projective structure on a surface, and let E ! N be a vector
bundle with g–connection A, where g is some Lie algebra. Let � be a one-form on
N , called the Higgs pair, with values in the Lie algebra g. In an open set U � N we
shall write � D �idxi and regard � andA as g valued one-forms onN transforming
as

A �! A�1 � d �1

� �! ��1

under the gauge transformations. Here  W N ! G, and G is the gauge group with
the Lie algebra g.

4Private communication, March 2016.
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For any chosen connection r 2 Œr� in the projective class consider the system of
equations

(5.1) D.i�j / D 0;

where

Di�j WD @i�j � �
k
ij�k � ŒAi ; �j �:

In [?, ?] these equations appear in a slightly different setup, when A is a connection
on a principal (rather than a vector) bundle. While our construction below is self–
contained, and does not rely on the results of [?, ?], we shall nevertheless refer to
(5.1) as the Calderbank equations.

5.1. The Calderbank equations.

An equivalent way to formulate (5.1) is to say that the Higgs pair is constant along
the charged geodesic spray on TN , i.e.

(5.2) ĆA.�/ WD
�
� i

@

@xi
� �kij�

i�j
@

@�k

�
.�/ � ŒA; �� D 0;

where � i are coordinates on the fibres of TN , and � D �i�
i and A D Ai�

i are
g–valued linear functions on TN . The equations (5.1) do not depend on the choice
of the connection r in the projective class if the Higgs field � has projective weight
2.

In Section 5.2 we shall show how the Calderbank equations with the gauge group
SL.3;R/ – regarded as a subgroup of the group of diffeomorphisms of RP2 – leads
to the neutral signature anti–self–dual Einstein metric (3.10). We shall first list some
other (implicit) occurrences of these equations for other gauge groups.

5.1.1. Null reductions of anti-self-dual Yang–Mills equations.

If the projective structure is flat, then (5.1) is the symmetry reduction of the anti-
self-dual Yang–Mills (ASDYM) equation on R2;2 by two null translations and such
that the .2; 2/ metric g restricted to the two–dimensional space of orbits N D R2 is
totally isotropic, and the bi-vector generated by the null translations is anti-self-dual.

To see it, consider a g–valued connection one–form A on R2;2, and set F D
dAC A ^ A. In local coordinates adapted to R2;2 D TN with xi the coordinates
on N , the null isometries are @=@�i , and the metric is

g D dx1d�1 C dx
2d�2:

Choose an orientation on R2;2 such that the two–form dx1 ^ dx2 is ASD. Defining
two Higgs fields �1 D @=@�2 A; �2 D @=@�1 A, the ASDYM equations F D
� � F yield [?]

(5.3) D1�1 D 0; D2�2 D 0; D1�2 CD2�1 D 0;

where D D d C A1dx1 C A2dx2 is a covariant derivative on N induced by A. In
[?] these equations have been solved completely for the gauge group SL.2/.
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5.1.2. Prolongation of the Calderbank equations

Instead of regarding both the connection and the Higgs pair as unknowns, we shall
assume that the connection is given and consider (5.3) as a system of PDEs for the
Higgs pair. To determine all derivatives of the Higgs pair in (5.3) we prolong the
system once, and define � by the equation

Di�j D
1

2
��ij ;

where � D dx1 ^ dx2 is the parallel volume form of r 2 Œr�. Commuting the
covariant derivatives now leads to a closed system and therefore a connection

Di

�
�j
�

�
D

�
1
2
��ij

2Œ�i ;F �

�
;

where F D ŒD1;D2� is the g–valued curvature of the connection A. The system
is now closed. Commuting the covariant derivatives on � leads to an integrability
condition

ŒF ; �� � 2D1Œ�2;F �C 2D2Œ�1;F � D 0:

5.1.3. Killing equations.

If the connection A is flat, and g D R then the Calderbank equations become the
projectively invariant Killing equations.

5.1.4. Anti-self-dual conformal structures with null conformal Killing vectors.

Let g be a subalgebra of the infinite dimensional Lie algebra of vector fields diff.†/
on a surface † consisting of those elements of diff.†/ which commute with a fixed
vector fieldK on†. LetM ! N be a surface bundle overN , with two dimensional
fibres †. In this case the Calderbank equations are solvable by quadrature and the
two-dimensional distribution

(5.4) D D fĆA WD � i
@

@xi
� �kij�

i�j
@

@�k
� Ai .x/�

i ; � D � i�ig

spanning an RP1 worth of null self–dual surfaces (˛–surfaces) through each point
of M is the twistor distribution for the most general ASD .2; 2/ conformal structure
which admits a null conformal Killing vector K [?, ?, ?].

5.1.5. The Patterson-Walker Riemannian extension

The conformal structure resulting from the distribution (5.4) is a generalisation of
the Patterson-Walker lift [?, ?]. To recover the Patterson-Walker metric

(5.5) g D d�i ˇ dx
i
� �kij �k dx

i
ˇ dxj ;

take the gauge algebra g D gl.2;R/ which generates linear transformations of
† D R2. If the coordinates on † are .�1; �2/, the elements of gl.2;R/ are vector
fields of the form ti j D �i @@�j : Taking the connection A and the Higgs field given
by

Ai D ��
k
ij �k

@

@�j
; �i D .b

k�k/�ij
@

@�j
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where bk is a non–zero constant leads to an integrable distribution (5.4), as then

ŒĆA; �� D � ibj
�
�jk

k�i C �ij
k�k

�
�lm�

l @

@�m

D 0 .mod �/:

The resulting metric (2.10) on M D TN is then uniquely determined by the
condition that the integral two–surfaces of D in TN � RP1 project down to
self-dual totally null surfaces on TN . The generators of the gauge group satisfy
Œv; K� D v; where K D �1@=@�1 C �2@=@�2 is a conformal null Killing vector of
(2.10).

We shall end this subsection by clarifying the connection between projective
changes of r � Œr�, and conformal rescalings of the metric g on T �N . We shall
restrict our discussion to special connections in Œr� which preserve some volume.
Consider the effect of transformation (2.2) with ‡i D rif , together with rescaling
the fibers of TN ! N

�i ! O�i D e
2f �i

on the Patterson–Walker lift5 (2.10). A straightforward calculation yields

Og D e2f g:

Thus conformal scales on TN correspond to projective scales on N .

5.2. Tractor connection and ASD Einstein metrics

In this Section we shall consider the Calderbank equations, where the gauge group
is SL.3;R/, and E is the standard cotractor bundle for the projective structure Œr�.
Recall the Cartan bundle PŒr� from Section 2.3.

We may think of the left action ofH � SL.3;R/ on R3 by matrix multiplication
as a (linear) H -representation and consequently, we obtain an associated rank-3
vector bundle E for every projective surface .N; Œr�/. The vector bundle E is
commonly referred to as the cotractor bundle of .N; Œr�/. Interest in E stems from
the fact that it comes canonically equipped with an SL.3;R/ connection which is
flat if and only if .N; Œr�/ is, see [2].

Let E.1/ be the line bundle of projective densities of weight 1. Consider a
rank-three vector bundle E D E.1/˚ .T �N ˝ E.1// over N with connection [2]

(5.7) Di

�
�

�j

�
D

�
ri� � �i
ri�j C Pij�

�
;

where Pij is the (not necessarily symmetric) Schouten tensor of projective geometry.
The splitting of the cotractor bundle depends on a choice of a connection r in the

5In [?] (see also [?, ?, ?] for other applications of this lift) it was proven that a ‘similar’ metric

(5.6) g D d�i ˇ dx
i
�…kij �k dx

i
ˇ dxj ;

constructed out of the Thomas symbols …kij D �
k
ij �

1
3�

l
il
ıkj �

1
3�

l
jl
ıki is anti–self–dual and null–

Kähler (with ASD null–Kähler two–form) for any choice of �kij . The Patterson–Walker lift (2.10) is
conformally equivalent (up to a diffeomorphism) to the projective Patterson–Walker lift (5.6) only if
�
j
ij D riF for some function F on N .
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projective class Œr�, and under (2.2) changes according to

(5.8)
�
O�

O�j

�
D

�
�

�j C ‡j�

�
:

Using the tractor indices ˛; ˇ; � � � D 0; 1; 2 we can rewrite the connection (5.7) in
terms of its Christoffel symbols ˇi˛ as

0i0 D 0; 
j
i0 D ı

j
i ; kij D �

k
ij ; 0ij D �Pij :

The vector fields

t˛ˇ D  ˛
@

@ ˇ

generate the linear action of GL.3;R/ on the fibres of E. These generators descend
to eight vector fields (which we shall also denote t˛ˇ ) which generate the action of
SL.3;R/ on the fibres of the projective cotractor bundle P .E/ which is a quotient
of E by the Euler vector field

P2
˛D0 t˛˛. Setting �i D  i= 0 yields

ti j D �i
@

@�j
; ti 0 D ��i�j

@

@�j
; t0i D

@

@�i
; t00 D ��j

@

@�j
:

Consider the Calderbank equations with the gauge group SL.3;R/ � Diff.RP2/,
where the connection is given by a vector–valued one-form

A D Aidx
i
D �˛iˇdx

i
˝ t˛ˇ

so that

Ai D .Pij C �i�j � �kij �k/
@

@�j
:

The Calderbank equations are solved by the Higgs pair

�i D �ij
@

@�j
:

Let M be a complement of a projective line in the total space of the bundle P .E/.
The corresponding contravariant metric on M is constructed by demanding that the
leaves of the rank-2 distribution (5.4) D � T .M �RP1/ project down to self-dual
two-surfaces on M . This gives �ij .@=@xi � Ai /ˇ �j ; or, in the covariant form,

(5.9) g D .d�i � .�
k
ij �k � �i�j � Pj i /dxj /ˇ dxi ;

so that we have recovered the metric of the bi-Lagrangian structure (3.10).

Theorem 5.1. Formula (5.9) defines a metric which does not depend on a choice of
a connection in a projective class.

Proof. If we change the connection in the projective class using (2.2) then the
Schouten tensor changes by (2.3). To establish the invariance of (5.9) we translate
the fibre coordinates according to

O�i D �i C ‡i
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in agreement with (5.8). Then

.d O�i � . O�
k
ij
O�k � O�i O�j � OPj i /dx

j /ˇ dxi D d�i ˇ dx
i
C�

�.j‡i/ � �
k
ij �k � �i‡j � �j‡i � �

k
ij‡k � 2‡i‡j C �i�j C �i‡j C �j‡i C ‡i‡j

CPj i � r.j‡i/ C ‡i‡j
�
dxi ˇ dxj

D

�
d�i �

�
�kij �k � �i�j � Pj i

�
dxj

�
ˇ dxj :

□

The metric is anti-self-dual, and Einstein with scalar curvature equal to 24. The
anti-self-duality is a consequence of the fact that the connection A and the Higgs
field �i� i satisfy the Calderbank equations [?].

6. Examples

6.1. Homogeneous model M D SL.3;R/ n GL.2;R/.

Consider the flat projective structure on .N D RP2; Œr�/, and choose �ij k D 0.
The resulting four manifold is the complement of an RP1 sub-bundle in the
projective cotractor bundle of RP2 which can be identified with with M D

SL.3;R/ n GL.2;R/. We shall establish this result in arbitrary dimension. Con-
sider N D RPn, with its flat projective structure, and an SL.nC 1/ action on the
projective cotractor bundle P .E/ minus the diagonal

SL.nC 1/ W RnC1 �RnC1 n� �! RnC1 �RnC1 n�

where the ‘diagonal’ � consists of all incident pairs of vectors Œv� 2 RnC1 and
forms Œf � 2 RnC1 s.t. the corresponding point v 2 RPn belongs to the hyperplane
f 2 RPn. This action is simply .v; f /! .Av; fA�1/. It is transitive, and clearly
a subgroup stabilising a pair (point, hyperplane) is GL.n/ which sits in SL.nC 1/
as a lower diagonal block.

To finish the proof we need to argue that RnC1 �RnC1 n� projects down to a
complement of an RPn�1 sub-bundle in P .E/. This sub-bundle is just P .T �N/

and it has an injection into P .E/ given by f ! .0; f /. A point in N with
homogeneous coordinates Œ1; 0; :::; 0� (corresponding to our choice of an affine
chart) is not incident with any cotractor in P .E/=RPn�1, so removing a diagonal
is equivalent to looking at the complement of this sub-bundle.

The Einstein metric (5.9) on this manifold admits a Kerr-Schild form

(6.1) g D d�i ˇ dx
i
Cƒ.�jdx

j /2

with eight dimensional isometry group SL.3;R/ [?] in agreement with Theorem 3.10).
This metric is a neutral signature analog of the Fubini–Study metric on CP2. Both
metrics arise as different real forms of SL.3;C/=GL.2;C/. The limit ƒ D 0 in
(6.1) gives the flat metric.
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6.2. Ricci–flat limits.

Motivated by the previous example let us now consider the general case of projective
structures which admit a connection with skew-symmetric Schouten tensor. In this
case one can always choose local coordinates on N and a connection r 2 Œr� such
that [?]

�111 D �
@f

@x1
; �222 D

@f

@x2
;

where f W N �! R is an arbitrary function, and all other components of r vanish6.
In this case

P D
1

3

@2f

@x1@x2
dx1 ^ dx2;

and the metric is given by

(6.2) g D d�i ˇ dx
i
C �1

@f

@x1
.dx1/2 � �2

@f

@x2
.dx2/2 Cƒ.�jdx

j /2:

Setting ƒ D 0 gives an ASD Ricci-flat metric which has a form of the Patterson–
Walker lift (2.10) and has appeared in the work of Derdzinski [?].

6.3. Cohomogeneity–one examples

The dimension of the Lie algebra g of projective vector fields for a given projective
structure on a surface N can be 8; 3; 2; 1 or 0 (see [?], and also [?, ?, ?]). If the
dimension is maximal and equal to 8 then g D sl.3;R/, and the projective structure
is flat. We have shown that in this case the resulting metric (1.1) is given by
(6.1), and admits 8 Killing vectors in agreement with Theorem 3.10. We shall now
consider the submaximal case, where g D sl.2;R/. There are two one–parameter
families of non–flat projective structures with this symmetry. Their unparametrised
geodesics are integral curves of a second order ODE

y00 D c.xy0 � y/3;

where c ¤ 0. We compare this to the general second order ODE defining a projective
structure (see e.g. [?])

(6.3) y00 D �122.y
0/3 C .2�112 � �

2
22/.y

0/2 C .�111 � 2�
2
12/y

0
� �211;

and chose the representative connection r by

�111 D ��
2
12 D ��

2
21 D cxy

2; �222 D ��
1
21 D ��

1
12 D cx

2y; �122 D cx
3; �211 D cy

3:

The corresponding ASD Einstein metric (1.1) is

(6.4) g D d�i ˇ dx
i
Cƒ.�idx

i /2 C
4c

ƒ
.x2dx1 � x1dx2/2 � �kijdx

i
ˇ dxj ;

where xi D .x; y/. This metric admits a three–dimensional isometry group
SL.2;R/ generated by left–invariant vector fields K˛; ˛ D 1; 2; 3 given by

K1 D x
1 @

@x1
�x2

@

@x2
��1

@

@�1
C�2

@

@�2
; K2 D 2x

1 @

@x2
�2�2

@

@�1
; K3 D 2�1

@

@�2
�2x2

@

@x1
;

6An alternative characterisation of the corresponding projective structures is that they arise from
second-order ODEs point equivalent to derivatives of first order ODEs [?]. These projective structures
where further characterised in [?] and [?].
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and acting on M D R � SL.2;R/ with three–dimensional orbits. We shall use an
invariant coordinate r given by r2 � .x1�1 C x2�2/ which is constant on the orbits.
Let �˛ be right–invariant one–forms on SL.2;R/ such that

LK˛�
ˇ
D 0; 8˛; ˇ; and d�1C2�2^�3 D 0; d�2C�2^�1 D 0; d�3��3^�1 D 0:

There is some freedom, measured by functions of r , in choosing these one–forms.
If we chose ƒ < 0, and take

�1 D
�idx

i � xid�i

r2
C
2ƒrdr

ƒr2 � 1
; �2 D

ƒr2 � 1

r2
.x1dx2�x2dx1/; �3 D

�1d�2 � �2d�1

r2.ƒr2 � 1/

then the metric (6.4) takes the form
(6.5)

g D
dr2

1 �ƒr2
�
1

4
r2.1�ƒr2/.�1/2�

c

ƒ

.ƒr2 � 4/r4

.ƒr2 � 1/2
.�2/2Cr2�2ˇ�3; ƒ < 0:

Note that (6.5) is non–diagonal in the basis defined by the right–invariant one–form
on SL.2;R/. This is only possible in neutral signature: All cohomogeneity one
Einstein metrics in Riemannian signature can be diagonalised [?].

The metric (6.5) appears to be singular when r D 0, but calculating the invariant
norm of the Weyl curvature we find jC j2 D 96ƒ2, which is regular. In fact near
r D 0 the metric (6.5) approaches the space of constant curvature which is a neutral
signature analogue of the hyperbolic space. To exhibit this space in a standard form
we neglect the small terms involving r4, and set r D 2R=.1CƒR2/. Then, near
R D 0, the metric (6.5) becomes

g �
4

.1CƒR2/2

�
dR2 �

R2

4

�
.�1/2 � 4�2 ˇ �3

��
:

To this end, we note a curious Ricci–flat limit of (6.5). Setting c D mƒ, and taking
the limit ƒ! 0 yields a Ricci–flat metric with 9–dimensional group of conformal
isometries

g D d�i ˇ dx
i
C 4m.x2dx1 � x1dx2/2:

This is a submaximal metric of neutral signature [?, ?]: if the dimension of the
conformal isometry algebra g exceeds 9, then g D sl.4;R/, and the metric is
conformally flat.

Appendix A. The construction for higher dimensions

Of course, the definition of a projective structure makes sense in higher dimensions
as well and hence it is natural to ask if the construction described in the main body
of this article carries over to higher dimensions. Here we briefly show that this is
indeed the case.

As usual, let PGL.n C 1;R/ denote the quotient of the general linear group
GL.nC 1;R/ by its center Z, so that

PGL.nC 1;R/ '
�

SL.nC 1;R/ n even;
SL˙.nC 1;R/=f˙InC1g n odd;

where SL˙.nC 1;R/ denotes the group of real .nC 1/-by-.nC 1/ matrices with
determinant˙1.



26 M. DUNAJSKI AND T. METTLER

The projective linear group acts from the left on RPn D
�
RnC1 n f0g

�
=R� by

matrix multiplication. The stabiliser subgroup of the line spanned by t .1 0 : : : 0/
will be denoted by G � PGL.n C 1;R/. The elements of G are matrices of the
form �

det a�1 b

0 a

�
for n even and �

˙ det a�1 b

0 a

�
for n odd, where b 2 Rn and a 2 GL.n;R/. Here, the square brackets indicate that
the matrix is only well defined up to an overall sign.

Cartan’s construction carries over to higher dimensions so that we canonically
obtain a Cartan geometry .� W PŒr� ! N; �/ of type .PGL.nC 1;R/; G/ for every
projective structure Œr� on a smooth n-manifold N . Again, we write

� D

�
� tr� �

! �

�
for an Rn-valued 1-form �, an Rn-valued 1-form ! and a gl.n;R/-valued 1-form
�. The curvature 2-form ‚ satisfies

‚ D d� C � ^ � D

�
0 L.! ^ !/

0 W.! ^ !/

�
;

for smooth curvature functions

L W PŒr� ! Hom
�
Rn ^Rn;Rn

�
and

W W PŒr� ! Hom
�
Rn ^Rn;Rn ˝Rn

�
:

Note that the functionW represents the Weyl projective curvature tensor of .N; Œr�/
and that we have the Bianchi-identity

d‚ D ‚ ^ � � � ^‚;

the algebraic part of which reads

(A.1) 0 D L.! ^ !/ ^ ! and 0 D W.! ^ !/ ^ !:

We have a Lie group embedding defined by

� W GL.n;R/! G; a 7!

�
det a�1 0

0 a

�
;

for n even and defined by

� W GL.n;R/! G; a 7!

�
j det a�1j 0

0 a

�
;

for n odd.
Recall that � satisfies the equivariance property

R�g� D Ad.g�1/ ı �;

for all g 2 G, where Ad denotes the adjoint representation of G. Identifying
GL.n;R/ with its image under �, the equivariance property of � implies that the
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tensor field �! WD �i ˝ !i is invariant under the GL.n;R/ right action. Fur-
thermore, since ! and � are both semi-basic for the quotient projection PŒr� !
PŒr�=GL.n;R/, it follows that the smooth 2n-manifold M D PŒr�=GL.n;R/ car-
ries a unique signature .n; n/ metric g and a unique non-degenerate 2-form �

having the property that g pulls back to PŒr� to be the symmetric part of �! and �
pulls back to PŒr� to be the anti-symmetric part of �!. Moreover, we compute

0 D d .� ^ !/ D d� ^ ! � � ^ d! D Œ�� ^ .� C Id tr�/C L.! ^ !/� ^ !

� � ^ Œ�.� C Id tr�/ ^ !�

D L.! ^ !/ ^ !;

where we used (A.1). It follows that � is symplectic.
We leave it to the interested reader to check that the pair .g;�/ defines again

a bi-Lagrangian structure on M whose symmetry vector fields are in one-to-one
correspondence with the symmetry vector fields of .N; Œr�/. Moreover, we may
introduce local coordinates onM so that g and� take the form (3.10). In particular,
the metric g is still Einstein with non-zero scalar curvature, as can be verified by
direct computation.
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