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Characterizing classical minimal surfaces
via the entropy differential

jacob bernstein and thomas mettler

Abstract. We introduce on any smooth oriented minimal surface in
Euclidean 3-space a meromorphic quadratic differential, P , which we call
the entropy differential. This differential arises naturally in a number
of different contexts. Of particular interest is the realization of its real
part as a conservation law for a natural geometric functional – which is,
essentially, the entropy of the Gauss curvature. We characterize several
classical surfaces – including Enneper’s surface, the catenoid and the
helicoid – in terms of P . As an application, we prove a novel curvature
estimate for embedded minimal surfaces with small entropy differential
and an associated compactness theorem.

1. Introduction

Let Σ ⊂ R3 be a smooth, oriented minimal surface. In this paper, we
introduce a meromorphic quadratic differential P on Σ, which we call the
entropy differential. We use P to characterize several classical surfaces –
including Enneper’s surface, the catenoid and the helicoid. In particular,
subsets of Enneper’s surface are the only minimal surfaces on which P
vanishes – a fact which we use to prove a novel curvature estimate for
embedded minimal surfaces with small entropy differential and an associated
compactness result.

The differential P arises naturally in a number of different contexts. Of
particular interest is the realization of T = ReP , which we call the entropy
form, as a conservation law for the diffeomorphism invariant functional

E[g] =
∫
Σ
Kg logKgµg.

This functional, which is a type of entropy for the curvature, has been
previously considered by R. Hamilton in the context of the Ricci flow on
surfaces [14]. In particular, we show that if g is a minimal surface metric
(i.e. the metric induced by a smooth minimal immersion) for which Kg ̸= 0,
then the metric ĝ = (−Kg)3/4g is a critical point of E with respect to
compactly supported conformal deformations. The crucial fact used here
is the observation – due to Ricci [22] – that such minimal surface metrics
satisfy the so-called Ricci condition:

∆g log |Kg| = 4Kg.
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The differential P also arises as a certain geometric Schwarzian derivative
of the Gauss map – a point of view which has antecedents in [9, 12] – and
which we will study more thoroughly in a forthcoming paper [3].

A key observation of the present paper is that, modulo rigid motions, a
minimal surface is determined, up to a three-parameter family, by its Hopf
differential Q and its entropy differential P . This allows one to characterize
several classical minimal surfaces in terms of simple relationships between
the Hopf and entropy differentials:

Theorem 4.1. Let Σ be a smooth oriented non-flat minimal surface in R3

with entropy differential P . We have:
(1) If P ≡ 0, then up to a rigid motion and homothety, Σ is contained

in Enneper’s surface;
(2) If λ ≠ 0 and P ≡ λQ, then, up to a rigid motion and homothety, Σ

is contained in a surface C ∈ C. If Σ is properly embedded, then it is
the catenoid;

(3) If λ ≠ 0 and P ≡ iλQ, then, up to a rigid motion and homothety, Σ
is contained in a surface H ∈ H. If Σ is properly embedded, then it
is the helicoid.

The families C and H are, respectively, the deformed catenoids and
deformed helicoids. These are one parameter families of surfaces containing,
respectively, the catenoid and the helicoid – their geometry is discussed
thoroughly in Section 4.

A consequence of Item (1) of Theorem 4.1 are a family of novel curvature
estimates for embedded minimal surfaces. Namely, we introduce a certain
family of scale invariant quantities which measure the size of the entropy
form and use standard blow-up arguments to derive curvature bounds for
embedded surfaces for which these quantities are small. Specifically, for a
constant α > 0 and smooth minimal surface Σ with entropy form T , we
define:

||T ||Σ,α := 2
1

2(1+α)

∫
Σ
|T |

1
1+α
g |Kg|

α
α+1µg.

We justify this family by noting that, on the one hand they are scale invariant
and, on the other, the “endpoints” are very natural. Indeed,

lim
α→∞

||T ||Σ,α =
∫
Σ
|Kg|µg,

i.e., one endpoint is the total Gauss curvature, a well studied quantity in
minimal surface theory. While,

lim
α→0

||T ||Σ,α =
√
2
∫
Σ
|T |gµg,

i.e., the other endpoint is the L1 norm of the entropy form which is invariant
under the standard action of PSL(2,C) on the Gauss map of Σ, see [3]. We
will not deal directly with this quantity due to the fact that the presence of
umbilic points tends to make it infinite.

As these quantities are scale invariant, standard blow-up arguments give
the following curvature estimates:
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Theorem 5.3. Given α > 0, there exist constants ϵ = ϵ(α) > 0 and
C = C(α) > 0 so that: if Σ is a properly embedded minimal surface in B2R
and

||T ||Σ,α < ϵ,

then
R2 sup

BR∩Σ
|A|2 ≤ C2.

In Section 5.2, we address the question of the best possible ϵ and some
partial results are obtained. In particular, we obtain the following identity:

Corollary 5.10. Let Σ be a non-flat properly immersed minimal surface in
R3 of finite total Gauss curvature with genus g and e embedded ends, then

lim
α→0

α||T ||Σ,α = π

4

8 + 12g + 10(e− 2) +
∑

p∈E
⋃

U

n(p)
n(p) + 1

 .

Here E is the set of ends and n(p) ≥ 0 for p ∈ E is the order of branching of
the end, i.e., the order of branching of the extension of the Gauss map to p,
while U is the set of umbilic points and n(p) ≥ 1 is the order of the umbilic
point for p ∈ U.

This suggests that as α → 0

ϵ(α) = 2π
α

+ o

( 1
α

)
.

which would be sharp on the catenoid. Using standard techniques, we observe
that our curvature estimate gives a corresponding compactness results which
we record in Theorem 5.13. We conclude the paper with Section A, wherein
the entropy form is used to make a connection between minimal surfaces in
R3 and gradient Ricci soliton metrics on surfaces.
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2. A Geometric Entropy Functional for Surfaces

2.1. Definitions

We assume R3 to be equipped with the standard Euclidean metric gE and
orientation. Let BR(p) be the open Euclidean ball in R3 with radius R > 0
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and center p. If p is omitted then the ball is assumed to be centered at the
origin in R3. Let M be an open orientable smooth 2-manifold. For a smooth
immersion x : M → R3 let Σ = x(M), we say Σ is properly embedded if x is
proper and injective. Moreover, let g = x∗gE be the first fundamental form.
We write ∇g for the Levi-Civita connection, Kg for the Gauss curvature,
and µg for the area form of g. The integrable almost complex structure on
M induced by g and the orientation will be denoted by J . Furthermore, for
A ∈ Γ(S2(T ∗M)), we define (JA)(X,Y ) = A(JX, Y ) where X,Y ∈ Γ(TM)
are smooth vector fields on M . Here, as usual, S2(T ∗M) denotes the second
symmetric power of the cotangent bundle of M . In particular, the map
A 7→ A+ iJA embeds the space of symmetric trace-free 2-forms on M into
the space of quadratic differentials on M . Furthermore, we use the standard
fact that A+ iJA is holomorphic if and only if A is divergence-free.

Let n denote the orientation compatible Gauss map of x taking values in
∂B1, the unit-sphere in R3 centered at 0. The second fundamental form of
x will be denoted by A and its trace with respect to g, the mean curvature,
by H. A point p ∈ M at which the eigenvalues of Ap agree is called umbilic
and we define M̂ ⊂ M to be the open submanifold of non-umbilic points.

The pair (g,A) satisfies the Gauss equation

|A|2g + 2Kg = (trgA)2

and the Codazzi equations

∇g XA(Y,Z) = ∇g Y A(X,Z)

where X,Y, Z ∈ Γ(TN). Conversely, Bonnet’s theorem states that if a pair
(g,A) on a simply connected surface N satisfies the Gauss - and Codazzi
equations, then there exists an immersion x : N → R3 – unique up to
composition with a rigid motion of R3 – whose first and second fundamental
form are g and A. For this reason we refer to the triple (M, g,A) as geometric
data of x.

2.2. The Ricci condition

We suppose from now on that x : M → R3 is minimal. That is H ≡ 0. The
Gauss equations imply that Kg ≤ 0 and that Kg is negative on M̂ . It follows
from the Codazzi equations that the second fundamental form is divergence
free with respect to g. This yields Simons’ identity

∆gA = −|A|2gA

where here ∆g is the rough Laplacian. From

4|A|2g| ∇g A|2g = | ∇g |A|2g|2,

Simons’ identity, and the Gauss equations we obtain that on M̂ the following
Ricci condition

(2.1) ∆g log |Kg| = 4Kg
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holds. Abbreviate

(2.2) ug = −1
4 log |Kg|,

then the Ricci condition becomes

∆gug = e−4ug .

Conversely, Ricci [22] showed that if g is a Riemannian metric of strictly
negative Gauss curvature Kg on a simply connected 2-manifold N satisfying
the Ricci condition, then there exists a minimal immersion x : N → R3 with
x∗gE = g. A proof of this fact using modern language may be found in [6].

2.3. The entropy functional

We will study a certain natural functional E defined on the space M+(M)
of smooth Riemannian metrics on M which have positive Gauss curvature.
Define for g ∈ M+(M)

E[g] =
∫
M

Kg logKgµg

This functional has been applied to the study of Ricci flow on surfaces by
Hamilton [14] and Chow [7] – in particular Hamilton observed that it is
monotonically increasing along the Ricci flow on spheres with positive Gauss
curvature (see Section A of the present paper for additional connections to
Ricci solitons).

We compute the Euler-Lagrange equations associated to E. To do so, let f
be a smooth symmetric 2-form and write F = trg f for its trace with respect
to g. Let gt = g + tf , then (cf. [8, pg. 99])

∂

∂t

∣∣∣∣
t=0

Kgt = −1
2∆gF + 1

2 divg(divgf)−
1
2KgF

= −1
4∆gF + 1

2 divg
(
divgf̊

)
− 1

2KgF

where f̊ is the trace-free part of f . Hence,

∂

∂t

∣∣∣∣
t=0

Kgt logKgt =
(
−1
4∆gF + 1

2 divg
(
divgf̊

)
− 1

2KgF

)
(logKgt + 1)

and so

δfE[g] =
1
2

∫
M

FKg logKg+
(
divg

(
divgf̊

)
− 1

2∆gF −KgF

)
(logKgt+1)µg.

If f is compactly supported then using Green’s formula and the divergence
theorem, i.e., integrating by parts twice, yields

δfE[g] = −1
4

∫
M

F (∆g logKg + 2Kg)− 2⟨f, ∇̊g 2 logKg⟩gµg,

where ∇̊g 2 denotes the trace-free Hessian and ⟨a, b⟩g the natural bilinear
pairing on elements a, b ∈ Γ(S2(T ∗M)) obtained via g.
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We will say that g ∈ M+(M) is an E-critical metric if E is stationary at g
with respect to compactly supported conformal deformations. Hence, g is an
E-critical metric if and only if the Gauss curvature Kg of g satisfies

∆g logKg = −2Kg.

As E is computed purely in terms of geometric quantities it is manifestly
diffeomorphism invariant, that is if φ : M → M is a diffeomorphism we have

E[φ∗g] = E[g].

By Noether’s principle this invariance leads to a conservation law for E-
critical metrics. Indeed, let X be a compactly supported vector field on M
and φt the flow of X. We have that

φ∗
t g = g + tLXg + o(t).

Recall, the Lie derivative, LXg can be computed as

(LXg)(Y, Z) = g( ∇g Y X,Z) + g( ∇g ZX,Y ).

where Y,Z ∈ Γ(TM). By the diffeomorphism invariance we have at an
E-critical metric that

0 = δLXgE[g]

= 1
2

∫
M
⟨LXg, ∇̊g 2 logKg⟩gµg

=
∫
M

divg
(
( ∇̊g 2 logKg)(X, ·)

)
− ⟨X, divg ∇̊g 2 logKg⟩gµg

= −
∫
M
⟨X, divg ∇̊g 2 logKg⟩gµg

where we used that X has compact support and the divergence theorem. As
X is arbitrary,

(2.3) divg ∇̊g 2 logKg = 0.

In other words, the quantity

Vg = ∇̊g 2 logKg

is a trace-free divergence free symmetric 2-form, i.e. a conservation law for
the E functional.

2.4. The entropy form

Let g be a smooth Riemannian metric and ω a smooth real-valued function
on M . We note the following standard formula for the trace-free Hessian
and the Laplacian operating on u ∈ C∞(M)

(2.4)
∆e2ωgu = e−2ω∆gu,

e2ωg∇̊2u = ∇̊g 2u− (du⊗ dω + dω ⊗ du− g( ∇g u, ∇g ω)g) .

Also, the Gauss-curvature transforms under conformal change as

Ke2ωg = e−2ω (Kg −∆gω) .
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We let R±
C denote the space of smooth positively (or negatively) curved

Riemannian metrics on M satisfying the generalized Ricci condition
∆g log |Kg| = CKg

for some real constant C. In particular, the E-critical metrics are the elements
ofR+

−2. For g ∈ R±
C and α ∈ R let gα = |Kg|2αg, then gα has Gauss-curvature

Kgα = (1− Cα)|Kg|−2αKg

which, for α ̸= 1
C , satisfies

∆gα log |Kgα | =
(
2α− 1
α− 1

C

)
Kgα = CαKgα ,

where

Cα =
(
2α− 1
α− 1

C

)
.

It follows that for α > 1
C the map ϕα sending g to gα satisfies

ϕα : R±
C → R∓

Cα

whereas for α < 1
C

ϕα : R±
C → R±

Cα
.

Note that the choice α = 1
C maps the elements of R±

C to flat metrics and
the choice α = 1

2 (assuming C ≠ 2) maps the elements of R±
C to metrics of

non-zero constant Gauss curvature.
Suppose g ∈ R−

4 , then ĝ = g3/8 is an E-critical metric with Gauss curvature

Kĝ = 1
2 |Kg|1/4.

It follows with (2.2) and (2.3) that the symmetric trace-free entropy form

T := Vĝ = ĝ∇̊2 logKĝ = ĝ∇̊2
(1
4 log |Kg|

)
= −ĝ∇̊2ug = − ∇̊g 2ug − 3

(
(dug)2 −

1
2g( ∇g ug, ∇g ug)g

)
is divergence-free with respect to ĝ.

If M is oriented, then we call the associated quadratic differential P :=
T + iJT the entropy differential. Since the condition on a symmetric 2-form
on M to be trace-free and divergence free is conformally invariant, we obtain:

Theorem 2.1. Let (M, g) be a smooth oriented Riemannian 2-manifold with
Kg < 0 and g satisfying the Ricci condition. Then the entropy differential
P = T + iJT is holomorphic.

Remark 2.2. Note that a metric of negative Gauss-curvature on a surface
arising via a constant mean curvature 2 immersion into hyperbolic 3-space
H3 also satisfies the Ricci condition (recall that with our convention the
‘mean’ curvature is the sum of the principal curvatures). Besides satisfying
the Ricci condition, these so-called Bryant surfaces share many properties
with minimal surfaces in Euclidean 3-space, the most important being that
they possess a Weierstrass representation [4]. In particular, a quadratic
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differential similar to the one studied here has been defined for surfaces of
constant mean curvature one in hyperbolic three-space H3 by Bryant [4] and
for surfaces of Bryant type in the Lorentz-Minkowski four-space L4 by Aledo,
Galvez and Mira [1].

2.5. The inverse problem

Suppose we are given a Riemann surface (M,J) and a holomorphic quadratic
differential P on M . We ask whether we can locally find a J-compatible
metric g of negative Gauss curvature on M which satisfies the Ricci condition
and so that the entropy differential of g is P .

Let z : V → C be local holomorphic coordinates on (M,J). It is easy to
check that if the real-valued function u solves Liouville’s equation

(2.5) 4∂2
zz̄u = e−2u,

then the metric g = e2u|dz|2 satisfies the Ricci condition and ug = −1
4 log |Kg| =

u. Now a straightforward computation yields

Re(P ) = T = −g0∇̊2u− du2 + 1
2g0(

g0∇u, g0∇u)g0

= −2Re
((

∂2
zzu+ (∂zu)2

)
dz2

)
where g0 = |dz|2. Writing P = ρ

2 dz
2 for some holomorphic function ρ on V ,

we are thus interested in the solutions u of the system

4∂2
zz̄u = e−2u, ∂2

zzu+ (∂zu)2 = −ρ

4 .

Lemma 2.3. Let V ⊂ C be a simply-connected domain and ρ a holomorphic
function on V . We let z be the usual complex coordinate on C. Then there
exist holomorphic functions w1, w2 on V solving the equation

(2.6) ∂2
zzw + ρ

4w = 0

and with Wronskian satisfying

(2.7) W (w1, w2) = w1∂zw2 − w2∂zw1 =
1
2 .

If ŵ1, ŵ2 is another pair of holomorphic solutions to (??) satisfying (??),
then there is a unique matrix B ∈ SL(2,C) so that ŵ = Bw where

w =
(
w1
w2

)
and ŵ =

(
ŵ1
ŵ2

)
.

Proof. See for instance [15, Chapter 5.2]. □

We now have the following:

Proposition 2.4. Let V ⊂ C be a simply-connected domain and suppose
that ρ is a holomorphic function on V . Then every real-valued function
u ∈ C∞(V ) that satisfies the system

(2.8) 4∂2
zz̄u = e−2u, ∂2

zzu+ (∂zu)2 = −ρ

4 ,
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is of the form
uw = log |w|2 = log

(
|w1|2 + |w2|2

)
,

where

w =
(
w1
w2

)
and w1, w2 satisfy (??) and (??). Hence, for each ρ there is a three-
dimensional space SL(2,C)/SU(2) of solutions u.

Proof. On X = V × R × C with coordinates (z, u, q) consider the rank 2
subbundle E ⊂ TX defined by the common kernel of the 1-forms

ϕ1 = du− qdz − q̄dz̄, ϕ2 = dq +
(
ρ

4 + q2
)
dz − 1

4e
−2udz̄.

Now
dϕ1 = dz ∧ ϕ2 + dz̄ ∧ ϕ2,

dϕ2 = −1
2e

−2udz̄ ∧ ϕ1 − 2qdz ∧ ϕ2,

hence E is Frobenius integrable. Furthermore, the 1-graph

z 7→ (z, u(z), ∂zu(z))

of a solution u to (2.8) is an integral manifold of E. Consequently, a solution
u to (2.8) is uniquely determined by specifying u and ∂zu at some point
z0 ∈ V . Simple computations show that for any (z0, u0, q0) ∈ X there exist
holomorphic map w : V → C2 satisfying (Equation (2.6), Equation (2.7)) so
that uw = log |w|2 solves (2.8) and satisfies

u(z0) = u0, ∂zu(z0) = q0.

Clearly, if ŵ = Uw for U ∈ SU(2), then uŵ = uw. □

Corollary 2.5. Let V ⊂ C be a simply-connected domain and suppose that
ρ is a holomorphic function on V . Let

gw = |w|4|dz|2 and A = Re(dz2)

where

w =
(
w1
w2

)
and w1, w2 satisfy (??) and (??). Then there is a minimal immersion xw :
V → R3 with geometric data (V, gw, A) and entropy differential P = ρ

2dz
2.

Proof. This is an immediate consequence of Theorem 2.4 and the fundamental
theorem of submanifold geometry. □

3. Weierstrass Representation

In this section we express the entropy differential P in terms of the Weierstrass
data of the minimal surface Σ – this allows us to compute P more readily
and to easily analyze its singular and asymptotic behavior.
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3.1. The Weierstrass Representation

Recall, to an oriented minimal surface Σ in R3 with parametrization xΣ :
M → Σ one can associate Weierstrass data which encodes the surface and
parametrization xΣ in complex analytic data. More precisely, the Weierstrass
data associated to xΣ is the quadruple (M,J,G, η) where (M,J) is a Riemann
surface, G is a meromorphic function on (M,J) and η a holomorphic one
form on (M,J). The data is determined as follows:

(1) J is the almost-complex structure induced by xΣ;
(2) G = S ◦ n where n is the Gauss map and

S : ∂B1\(0, 0,−1) → C

is stereographic projection;
(3) x∗

Σdx3 = Re η.
The Weierstrass data allows one to reconstruct xΣ by the means of the
Weierstrass representation:

(3.1) xΣ(p)− xΣ(p0) = Re
∫ p

p0

(1
2(G

−1 −G), i2(G
−1 +G), 1

)
η.

Conversely, given any quadruple (M,J,G, η) we may use (??) to construct a
parametrization xΣ of a branched minimal surface Σ provided:

(1) Both Gη and G−1η are holomorphic;
(2) For any 1-cycle γ in M :∫

γ

(1
2(G

−1 −G), i2(G
−1 +G), 1

)
η ∈ iR3.

Condition (??) is known as the period condition.

Remark 3.1. The parametrizing map xΣ is an immersion if and only if
Gη,G−1η, and η do not all simultaneously vanish at any point of M .

It is convenient to choose a local complex coordinate patch (V, z) on M
and to write η = hdz and G = G(z). We write f ′ for ∂zf for any function
f ∈ C1(V,C). Standard computations (see for instance [17]) give the metric
as

g = x∗
ΣgE = 1

4(|G|+ |G|−1)2η ⊗ η = |h|2

4 (|G|+ |G|−1)2|dz|2,

the Hopf differential as

Q = − 1
G
dG ◦ η = −hG′

G
dz2,

and the Gauss curvature

Kg = − 16|GG′|2

|h|2(1 + |G|2)4 .

Hence,

ug = − log 2− 1
4 log |h−1GG′|2 + log(1 + |G|2).
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3.2. Computing P in terms of Weierstrass data

We now compute the entropy differential P in terms of the Weierstrass data.

Proposition 3.2. Let Σ be an oriented minimal surface in R3 with Weier-
strass data (M,J,G, η). If (U, z) is a coordinate chart of M on which Kg < 0
and we write η = hdz, G = G(z), then P = ρ

2dz
2 with

ρ =
(
G′′′

G′ + G′′

2G − 3(G′)2

4G2 − 7(G′′)2

4(G′)2 + G′′h′

2G′h
− G′h′

2Gh
− h′′

h
+ 5(h′)2

4h2

)
.

If Q = dz2, then

P =
((

G′′

G′

)′
− 1

2

(
G′′

G′

)2)
dz2

= {G, z}dz2,

where {G, z} is the Schwarzian derivative of G.

Remark 3.3. The Schwarzian derivative of G has also been studied from a
different perspective by Duren, Chuaqui and Osgood [9] (see also [5] for a
coordinate free definition of the Schwarzian derivative).

Proof. If Kg < 0 on V , then hG′

G has no zeroes on V . Hence, if V is simply
connected there is global square root of −hG′

G . Indeed, there is a function w
on V so that

dw =

√
−hG′

G
dz

and so
Q = dw2.

The exact one-form dw is well-defined up to multiplication by ±1. In
particular, we have that the entropy differential is given by

P = −2
(
∂2
wwug + (∂wug)2

)
dw2.

In order to express P in terms of the Weierstrass data we note that:

∂w =

√
− G

hG′∂z

and so

∂2
ww = − G

hG′∂
2
zz −

G

2hG′

(
G′

G
− G′′

G′ −
h′

h

)
∂z.

Hence, √
−hG′

G
∂wug = −1

4
(h−1GG′)′

h−1GG′ + G′Ḡ

1 + |G|2

= 1
4

(
h′

h
− G′

G
− G′′

G′

)
+ G′Ḡ

1 + |G|2
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and

−hG′

G
∂2
wwug =1

4

(
h′′

h
−
(
h′

h

)2
− G′′

G
+
(
G′

G

)2
− G′′′

G′ +
(
G′′

G′

)2)
+

+ G′′Ḡ

1 + |G|2
−
(

G′G

1 + |G|2
)2

+ 1
8

(
G′′

G′

)2
− 1

8

(
h′

h
− G′

G

)2
−

− 1
2

(
G′′

G′ +
h′

h
− G′

G

)
G′Ḡ

1 + |G|2
.

We note that both these expressions are independent of replacing w by −w
and so hold even if V is not simply-connected. Combining the above we
determine that P = ρ

2 dz
2 with

ρ =
(
G′′′

G′ + G′′

2G − 3(G′)2

4G2 − 7(G′′)2

4(G′)2 + G′′h′

2G′h
− G′h′

2Gh
− h′′

h
+ 5(h′)2

4h2

)
.

as claimed. If Q = dz2, then

h = − G

G′

and so
h′

h
= G′

G
− G′′

G′

and
h′′

h
= −G′′

G
+ 2(G

′′)2

(G′)2 .

Plugging these into the formula for P gives

P =
((

G′′

G′

)′
− 1

2

(
G′′

G′

)2)
dz2.

□

As an application of the previous computation, we determine the behavior
of the entropy differential at umbilic points of Σ:

Corollary 3.4. If Σ is a minimal surface in R3 and p ∈ Σ an isolated
umbilic point, then P , the entropy differential of Σ, has a double pole at p.
Indeed, there is a complex coordinate z around p satisfying z(p) = 0 and so

P = −
(
3n2 + 4n

8

)
dz2

z2
+O(1),

where n is the order of vanishing of the Hopf differential Q at p.

Proof. By rotating Σ in R3, we may assume that n(p) = e1 where (e1, e2, e3)
denotes the standard basis of R3. Hence, there is p-neighborhood V with a
p-centered complex coordinate z, together with Weierstrass data (V, J,G, η)
parametrizing Σ near p which satisfies η = dz and G(z) = 1 + o(1). In fact,
there are a, b ∈ C with a ̸= 0 so that

G(z) = 1 + azn+1 + bzn+2 +O(zn+2),
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because the umbilic point is isolated. Indeed,

Q = −hG′

G
dz2 = −a(n+ 1)zndz2 +O(zn)

and n is the order of vanishing of Q at p.
We let V ∗ = V \ {p} and apply Theorem 3.2 to compute that

P = 1
2

(
−
(3
4n

2 + n

)
z−2 − 3

2
n(n+ 2)
n+ 1

b

a
z−1

)
dz2 +O(1).

However, by changing coordinates to z → z + cz2 for an appropriate choice
of c we obtain P in the desired form. □

We may also use Proposition (??) to compute the entropy differential at
branch points.

Corollary 3.5. Suppose that (M,J) is a Riemann surface and x : M →
Σ ⊂ R3 is a non-flat branched minimal immersion. Let p ∈ M be a branch
point of M of order n and index k.

(1) If n− k+1 ̸= 0, then the entropy differential, P , has a double pole at
p and there is a complex coordinate patch (V, z) about p with z(p) = 0
so that

P =
(
(n+ k + 1)2 − 4k2

8

)
dz2

z2
+O(1);

(2) If n− k + 1 = 0, then P has at most a simple pole at p.

Proof. We may pick a complex coordinate patch (V, z) about p so that
z(p) = 0 and on V ∗ = V \ {p} the parameterization x is a smooth immersion.
Let (z(V ∗), J,G, η) be the Weierstrass data of this immersion where here J is
the usual complex structure. As x has an order n ≥ 1 branch point with index
k at z(p) = 0, up to an ambient rotation of R3 and a re-parameterization
the data has the form

G(z) = zk

for k ≥ 1 and

η =
(
azn+k + bzn+k+1

)
dz +O(zn+k+2)

where a ̸= 0. Computing gives

P =
(
(n+ k + 1)2 − 4k2

8z2 +
b
a(n+ k − 1)

4z

)
dz2 +O(1)

=
(
(n− k + 1)(n+ 3k + 1)

8z2 +
b
a(n+ k − 1)

4z

)
dz2 +O(1).

The corollary follows by noting that if n− k + 1 = 0, then P has at most a
simple pole at p as claimed. If n− k + 1 ̸= 0, then P has a double pole and
may be put in the claimed form by replacing z by z + cz2 for an appropriate
choice of c. □
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Remark 3.6. We do not distinguish between true and false branch points.
However, any false branch point of a smooth minimal surface at a point with
non-vanishing curvature must have order of vanishing n and index n+ 1.

3.3. Hill’s equation and the (spinor) Weierstrass representation

We conclude by relating the solutions w1, w2 from Theorem 2.4 to the
Weierstrass data. We observe a connection with the spinorial Weierstrass
representation of [18] but do not explore this in depth.

Proposition 3.7. Fix a simply-connected domain V ⊂ C. Suppose (V, Jstd, G, h dz)
is the Weierstrass data of a minimal immersion with Hopf differential Q = dz2
and entropy differential P = ρ

2dz
2, then

w1(z) =
√
2
2

√
−G−1(z)h(z)

w2(z) =
√
2
2

√
−G(z)h(z)

are single-valued and satisfy (??). Furthermore, w1 and w2 satisfy (??)
provided the branches of the square-root are chosen so w2

w1
= G.

Proof. As G and hdz is the Weierstrass data of a minimal immersion, Gh
or G−1h do not have a pole on V . Moreover, if either function vanished at a
point z0, then h(z0) = 0. As Q = dz2, −G′

G h = 1. Because G is meromorphic,
h has at most a simple zero at z0 and so G has either a simple pole or a
simple zero at z0. Hence, at z0 either Gh ̸= 0 and G−1h has a double zero
or G−1h ≠ 0 and Gh has a double zero. Taken together this implies that w1
and w2 are single-valued.

A straightforward computation gives that w1, w2 satisfy the Wronskian
condition (??). Differentiating (??) once, gives that

w′′
1

w1
=

w′′
2

w2
= − ρ̂

4
for a meromorphic function ρ̂. It is a classical fact – see for instance [15]
– that if ŵ1, ŵ2 solve w′′ + ρ̂

4w = 0, then Ĝ = ŵ1
ŵ2

satisfies {Ĝ, z} = ρ̂
2 . As

w2
w1

= G, this implies that ρ̂ = 2{G, z} = ρ and so w1, w2 satisfy (??). □

Corollary 3.8. Let V ⊂ C be a fixed simply-connected domain. If ρ is
a holomorphic function on V and w = (w1, w2)⊤ satisfies (??) and (??),
then the minimal immersion xw of Theorem 2.5 may be be chosen to have
Weierstrass data (V, Jstd, G, η), where

G = w2
w1

and η = −2w1w2dz.

Remark 3.9. If we let si = wi

√
dz be holomorphic spinors, then the si are

(up to choices of normalization) the spinor Weierstrass data of [18].

Proof. Set G = w2
w1

and η = −2w1w2dz and let xw be the minimal immer-
sion corresponding to this data. As w1 =

√
2
2

√
−G−1(z)h(z) and w2 =

√
2
2
√
−G(z)h(z), Theorem 3.7 implies that the entropy differential of xw is
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ρ
2dz

2. A direct computation and (??) imply that the Hopf differential of xw
is dz2. Finally,

x∗
wgE = 1

4 |h|
2
(
|G|+ |G−1|

)2
|dz|2 = |w|4dz ⊗ dz̄ = gw.

Hence, xw satisfies the conclusions of Theorem 2.5 which verifies the claim.
□

4. Characterization of Minimal Surfaces in Terms of the En-
tropy Differential

In this section we characterize a number of classical minimal surfaces in
terms of the entropy form. In particular, we show that the entropy form
vanishes if and only if the surface is contained in Enneper’s surface. The
catenoid and helicoid are also characterized in terms of a simple relationship
between the entropy form and the second fundamental form.

4.1. Deformed Catenoids and Helicoids

In order to get a complete characterization we must introduce two one-
parameter families of surfaces, C and H, which we call, respectively, deformed
catenoids and deformed helicoids. Specifically, C is the family of surfaces Ct

with Weierstrass data(
C, J,

t− ez

1− tez
,

1
1− t2

(1− te−z)(1− tez)dz
)
.

Similarly, H is the family of surfaces Ht with Weierstrass data(
C, J,

t− ez

1− tez
,

−i

1− t2
(1− te−z)(1− tez)dz

)
.

In both cases, z is the usual coordinate on C, J the usual complex structure
and t ∈ (−1, 1). In particular, C0 is the vertical catenoid and H0 is the
vertical helicoid. Computing as in the preceding section we obtain that for
surfaces in C

P = −1
2dz

2 = 1
2Q,

and for surfaces in H

P = −1
2dz

2 = i

2Q.

We remark that C and H are obtained from C0 and from H0 by applying
the one parameter family of Möbius transforms

Bt : z 7→ t+ z

1− tz

to the Gauss maps of C0 and H0.
Writing z = x + iy and integrating (??) gives the parameterizations of

Ct ∈ C:

FC
t (x, y) = FC

0 (x, y) +
2t

1− t2
(0,−y + t cosh x sin y, tx− sinh x cos y) ;

FC
0 (x, y) = (cosh x cos y, cosh x sin y, x) .
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Here FC
0 is a parameterization of (an infinite cover of) the catenoid. By

inspection, Ct has Π2 = {x2 = 0} and Π3 = {x3 = 0} as planes of reflectional
symmetry. Moreover,

FC
t (x, y + 2π) = FC

t (x, y)−
4πt

1− t2
e2

and so Ct is singly-periodic. When t ≠ 0, it is straightforward to see that Ct

is not embedded. Suppose Eθ is the rotation of the upper half of C0 by θ
around the x2-axis. One verifies that Ct is close to the union of translates of
Eθ and of Eπ−θ where here θ = tan−1

(
2t

1−t2

)
.

Similarly, elements of H are parametrized by

FH
t (x, y) = FH

0 (x, y) +
2t

1− t2
(0, x+ t sinh x cos y, ty − cosh x sin y) ;

FH
0 (x, y) = (sinh x sin y,− sinh x cos y, y).

For t = 0 this is a parametrization of the helicoid. Note that the image of
{x = 0} is a the x3-axis while the the image of {y = nπ} for n an integer
are the set of parallel lines

{
x1 = 0, x3 = 1+t2

1−t2
nπ
}
contained in the {x1 = 0}

plane. Moreover,

FH
t (x, y + 2π) = FH

t (x, y) + 2π1− t2

1 + t2
e3

so Ht is singly-periodic. For t ≠ 0, Ht is not embedded. However, if we
denote by H±

t the two components of Ht\ {x1 = x2 = 0}, then each H±
t is

embedded. In fact, each is a multi-valued graphs over the plane Πθ which
contains the x2-axis and makes an angle θ = tan−1

(
2t

1−t2

)
with the plane

Π3 = {x3 = 0}. In particular, rotating H±
t by θ around the x2-axis gives a

surface that looks (roughly) like a sheared copy of H±
0 .

4.2. Characterization of minimal surfaces in terms of P and Q

We now characterize surfaces in terms of simple relationships between P and
Q. In light of Theorem 2.4, we expect there to be a three-parameter family
of surfaces for any fixed of P and Q. However, in simple settings two of these
parameters correspond to re-parameterizations.

Theorem 4.1. Let Σ be a smooth oriented non-flat minimal surface in R3

with Hopf differential Q and entropy differential P . We have:
(1) If P ≡ 0, then up to a rigid motion and homothety, Σ is contained

in Enneper’s surface;
(2) If λ ≠ 0 and P ≡ λQ, then, up to a rigid motion and homothety, Σ

is contained in a surface C ∈ C. If Σ is properly embedded, then it is
the catenoid;

(3) If λ ̸= 0 and P ≡ iQ, then, up to a rigid motion and homothety, Σ
is contained in a surface H ∈ H. If Σ is properly embedded, then it
is the helicoid.

Remark 4.2. If Σ is an oriented minimal surface in R3 with Hopf differential
Q and entropy differential P , then for any λ > 0 the rescaling scaling of λΣ
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has Hopf differential λQ and entropy differential P . Reversing the orientation
of Σ changes Q to −Q but leaves P unchanged.

Proof. After possibly rescaling Σ and reversing the orientation, we may
assume that P = −1

2α
2dz2 where α = 0 in Case (??), α2 = 1 in Case (??)

and α2 = i in Case (??). As Σ is smooth and non-flat, the second fundamental
form has no singularities and P can only have isolated singularities. Hence,
by Theorem 3.4, in all cases P has no singularities and Q has no zeros on Σ.
Hence, for any point p ∈ Σ there is a simply connected neighborhood V of
p and complex coordinate z : V → C so that the Hopf differential satisfies
Q = −dz2. That is, P = α2

2 dz2. By Theorem 3.8, in order to recover the
surface it is enough to understand the holomorphic solutions on z(V ) to the
Hill’s equation:

(4.1) ∂2
zzw − α2

4 w = 0.

Clearly, this equation makes sense on all of C (with z as the usual coordinate)
and analytic continuation implies that all solutions are obtained by restricting
global solutions to z(V ). Let w(z) = (w1(z), w2(z))⊤ be a pair of solution
to the Hill’s equation with Wronskian W (w1, w2) = 1

2 .
We note there are two natural actions on the space of solutions. The first

is the natural action of SL(2,C) of Theorem 2.4 which is transitive. The
second is an action of C that arises from the translation invariance of (4.1).
Specifically, let C act on w by τ 7→ w(z + τ). The translation invariance
of (4.1) and of the Wronskian condition implies that this is a well defined
action. By Theorem 2.4, the action of SU(2) ⊂ SL(2,C) does not change the
geometry of the surface. Likewise, the action of C amounts to a change of
coordinates and also does not change the geometry. Our goal is to determine
all geometrically distinct solutions.

First, note that the Gram-Schmidt procedure implies that any matrix
B ∈ SL(2,C) may be factored as

B = UL

where U ∈ SU(2) and L ∈ SL(2,C) is lower triangular with positive entries
on the diagonal and detL = 1. This is sometimes called the QR (or in this
case QL) factorization. We write any such L as

L =
[
µ 0
ν µ−1

]
where µ > 0 and ν ∈ C. We now treat the case α = 0 and α ̸= 0 separately.
Case (??): By inspection a pair of solutions to (4.1) with α = 0 and
satisfying the Wronskian condition are

w1(z) = 1 and w2(z) =
1
2z.

Hence, by the QL factorization, the functions

w1(z) = µ and w2(z) = ν + 1
2µ

−1z,
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with µ > 0 and ν ∈ C give all geometrically distinct solutions to (4.1).
Applying the translation action with τ = −2µν gives all geometrically
distinct solutions in the form

w1(z) = µ and w2(z) =
1
2µ

−1z.

By Theorem 3.8 the Gauss map the associated minimal surfaces maybe
chosen so

G(z) = w2
w1

= z

2µ2 .

Moreover, as Q = −dz2 the height differential is η = zdz. This is precisely
the Weierstrass data of a rescaling of Enneper’s surface proving the claim in
this case.

Case (??) and (??): As α ̸= 0, a pair of solutions to (4.1) that satisfy
the Wronskian condition are

w1(z) =
1√
2α

e−
α
2 z and w2(z) =

1√
2α

e
α
2 z.

Hence, by the QL factorization, we may write all geometrically distinct
solutions to (4.1) in the form

w1(z) =
µ√
2α

e−
α
2 z and w2(z) =

1√
2α

(
νe−

α
2 z + µ−1e

α
2 z
)

with µ > 0 and ν ∈ C. The translation action allows us to express all
geometrically distinct solutions as

w1(z) = i
e−iθ/2
√
2α

e−
α
2 z and w2(z) = i

eiθ/2√
2α

(
γe−

α
2 z − e

α
2 z
)
.

where γ ≥ 0 and θ ∈ [0, 2π). Indeed, either ν = 0 and we take γ = θ = 0 or
ν ̸= 0 and we write ν = γµeiθ. In both cases, we act by τ = 1

α i(θ−π)+ 2
α lnµ.

Let φ ∈ (−π/4, π/4) satisfy
tan 2φ = γ.

The matrix (
cosφ − sinφ
sinφ cosφ

)(
−ieiθ/2 0

0 −ie−iθ/2

)
is the product of two elements of SU(2) and so is in SU(2). Acting by this
matrix gives that all geometrically distinct solutions can be put in the form

w1(z) =
cosφ√
2α cos 2φ

e−
α
2 z − sinφ√

2α
e

α
2 z

and
w2(z) =

sinφ√
2α cos 2φ

e−
α
2 z − cosφ√

2α
e

α
2 z,

where φ ∈ (−π/4, π/4). By applying the translation action with τ =
− 1

α ln cos 2φ, all geometrically distinct solutions can be put in the simplified
form

w1(z) =
cosφe−

α
2 z − sinφe

α
2 z

√
2 cos 2φα

and w2(z) =
sinφe−

α
2 z − cosφe

α
2 z

√
2 cos 2φα

.
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By Theorem 3.8 the Gauss map the associated minimal surfaces may be
chosen so

G(z) = w2
w1

= tanφ− eαz

1− tanφeαz .

Set t = tanφ. If α2 = 1, then we may take α = 1 and as Q = −dz2 we see
that η = 1

1−t2
(1− te−z)(1− tez)dz which together with G(z) is precisely the

data of a deformed catenoid. If α2 = i, then we write ζ = αz. In this case
Q = − 1

α2dζ2 = idζ2 and so η = − i
1−t2

(1− te−ζ)(1− teζ)dζ which together
with G(ζ) is precisely the data of a deformed helicoid. □

5. Curvature Estimates for Embedded Minimal Surfaces in
Terms of T

An interesting problem is to make the characterizations of Theorem 4.1
effective. For instance, to show that a minimal surface with “small” entropy
form must be close to a rescaling of a piece of Enneper’s surface. A major
challenge is to determine an appropriate notion of smallness for the entropy
form – something made more difficult by the need to account for the possible
singularities of T . We propose a certain family of quantities as natural
ways to measure this smallness and as an application give a novel curvature
estimate for embedded minimal surfaces.

Before introducing them we note the following consequence of Theorem 3.4.

Lemma 5.1. Let Σ be a smooth minimal surface with metric g and entropy
form T . For α > 0 we define, T̂α, the α-weighted entropy form of Σ by
T̂α ≡ 0 if Σ is flat and by

T̂α = |Kg|αT

otherwise. In either case, the function |T̂α|
1

1+α
g is locally integrable on Σ.

Proof. If Σ is flat then there is nothing to prove as T̂α is identically zero.
Otherwise, by Theorem 3.4, T is smooth away from the isolated poles where
Kg has a zero, in particular |T̂α|

1
1+α
g is locally integrable away from the zero

set. As Σ is smooth and Kg ≤ 0, if Kg(p) = 0 at a point p, then ∇gKg(p) = 0.
In particular Kg = O(r2) where r is the distance to p. On the other hand,
by Theorem 3.4, P has a double pole at p and so |T |g = Cr−2 + o(r−2)

for some constant C ≠ 0. Hence, |T̂α|
1

1+α
g = O

(
r

2α−2
1+α

)
. As 2α−2

1+α > −2 for

α > 0, |T̂α|
1

1+α
g is integrable in a neighborhood of p. Since p was an arbitrary

singularity of T , this proves the lemma. □

We propose that a reasonable notion of size for the entropy differential T
of a smooth minimal surface Σ is given by

||T ||Σ,α := 2
1

2(α+1)

∫
Σ
|T̂α|

1
1+α
g µg = 2

1
2(α+1)

∫
Σ
|T |

1
1+α
g |Kg|

α
1+αµg.

If Σ0 ⊂ Σ, then we obviously have a domain monotonicity property

||T ||Σ0,α ≤ ||T ||Σ,α.
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By Theorem 5.1, if Σ is a smooth minimal surface and Σ0 is pre-compact in
Σ, then

||T ||Σ0,α < ∞
Finally, if T̂Σ

α is the α-weighted entropy form of Σ, then T̂ λΣ
α = λ−2αT̂Σ

α

is the α-weighted entropy form of λΣ. To see this observe that T is scale
invariant (by construction) and the Gauss curvature scales like λ−2. Hence,
as the norm of a (fixed) quadratic differential scales like λ−2,

|T̂ λΣ
α |

1
1+α

λg = λ−2|T̂Σ
α |

1
1+α
g and so ||T λΣ||λΣ,α = ||TΣ||Σ,α

for all λ > 0. That is, these quantities are scale invariant for all α > 0.

Remark 5.2. Clearly, if Σ has an umbilic point, then limα→0 ||T ||Σ,α =
∞. Nevertheless, the normalized value τ := limα→0 α||T ||Σ,α is finite on
reasonable surfaces.

5.1. The Curvature Estimate

We now use the scale invariance of ||T ||Σ,α and Theorem 4.1 to prove an
ϵ-regularity result:

Theorem 5.3. There are constants ϵ = ϵ(α) > 0 and C = C(α) > 0 so that:
if Σ is a properly embedded minimal surface in B2R and

||T ||Σ,α < ϵ,

then
R2 sup

BR∩Σ
|A|2 ≤ C2.

Remark 5.4. The embeddedness condition is essential as can by seen by
considering an appropriate rescaling of Enneper’s surface. However, as
α → ∞, ||T ||Σ,α →

∫
Σ |Kg|µg the total curvature of Σ. In this case, the above

theorem holds without the assumption of embeddedness – see White [23] or
Anderson [2].

We begin with a Lemma which is crucial to the blow-up argument.

Lemma 5.5. Fix C > 0, p ∈ R3 and suppose Σ is a properly embedded
smooth surface in B2R(p) ⊂ R3 satisfying

sup
BR(p)∩Σ

|A|2 ≥ 16C2R−2.

Then there is a point q ∈ Σ and scale s > 0 so that BCs(q) ⊂ B2R(p) and
sup

BCs(q)∩Σ
|A|2 ≤ 4s−2 = 4|A|2(q).

Proof. With r(x) = |x− p| define the function

F (x) =
(
r(x)− 3

2R
)2

|A|2.

This is a Lipschitz function on B 3
2R

(p) ∩ Σ that vanishes on ∂B 3
2R

(p) ∩ Σ.
As F is continuous, non-negative and vanishes on ∂B 3

2R
(p) ∩ Σ, F achieves

its positive maximum at a point q ∈ B 3
2R

(p) ∩ Σ.
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The lower bound
sup

BR(p)∩Σ
|A|2 ≥ 16C2R−2

implies that F (q) ≥ 4C2. Set s = |A|−1(q) and σ = 3
2R− r(q) and note that

2Cs ≤ σ. Furthermore, if x ∈ Bσ/2(q), then

r(x) ≤ 3
2R− σ

2 <
R

2
and so σ2 ≤ 4(r(x)− 3

2R)2 and Bσ/2(q) ⊂ B 3
2R

(p). Combining these facts,

sup
BCs(q)∩Σ

σ2

4 |A|2 ≤ sup
Bσ/2(q)∩Σ

σ2

4 |A|2 ≤ sup
Bσ/2(q)∩Σ

F ≤ F (q) = σ2|A|2(q).

Which verifies the claim. □

We also note the following well-known fact:

Proposition 5.6. Suppose that Ri ↗ ∞ and that Σi are properly embedded
minimal surfaces in BRi so that

(1) 0 ∈ Σi and |AΣi |(0) = 1;
(2) supΣi

|AΣi | ≤ C < ∞;
then up to passing to a subsequence, the Σi converge smoothly and with
multiplicity one to a properly embedded minimal surface Σ in R3 so that
0 ∈ Σ satisfies |AΣ|(0) = 1.

Proof. Up to passing to a subsequence, the Σi converge to a smooth minimal
lamination L of R3. As 0 ∈ Σi for each i, there is a leaf L of the lamination
containing 0, moreover |AL|(0) = 1 and so L is not flat. Furthermore,
supΣ |AL| ≤ C < ∞ and so the injectivity radius of L is positive. Hence, by
[20], L is properly embedded. Finally, if the convergence is with multiplicity
greater than one, then L would be stable and hence flat by [11]. □

Proof of Theorem 5.3. By rescaling we may take R = 1. Assume the theorem
is false, then there is a sequence of minimal surfaces Σi properly embedded in
B2 so ||TΣi ||Σi,α → 0 and supB1∩Σi

|AΣ
i |2 → ∞. By Theorem 5.5, there exist

a sequence of Ci → ∞, points qi ∈ Σi and scales si → 0 so BCisi(qi) ⊂ B2
and

sup
BCisi

(qi)∩Σi

|AΣi |2 ≤ 4s−2
i = 4|AΣi |2(qi).

We set Σ̂i = s−1
i (Σi ∩BCsi(qi)− qi). The scaling properties of ||T ||Σ,α and

domain monotonicity together imply that

||T Σ̂i ||Σi,α ≤ ||TΣi ||Σi,α → 0.

Moreover, each Σ̂i is properly embedded in BCi , contains 0 and satisfies

sup
BCi

(0)∩Σ̂i

|AΣ̂i |2 ≤ 4 = 4|AΣ̂i |2(0).

Hence, by Theorem 5.6, up to passing to a subsequence, the Σ̂i converge to
a smooth properly embedded minimal surface Σ̂ in R3. The convergence is
with multiplicity one and 0 ∈ Σ̂ satisfies |AΣ̂|2(0) = 1. By the smoothness
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of Σ̂ and the monotonicity formula, there is a ρ > 0 so that in Bρ(0) ∩ Σ̂
one has |AΣ̂| > 1

2 and so πρ2 < Area(Σ̂ ∩ Bρ) ≤ 2πρ2. As the Σ̂i converge
smoothly and with multiplicity one to Σ̂, there is an i0 large so that i > i0
implies |AΣ̂i | > 1

4 and π
2ρ

2 < Area(Σ̂ ∩ Bρ) ≤ 3πρ2. As AΣi ̸= 0 , T̂ Σ̂i
α is

smooth in Bρ ∩ Σ̂i for i > i0 and converges smoothly to T̂ Σ̂
α in Bρ. However,

||T Σ̂i ||Bρ∩Σ̂i,α
→ 0, hence T̂ Σ̂

α ≡ 0 on Bρ ∩ Σ̂. Together with AΣ̂ ̸= 0 on
Bρ∩ Σ̂ this implies T Σ̂

α ≡ 0 on Bρ∩ Σ̂ and so Bρ∩ Σ̂ is contained in a rescaled
Enneper’s surface by Theorem Theorem 4.1. It then follows from the strong
unique continuation property of smooth minimal surfaces that Σ̂ is a rescaled
Enneper’s surface in R3, contradicting that Σ̂ is properly embedded and
proving the theorem. □

5.2. Gap properties of the entropy form

In light of Theorem 5.3 an interesting question is to determine the optimal
constant ϵ in Theorem 5.3. This is equivalent to determining a lower bound
for ||T ||Σ,α when Σ is a non-flat properly embedded minimal surface in R3.
We present some partial results in this direction as well as pose a question
about the expected behavior.

A consequence of Theorem 5.3 and [19] is that if ||T ||Σ,α is finite on a
properly embedded surface, then the surface has finite total curvature.

Proposition 5.7. If Σ is a properly embedded minimal surface in R3 and

||T ||Σ,α < ∞,

then ∫
Σ
|A|2µg = 2

∫
Σ
|Kg|µg < ∞.

Proof. Since ||T ||Σ,α < ∞ there is a value R > 0 so that ||T ||Σ\B̄R,α < ϵ
where ϵ is given by Theorem 5.3. This implies that there is a constant C > 0
given by Theorem 5.3 so that for p ∈ Σ\B2R we have B 1

2 |p|
p ⊂ R3\BR and

so

|A|2(p) ≤ 16C2

|p|2
.

That is, Σ has quadratic extrinsic decay of curvature. Hence, by Theorem
1.3 of [19], Σ has finite total curvature. □

In order to get a more refined result, we first compute:

Lemma 5.8. If C is the catenoid, then

||T ||C,α = 2π3/2
Γ
(

α
1+α

)
Γ
(
1
2 + α

1+α

) .
Here Γ(x) is the Gamma function. Hence,

lim
α→0

α||T ||C,α = 2π and lim
α→∞

||T ||C,α = 4π.
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Proof. The Weierstrass data for the catenoid is (C/⟨2πi⟩, J,−ez,dz) where
J is the usual complex structure. Using this data and writing z = x+ iy, we
have

P = −1
2dz

2, g = cosh2 x |dz|2, Kg = − 1
cosh4 x

.

As a consequence, |T |g =
√
2
2 |P |g =

√
2

2 cosh2 x and so |T̂α|g =
√
2

2 cosh2+4α x
, hence

||T ||C,α = 2π
∫ ∞

−∞

1
cosh

2α
α+1 x

dx

and the integral was evaluated using Mathematica. □

More generally, we have:

Proposition 5.9. Let Σ be a non-flat properly immersed minimal surface
in R3. If E ⊂ Σ is an embedded end of finite total curvature with branching
order n ≥ 0, then

lim
α→0

α||T ||E,α ≥ (3n+ 2)(n+ 2)
4(n+ 1) π.

If U ⊂ Σ is open and U contains an umbilic point of order n ≥ 1, then

lim
α→0

α||T ||U,α ≥ (3n+ 4)n
4(n+ 1) π.

If Ē ⊂ Σ and Ē contains no umbilic points, then we may replace the inequality
by an equality. Likewise, if Ū ⊂ Σ and Ū contains only the one umbilic point,
then we may replace the inequality by an equality.

Proof. We begin with a general computation. Let D∗ = D\ {0} be the
punctured disk with the usual complex coordinate z = reiθ. Suppose that
Σ is a minimal surface conformally parametrized by D∗ and the following
asymptotics hold for the entropy differential, metric and Gauss curvature as
r → 0

P = β

2
dz2

z2
+O

( 1
r3

)
dz2, g = µrkdz ⊗ dz̄ +O

(
rk+1

)
dz ⊗ dz̄,

and
Kg = −γrl +O

(
rl+1

)
,

where β ∈ R∗ and µ, γ, k + l + 2 > 0. As

|Tg| =
1√
2
|P |g = |β|√

2µ
r−(k+2) +O

(
r−(k+1)

)
,

we compute that

|T̂g|
1

1+α

√
|g| =

(
|β|√
2µ

r−(k+2) +O
(
r−(k+1)

)) 1
1+α

·
(
γrl +O

(
rl+1

)) α
1+α

·
(
µrk +O

(
rk+1

))
= 2−

1
2(1+α)µ1− 1

1+α |β|
1

1+αγ
α

1+α r
−1+(k+l+1)α

1+α
−1 +O

(
r

−1+(k+l+1)α
1+α

)
.
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Picking R0 > 0 so the asymptotic bounds hold for |z| ≤ R0, gives

||T ||Σ,α ≥ 2
1

2(1+α)

∫ 2π

0

∫ R0

0
|T̂g|

1
1+α

√
|g|rdrdθ

= 2πµ1− 1
1+α |β|

1
1+αγ

α
1+α

∫ R0

0
r

−1+(k+l+1)α
1+α dr +

∫ R0

0
O

(
r

−1+(k+l+1)α
1+α

+1
)
dr.

Evaluating the integrals, we conclude that

(5.1) lim
α→0

α||T ||Σ,α ≥ 2π|β|
k + l + 2 .

We can replace inequality by equality provided the bounds hold on all of D∗.
As E is a non-flat embedded end of finite total curvature and branching

order n, it is a catenoidal end if n = 0 and a planar end if n ≥ 1. In either
case, up to rotation and homothety, E has Weierstrass data of the form

(D∗, J, zn+1, zn−1 (1 + zH0(z)) dz)

where (D∗, J) is the punctured disk and H0 is a holomorphic function on D.
Writing z = reiθ, we compute that as r → 0 that

P =
(
−(3n+ 2)(n+ 2)

8z2 +O

( 1
r3

))
dz2 = −(3n+ 2)(n+ 2)

8
dz2

z2
+O

( 1
r3

)
dz2,

g =
( 1
4r4 +O

( 1
r3

))
dz ⊗ dz̄ = 1

4r4
(
dr2 + r2dθ2

)
+O

( 1
r3

)
dz ⊗ dz̄,

and
Kg = −16(n+ 1)2r2n+4 +O(r2n+5).

Hence, the result follows from (5.1) with β = − (3n+2)(n+2)
4 , l = 2n+ 4 and

k = −4.
At an umbilic point the computations of Theorem 3.4 imply that we can

parameterize a neighborhood of the umbilic point by D so that as r → 0

P = −
(
3n2 + 4n

8

)
dz2

z2
+O(1)dz2, g = dz ⊗ dz̄ +O (r) dz ⊗ dz̄

and
Kg = −|a|2(n+ 1)2r2n +O

(
r2n+1

)
.

Hence, the result follows from (5.1) with β = − (3n+4)n
4 , l = 2n and k = 0. □

From Theorem 5.9 we obtain two corollaries.

Corollary 5.10. Let Σ be a non-flat properly immersed minimal surface in
R3 of finite total Gauss curvature with genus g and e embedded ends, then

lim
α→0

α||T ||Σ,α = π

4

8 + 12g + 10(e− 2) +
∑

p∈E
⋃

U

n(p)
n(p) + 1

 .

Here E is the set of ends and n(p) ≥ 0 for p ∈ E is the order of branching of
the end, i.e., the order of branching of the extension of the Gauss map to p,
while U is the set of umbilic points and n(p) ≥ 1 is the order of the umbilic
point for p ∈ U.
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Proof. As Σ has finite total curvature, a classic result of Osserman [21]
implies that Σ is conformal to a compact Riemann surface, M , with a finite
number of punctures and that the Gauss map extends meromorphically to M .
Let e1, . . . , en denote the punctures which correspond to the ends of Σ, and
let u1, . . . , um denote the umbilic points. Pick U1, . . . , Un+m disjoint open
subsets of M each containing either an ei or a uj . We may naturally think
of the Ui as open subsets of Σ. Notice that Σ0 = Σ\ ∪n+m

i=1 Ui is compact
and contains no umbilic points and so there is a C > 0 so that for all α,
||T ||Σ0,α ≤ C. Hence,

lim
α→0

α||T ||Σ,α =
n+m∑
i=1

lim
α→0

α||T ||Ui,α.

As each Ui is either an embedded end containing no umbilic points or contains
exactly one umbilic point, Theorem 5.9 gives that
(5.2)

lim
α→0

α||T ||Σ,α = π

4

∑
p∈E

(3n(p) + 2)(n(p) + 2)
n(p) + 1 +

∑
p∈U

(3n(p) + 4)n(p)
n(p) + 1

 .

The Poincaré-Hopf index theorem applied to the Hopf differential Q implies
that

4g − 4 =
∑
p∈E

(n(p)− 2) +
∑
p∈U

n(p).

The proof is concluded by applying this identity to (5.2). □

Corollary 5.11. If Σ is a non-flat properly embedded minimal surface in
R3, then

lim
α→0

α||T ||Σ,α ≥ 2π,

with equality if and only if Σ is a catenoid.

Proof. If limα→0 α||T ||Σ,α = ∞, then there is nothing to show. If this limit is
finite, then Proposition Theorem 5.7 implies that Σ has finite total curvature.
By the strong half-space theorem [16] and the classification of embedded
ends, as Σ is not plane it must have at least two (catenoidal) ends. Hence,
by Theorem 5.10,

lim
α→0

α||T ||Σ,α ≥ 2π

with equality if and only if Σ has genus zero, no other ends and no umbilic
points. Hence, the Gauss map extends to an unbranched cover of the sphere,
and so Σ is the catenoid. □

We pose the following question:

Question 5.12. Let Σ be a non-flat properly embedded minimal surface in
R3 and let C be the catenoid. Is it true that for finite α

||TΣ||Σ,α ≥ ||TC ||C,α

with equality only if Σ is a catenoid? This is true in the limit as α → 0 and
α → ∞.
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5.3. Compactness properties for uniform bounds on T

We conclude with a compactness result for sequences of properly embedded
minimal surfaces Σi which admit a uniform bound on the entropy differential.
This is a standard consequence of Theorem 5.3 and the removable singularities
result of [19].

Theorem 5.13. Fix α > 0 and suppose that Σi is a sequence of properly
embedded minimal surfaces in an open region Ω ⊂ R3 with entropy forms
TΣi satisfying

||TΣi ||Σi,α ≤ C̄ < ∞.

Then there is a subsequence of the Σi and a finite (possibly empty) set of
points p1, . . . , pN ∈ Ω so that:

(1) On each compact set K ⊂⊂ Ω\ {p1, . . . , pN} ,

sup
K∩Σi

|A| ≤ C(K) < ∞;

(2) ϵN < 2C̄ where ϵ = ϵ(α) > 0 is given by Theorem 5.3;
(3) The Σi converge in Ω\ {p1, . . . , pN} to a smooth minimal lamination

L of Ω\ {p1, . . . , pN}. Moreover, the closure of L of L in Ω is a
smooth lamination of Ω.

Proof. We define a sequence of Radon measures, µi,α, on Ω by setting

µi,α(U) = 2
1

2(α+1)

∫
Σi∩U

|T̂Σi
α |

1
α+1µg

so
µi,α(Ω) = ||TΣi

α ||Σi,α ≤ C̄ < ∞.

By the standard compactness theorem for Radon measures, up to passing to
a subsequence, the µi,α weak* converge to a Radon measure µ. It follows
with Theorem 5.3 that if for p ∈ Ω there is an r > 0 so that B2r(p) ⊂ Ω and
µ(B2r(p)) < 1

2ϵ, then there is a constant C > 0 so that

sup
Br(p)∩Σi

|A|2 ≤ C2

r2
< ∞.

By standard covering arguments and the pigeonhole principle one concludes
that there are at most N points p1, . . . , pN ∈ Ω with Nϵ < 2C̄ so that no
such r exists. It follows that for any compact set K ⊂ Ω\ {p1, . . . , pN} we
have the curvature estimate:

sup
K∩Σi

|A| ≤ C(K) < ∞.

This verifies Items (1) and (2).
To prove Item (3), we note that the uniform curvature estimates of Item

(2) and standard compactness results – see Appendix B of [10] – imply that,
up to passing to a further subsequence, the Σi converge in Ω\ {p1, . . . , pN}
to a smooth minimal lamination, L, of Ω\ {p1, . . . , pN}. We claim that near
each pi the lamination has quadratic curvature decay. To prove this we apply
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the Lebesgue decomposition theorem to µ and to LΩ, Lebesgue measure on
R3 restricted to Ω. This implies

µ = µreg + µsing.

where µreg is absolutely continuous with respect to LΩ while µsing ⊥ LΩ.
In fact, the support of µsing is {p1, . . . , pn}, because L is a lamination of
Ω\ {p1, . . . , pN}. Hence,

lim
ρ→0

µ(Bρ(pi)\ {pi}) = lim
ρ→0

µreg(Bρ(pi)\ {pi}) = 0

and so there is a δ > 0 so that µ(B2δ(pi)\ {pi}) < ϵ. Hence, for p ∈
Bδ(pi)\ {pi} we may apply Theorem 5.3 to the points qj ∈ Σj with qj → p
and use the smooth convergence to conclude that

|A|2(p) ≤ 4C2

|p− pi|2
.

Theorem 1.2 of [19] then implies that each pi is a removable singularity of
L which concludes the proof of Item (3). □

Appendix A. Ricci Solitons

We remark on an interesting connection the entropy form makes between
minimal surfaces and two-dimensional Ricci solitons. Recall, a smooth
one-parameter family of metrics gt on a fixed manifold M is a Ricci flow
provided

d
dtgt = −2Ricgt .

This flow was introduced by Hamilton in [13]. When M is a surface this
simplifies to

d
dtgt = −2Kgtgt.

We say (M, g) is a Ricci soliton provided there is a vector field X on M and
a constant λ so that

−2Ricg = LXg − 2λg.
For such a g the family gt = (1− 2λt)φ∗

t g is a Ricci flow – here φt is the flow
of X. When λ = 0 the soliton is steady (i.e. of unchanging geometry) while
when λ > 0 it is shrinking and when λ < 0 it is expanding. If X = ∇g f then
we say g is a gradient Ricci soliton and f is a soliton potential. For such
gradient Ricci solitons

LXg = 2 ∇g 2f.

So g is a gradient Ricci soliton provided

∇g 2f +Ricg −λg = 0.

If M is a surface this implies

∇g 2f +Kgg − λg = 0

which is equivalent to

∆gf = 2(λ−Kg) and g∇̊2f = 0.
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Covariant differentiation of the last equation gives (in coordinates)

∇g j ∇g k (∂if) =
1
2 (∂k∆gf) gij .

Using the identity ∇g j ∇g k (∂if)− ∇g k ∇g j (∂if) = Rl
ijk∂lf , where Rl

ijk are
the components of the curvature tensor of g, we obtain(1

2∂k∆gf +K∂kf

)
gij =

(1
2∂j∆gf +K∂jf

)
gik.

Contracting with gij implies

0 = Kdf + 1
2d∆gf = Kdf − dK.

Hence near a point p where Kg ̸= 0 we have
df = d log |Kg|

and so
∇g 2 log |Kg| = ∇g 2f = (λ−Kg)g.

From this we see that
∆g log |Kg| = 2(λ−Kg) and ∇̊2

g log |Kg| = 0.
The converse is also true:

Proposition A.1. Let (M, g) be a (possibly open) Riemmanian surface with
Kg ̸= 0. It is a gradient Ricci soliton if and only if

∇̊2
g log |Kg| = 0 and ∆g log |Kg| = 2(λ−Kg)

for some λ ∈ R. Moreover, if (M, g) is a gradient Ricci soliton, then it has
soliton potential log |Kg|. The sign of λ depends on whether the soliton is
expanding, steady or shrinking.

Recall that if (M, g) is a Riemannian surface with Kg < 0 and g sat-
isfies the Ricci condition (2.1), then ĝ = |Kg|3/4g satisfies Kĝ > 0 and
∆ĝ logKĝ = −2Kĝ. Hence, a consequence of Theorem 4.1 and a straightfor-
ward computation is:

Corollary A.2. The metric of Enneper’s surface genn corresponds to the
cigar soliton metric gcig under the map g → |Kg|3/4g. Furthermore, homo-
theties of genn are the only minimal surface metrics which correspond to
gradient Ricci soliton metrics in this manner.
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