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Characterizing classical minimal surfaces via the
entropy differential

JACOB BERNSTEIN AND THOMAS METTLER

ABSTRACT. We introduce on any smooth oriented minimal surface in Euclidean
3-space a meromorphic quadratic differential, P , which we call the entropy
differential. This differential arises naturally in a number of different contexts.
Of particular interest is the realization of its real part as a conservation law
for a natural geometric functional – which is, essentially, the entropy of the
Gauss curvature. We characterize several classical surfaces – including Enneper’s
surface, the catenoid and the helicoid – in terms of P . As an application, we prove
a novel curvature estimate for embedded minimal surfaces with small entropy
differential and an associated compactness theorem.

1. Introduction

Let † � R3 be a smooth, oriented minimal surface. In this paper, we introduce a
meromorphic quadratic differential P on †, which we call the entropy differential.
We use P to characterize several classical surfaces – including Enneper’s surface,
the catenoid and the helicoid. In particular, subsets of Enneper’s surface are the
only minimal surfaces on which P vanishes – a fact which we use to prove a novel
curvature estimate for embedded minimal surfaces with small entropy differential
and an associated compactness result.

The differential P arises naturally in a number of different contexts. Of particular
interest is the realization of T D ReP , which we call the entropy form, as a
conservation law for the diffeomorphism invariant functional

EŒg� D

Z
†

Kg logKg�g :

This functional, which is a type of entropy for the curvature, has been previously
considered by R. Hamilton in the context of the Ricci flow on surfaces [14]. In
particular, we show that if g is a minimal surface metric (i.e. the metric induced by
a smooth minimal immersion) for which Kg ¤ 0, then the metric Og D .�Kg/3=4g
is a critical point of E with respect to compactly supported conformal deformations.
The crucial fact used here is the observation – due to Ricci [22] – that such minimal
surface metrics satisfy the so-called Ricci condition:

�g log jKg j D 4Kg :

The differential P also arises as a certain geometric Schwarzian derivative of the
Gauss map – a point of view which has antecedents in [9, 12] – and which we will
study more thoroughly in a forthcoming paper [3].
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A key observation of the present paper is that, modulo rigid motions, a minimal
surface is determined, up to a three-parameter family, by its Hopf differentialQ and
its entropy differential P . This allows one to characterize several classical minimal
surfaces in terms of simple relationships between the Hopf and entropy differentials:

Theorem 4.1. Let † be a smooth oriented non-flat minimal surface in R3 with
entropy differential P . We have:

(1) If P � 0, then up to a rigid motion and homothety, † is contained in
Enneper’s surface;

(2) If � ¤ 0 and P � �Q, then, up to a rigid motion and homothety, † is
contained in a surface C 2 C . If † is properly embedded, then it is the
catenoid;

(3) If � ¤ 0 and P � i�Q, then, up to a rigid motion and homothety, † is
contained in a surface H 2 H . If † is properly embedded, then it is the
helicoid.

The families C and H are, respectively, the deformed catenoids and deformed
helicoids. These are one parameter families of surfaces containing, respectively, the
catenoid and the helicoid – their geometry is discussed thoroughly in Section 4.

A consequence of Item (1) of Theorem 4.1 are a family of novel curvature
estimates for embedded minimal surfaces. Namely, we introduce a certain family
of scale invariant quantities which measure the size of the entropy form and use
standard blow-up arguments to derive curvature bounds for embedded surfaces for
which these quantities are small. Specifically, for a constant ˛ > 0 and smooth
minimal surface † with entropy form T , we define:

jjT jj†;˛ WD 2
1

2.1C˛/

Z
†

jT j
1

1C˛
g jKg j

˛
˛C1�g :

We justify this family by noting that, on the one hand they are scale invariant and,
on the other, the “endpoints” are very natural. Indeed,

lim
˛!1

jjT jj†;˛ D

Z
†

jKg j�g ;

i.e., one endpoint is the total Gauss curvature, a well studied quantity in minimal
surface theory. While,

lim
˛!0
jjT jj†;˛ D

p
2

Z
†

jT jg�g ;

i.e., the other endpoint is the L1 norm of the entropy form which is invariant under
the standard action of PSL.2;C/ on the Gauss map of †, see [3]. We will not deal
directly with this quantity due to the fact that the presence of umbilic points tends
to make it infinite.

As these quantities are scale invariant, standard blow-up arguments give the
following curvature estimates:

Theorem 5.3. Given ˛ > 0, there exist constants � D �.˛/ > 0 and C D C.˛/ > 0
so that: if † is a properly embedded minimal surface in B2R and

jjT jj†;˛ < �;
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then
R2 sup

BR\†

jAj2 � C 2:

In Section 5.2, we address the question of the best possible � and some partial
results are obtained. In particular, we obtain the following identity:

Corollary 5.10. Let † be a non-flat properly immersed minimal surface in R3 of
finite total Gauss curvature with genus g and e embedded ends, then

lim
˛!0

˛jjT jj†;˛ D
�

4

0@8C 12g C 10.e � 2/C X
p2E

S
U

n.p/

n.p/C 1

1A :
Here E is the set of ends and n.p/ � 0 for p 2 E is the order of branching of the
end, i.e., the order of branching of the extension of the Gauss map to p, while U is
the set of umbilic points and n.p/ � 1 is the order of the umbilic point for p 2 U.

This suggests that as ˛ ! 0

�.˛/ D
2�

˛
C o

�
1

˛

�
:

which would be sharp on the catenoid. Using standard techniques, we observe that
our curvature estimate gives a corresponding compactness results which we record
in Theorem 5.13. We conclude the paper with Section A, wherein the entropy form
is used to make a connection between minimal surfaces in R3 and gradient Ricci
soliton metrics on surfaces.
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2. A Geometric Entropy Functional for Surfaces

2.1. Definitions

We assume R3 to be equipped with the standard Euclidean metric gE and orientation.
Let BR.p/ be the open Euclidean ball in R3 with radius R > 0 and center p. If
p is omitted then the ball is assumed to be centered at the origin in R3. Let M be
an open orientable smooth 2-manifold. For a smooth immersion x WM ! R3 let
† D x.M/, we say † is properly embedded if x is proper and injective. Moreover,
let g D x�gE be the first fundamental form. We write rg for the Levi-Civita
connection, Kg for the Gauss curvature, and �g for the area form of g. The
integrable almost complex structure on M induced by g and the orientation will
be denoted by J . Furthermore, for A 2 �.S2.T �M//, we define .JA/.X; Y / D



4 J. BERNSTEIN AND T. METTLER

A.JX; Y / where X; Y 2 �.TM/ are smooth vector fields on M . Here, as usual,
S2.T �M/ denotes the second symmetric power of the cotangent bundle of M .
In particular, the map A 7! A C iJA embeds the space of symmetric trace-free
2-forms on M into the space of quadratic differentials on M . Furthermore, we use
the standard fact that AC iJA is holomorphic if and only if A is divergence-free.

Let n denote the orientation compatible Gauss map of x taking values in @B1, the
unit-sphere in R3 centered at 0. The second fundamental form of x will be denoted
by A and its trace with respect to g, the mean curvature, by H . A point p 2M at
which the eigenvalues of Ap agree is called umbilic and we define OM �M to be
the open submanifold of non-umbilic points.

The pair .g; A/ satisfies the Gauss equation

jAj2g C 2Kg D .trgA/
2

and the Codazzi equations

r
g

XA.Y;Z/ D r
g

YA.X;Z/

where X; Y;Z 2 �.TN/. Conversely, Bonnet’s theorem states that if a pair .g; A/
on a simply connected surface N satisfies the Gauss - and Codazzi equations, then
there exists an immersion x W N ! R3 – unique up to composition with a rigid
motion of R3 – whose first and second fundamental form are g and A. For this
reason we refer to the triple .M; g;A/ as geometric data of x.

2.2. The Ricci condition

We suppose from now on that x WM ! R3 is minimal. That is H � 0. The Gauss
equations imply that Kg � 0 and that Kg is negative on OM . It follows from the
Codazzi equations that the second fundamental form is divergence free with respect
to g. This yields Simons’ identity

�gA D �jAj
2
gA

where here �g is the rough Laplacian. From

4jAj2g j r
g Aj2g D j r

g
jAj2g j

2;

Simons’ identity, and the Gauss equations we obtain that on OM the following Ricci
condition

(2.1) �g log jKg j D 4Kg

holds. Abbreviate

(2.2) ug D �
1

4
log jKg j;

then the Ricci condition becomes

�gug D e
�4ug :

Conversely, Ricci [22] showed that if g is a Riemannian metric of strictly negative
Gauss curvature Kg on a simply connected 2-manifold N satisfying the Ricci
condition, then there exists a minimal immersion x W N ! R3 with x�gE D g. A
proof of this fact using modern language may be found in [6].
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2.3. The entropy functional

We will study a certain natural functional E defined on the space MC.M/ of
smooth Riemannian metrics on M which have positive Gauss curvature. Define for
g 2MC.M/

EŒg� D

Z
M

Kg logKg�g

This functional has been applied to the study of Ricci flow on surfaces by Hamilton
[14] and Chow [7] – in particular Hamilton observed that it is monotonically
increasing along the Ricci flow on spheres with positive Gauss curvature (see
Section A of the present paper for additional connections to Ricci solitons).

We compute the Euler-Lagrange equations associated to E . To do so, let f be a
smooth symmetric 2-form and write F D trg f for its trace with respect to g. Let
gt D g C tf , then (cf. [8, pg. 99])

@

@t

ˇ̌̌̌
tD0

Kgt D �
1

2
�gF C

1

2
divg.divgf / �

1

2
KgF

D �
1

4
�gF C

1

2
divg

�
divg Vf

�
�
1

2
KgF

where Vf is the trace-free part of f . Hence,
@

@t

ˇ̌̌̌
tD0

Kgt logKgt D
�
�
1

4
�gF C

1

2
divg

�
divg Vf

�
�
1

2
KgF

�
.logKgt C 1/

and so

ıf EŒg� D
1

2

Z
M

FKg logKgC
�

divg
�

divg Vf
�
�
1

2
�gF �KgF

�
.logKgtC1/�g :

If f is compactly supported then using Green’s formula and the divergence theorem,
i.e., integrating by parts twice, yields

ıf EŒg� D �
1

4

Z
M

F
�
�g logKg C 2Kg

�
� 2hf; Vrg 2 logKgig�g ;

where Vrg 2 denotes the trace-free Hessian and ha; big the natural bilinear pairing
on elements a; b 2 �.S2.T �M// obtained via g.

We will say that g 2MC.M/ is an E-critical metric if E is stationary at g with
respect to compactly supported conformal deformations. Hence, g is an E-critical
metric if and only if the Gauss curvature Kg of g satisfies

�g logKg D �2Kg :

As E is computed purely in terms of geometric quantities it is manifestly diffeo-
morphism invariant, that is if � WM !M is a diffeomorphism we have

EŒ��g� D EŒg�:

By Noether’s principle this invariance leads to a conservation law for E-critical
metrics. Indeed, let X be a compactly supported vector field on M and �t the flow
of X . We have that

��t g D g C tLXg C o.t/:

Recall, the Lie derivative, LXg can be computed as

.LXg/.Y;Z/ D g. r
g

YX;Z/C g. r
g

ZX; Y /:
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where Y;Z 2 �.TM/. By the diffeomorphism invariance we have at an E-critical
metric that

0 D ıLXgEŒg�

D
1

2

Z
M

hLXg; Vr
g 2 logKgig�g

D

Z
M

divg
�
. Vrg 2 logKg/.X; �/

�
� hX; divg Vrg 2 logKgig�g

D �

Z
M

hX; divg Vrg 2 logKgig�g

where we used that X has compact support and the divergence theorem. As X is
arbitrary,

(2.3) divg Vrg 2 logKg D 0:

In other words, the quantity

Vg D Vr
g 2 logKg

is a trace-free divergence free symmetric 2-form, i.e. a conservation law for the E

functional.

2.4. The entropy form

Let g be a smooth Riemannian metric and ! a smooth real-valued function on M .
We note the following standard formula for the trace-free Hessian and the Laplacian
operating on u 2 C1.M/

(2.4)
�e2!gu D e

�2!�gu;

e2!g Vr
2u D Vr

g 2u �
�
du˝ d! C d! ˝ du � g. rg u; rg !/g

�
:

Also, the Gauss-curvature transforms under conformal change as

Ke2!g D e
�2!

�
Kg ��g!

�
:

We let R˙C denote the space of smooth positively (or negatively) curved Riemannian
metrics on M satisfying the generalized Ricci condition

�g log jKg j D CKg

for some real constant C . In particular, the E-critical metrics are the elements of
RC
�2. For g 2 R˙C and ˛ 2 R let g˛ D jKg j2˛g, then g˛ has Gauss-curvature

Kg˛ D .1 � C˛/jKg j
�2˛Kg

which, for ˛ ¤ 1
C

, satisfies

�g˛ log jKg˛ j D

 
2˛ � 1

˛ � 1
C

!
Kg˛ D C˛Kg˛ ;

where

C˛ D

 
2˛ � 1

˛ � 1
C

!
:
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It follows that for ˛ > 1
C

the map '˛ sending g to g˛ satisfies

'˛ W R
˙
C ! R�C˛

whereas for ˛ < 1
C

'˛ W R
˙
C ! R˙C˛ :

Note that the choice ˛ D 1
C

maps the elements of R˙C to flat metrics and the choice
˛ D 1

2
(assuming C ¤ 2) maps the elements of R˙C to metrics of non-zero constant

Gauss curvature.
Suppose g 2 R�4 , then Og D g3=8 is an E-critical metric with Gauss curvature

K Og D
1

2
jKg j

1=4:

It follows with (2.2) and (2.3) that the symmetric trace-free entropy form

T WD V Og D
Og Vr

2 logK Og D
Og Vr

2

�
1

4
log jKg j

�
D �

Og Vr
2ug D � Vr

g 2ug � 3

�
.dug/2 �

1

2
g. rg ug ; r

g ug/g

�
is divergence-free with respect to Og.

IfM is oriented, then we call the associated quadratic differential P WD T C iJT
the entropy differential. Since the condition on a symmetric 2-form on M to be
trace-free and divergence free is conformally invariant, we obtain:

Theorem 2.1. Let .M; g/ be a smooth oriented Riemannian 2-manifold with Kg <
0 and g satisfying the Ricci condition. Then the entropy differential P D T C iJT
is holomorphic.

Remark 2.2. Note that a metric of negative Gauss-curvature on a surface arising via
a constant mean curvature 2 immersion into hyperbolic 3-space H3 also satisfies
the Ricci condition (recall that with our convention the ‘mean’ curvature is the sum
of the principal curvatures). Besides satisfying the Ricci condition, these so-called
Bryant surfaces share many properties with minimal surfaces in Euclidean 3-space,
the most important being that they possess a Weierstrass representation [4]. In
particular, a quadratic differential similar to the one studied here has been defined for
surfaces of constant mean curvature one in hyperbolic three-space H3 by Bryant [4]
and for surfaces of Bryant type in the Lorentz-Minkowski four-space L4 by Aledo,
Galvez and Mira [1].

2.5. The inverse problem

Suppose we are given a Riemann surface .M; J / and a holomorphic quadratic
differential P on M . We ask whether we can locally find a J -compatible metric g
of negative Gauss curvature on M which satisfies the Ricci condition and so that
the entropy differential of g is P .

Let z W V ! C be local holomorphic coordinates on .M; J /. It is easy to check
that if the real-valued function u solves Liouville’s equation

(2.5) 4@2z Nzu D e
�2u;
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then the metric g D e2ujdzj2 satisfies the Ricci condition and ug D �14 log jKg j D
u. Now a straightforward computation yields

Re.P / D T D �g0 Vr2u � du2 C
1

2
g0.

g0ru; g0ru/g0

D �2Re
��
@2zzuC .@zu/

2
�

dz2
�

where g0 D jdzj2. Writing P D �
2

dz2 for some holomorphic function � on V , we
are thus interested in the solutions u of the system

4@2z Nzu D e
�2u; @2zzuC .@zu/

2
D �

�

4
:

Lemma 2.3. Let V � C be a simply-connected domain and � a holomorphic
function on V . We let z be the usual complex coordinate on C. Then there exist
holomorphic functions w1; w2 on V solving the equation

(2.6) @2zzw C
�

4
w D 0

and with Wronskian satisfying

(2.7) W.w1; w2/ D w1@zw2 � w2@zw1 D
1

2
:

If Ow1; Ow2 is another pair of holomorphic solutions to (??) satisfying (??), then there
is a unique matrix B 2 SL.2;C/ so that Ow D Bw where

w D
�
w1
w2

�
and Ow D

�
Ow1
Ow2

�
:

Proof. See for instance [15, Chapter 5.2]. □

We now have the following:

Proposition 2.4. Let V � C be a simply-connected domain and suppose that � is
a holomorphic function on V . Then every real-valued function u 2 C1.V / that
satisfies the system

(2.8) 4@2z Nzu D e
�2u; @2zzuC .@zu/

2
D �

�

4
;

is of the form
uw D log jwj2 D log

�
jw1j

2
C jw2j

2
�
;

where

w D
�
w1
w2

�
and w1; w2 satisfy (??) and (??). Hence, for each � there is a three-dimensional
space SL.2;C/=SU.2/ of solutions u.

Proof. OnX D V �R�C with coordinates .z; u; q/ consider the rank 2 subbundle
E � TX defined by the common kernel of the 1-forms

'1 D du � qdz � Nqd Nz; '2 D dq C
��
4
C q2

�
dz �

1

4
e�2ud Nz:

Now
d'1 D dz ^ '2 C d Nz ^ '2;

d'2 D �
1

2
e�2ud Nz ^ '1 � 2qdz ^ '2;
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hence E is Frobenius integrable. Furthermore, the 1-graph

z 7! .z; u.z/; @zu.z//

of a solution u to (2.8) is an integral manifold of E. Consequently, a solution u
to (2.8) is uniquely determined by specifying u and @zu at some point z0 2 V .
Simple computations show that for any .z0; u0; q0/ 2 X there exist holomorphic
map w W V ! C2 satisfying (Equation (2.6), Equation (2.7)) so that uw D log jwj2
solves (2.8) and satisfies

u.z0/ D u0; @zu.z0/ D q0:

Clearly, if Ow D Uw for U 2 SU.2/, then u Ow D uw. □

Corollary 2.5. Let V � C be a simply-connected domain and suppose that � is a
holomorphic function on V . Let

gw D jwj4jdzj2 and A D Re.dz2/

where

w D
�
w1
w2

�
and w1; w2 satisfy (??) and (??). Then there is a minimal immersion xw W V ! R3

with geometric data .V; gw; A/ and entropy differential P D �
2

dz2.

Proof. This is an immediate consequence of Theorem 2.4 and the fundamental
theorem of submanifold geometry. □

3. Weierstrass Representation

In this section we express the entropy differential P in terms of the Weierstrass data
of the minimal surface † – this allows us to compute P more readily and to easily
analyze its singular and asymptotic behavior.

3.1. The Weierstrass Representation

Recall, to an oriented minimal surface † in R3 with parametrization x† WM ! †

one can associate Weierstrass data which encodes the surface and parametrization
x† in complex analytic data. More precisely, the Weierstrass data associated
to x† is the quadruple .M; J;G; �/ where .M; J / is a Riemann surface, G is a
meromorphic function on .M; J / and � a holomorphic one form on .M; J /. The
data is determined as follows:

(1) J is the almost-complex structure induced by x†;
(2) G D S ı n where n is the Gauss map and

S W @B1n.0; 0;�1/! C

is stereographic projection;
(3) x�†dx3 D Re �.

The Weierstrass data allows one to reconstruct x† by the means of the Weierstrass
representation:

(3.1) x†.p/ � x†.p0/ D Re
Z p

p0

�
1

2
.G�1 �G/;

i

2
.G�1 CG/; 1

�
�:
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Conversely, given any quadruple .M; J;G; �/ we may use (??) to construct a
parametrization x† of a branched minimal surface † provided:

(1) Both G� and G�1� are holomorphic;
(2) For any 1-cycle  in M :Z



�
1

2
.G�1 �G/;

i

2
.G�1 CG/; 1

�
� 2 iR3:

Condition (??) is known as the period condition.

Remark 3.1. The parametrizing map x† is an immersion if and only if G�;G�1�,
and � do not all simultaneously vanish at any point of M .

It is convenient to choose a local complex coordinate patch .V; z/ on M and to
write � D hdz andG D G.z/. We write f 0 for @zf for any function f 2 C 1.V;C/.
Standard computations (see for instance [17]) give the metric as

g D x�†gE D
1

4
.jGj C jGj�1/2�˝ � D

jhj2

4
.jGj C jGj�1/2jdzj2;

the Hopf differential as

Q D �
1

G
dG ı � D �

hG0

G
dz2;

and the Gauss curvature

Kg D �
16jGG0j2

jhj2.1C jGj2/4
:

Hence,

ug D � log 2 �
1

4
log jh�1GG0j2 C log.1C jGj2/:

3.2. Computing P in terms of Weierstrass data

We now compute the entropy differential P in terms of the Weierstrass data.

Proposition 3.2. Let † be an oriented minimal surface in R3 with Weierstrass data
.M; J;G; �/. If .U; z/ is a coordinate chart of M on which Kg < 0 and we write
� D hdz, G D G.z/, then P D �

2
dz2 with

� D

�
G000

G0
C
G00

2G
�
3.G0/2

4G2
�
7.G00/2

4.G0/2
C
G00h0

2G0h
�
G0h0

2Gh
�
h00

h
C
5.h0/2

4h2

�
:

If Q D dz2, then

P D

 �
G00

G0

�0
�
1

2

�
G00

G0

�2!
dz2

D fG; zgdz2;

where fG; zg is the Schwarzian derivative of G.

Remark 3.3. The Schwarzian derivative of G has also been studied from a different
perspective by Duren, Chuaqui and Osgood [9] (see also [5] for a coordinate free
definition of the Schwarzian derivative).
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Proof. If Kg < 0 on V , then hG0

G
has no zeroes on V . Hence, if V is simply

connected there is global square root of �hG
0

G
. Indeed, there is a function w on V

so that

dw D

r
�
hG0

G
dz

and so
Q D dw2:

The exact one-form dw is well-defined up to multiplication by ˙1. In particular,
we have that the entropy differential is given by

P D �2
�
@2wwug C .@wug/

2
�

dw2:

In order to express P in terms of the Weierstrass data we note that:

@w D

r
�
G

hG0
@z

and so

@2ww D �
G

hG0
@2zz �

G

2hG0

�
G0

G
�
G00

G0
�
h0

h

�
@z :

Hence, r
�
hG0

G
@wug D �

1

4

.h�1GG0/0

h�1GG0
C

G0 NG

1C jGj2

D
1

4

�
h0

h
�
G0

G
�
G00

G0

�
C

G0 NG

1C jGj2

and

�
hG0

G
@2wwug D

1

4

 
h00

h
�

�
h0

h

�2
�
G00

G
C

�
G0

G

�2
�
G000

G0
C

�
G00

G0

�2!
C

C
G00 NG

1C jGj2
�

�
G0G

1C jGj2

�2
C
1

8

�
G00

G0

�2
�
1

8

�
h0

h
�
G0

G

�2
�

�
1

2

�
G00

G0
C
h0

h
�
G0

G

�
G0 NG

1C jGj2
:

We note that both these expressions are independent of replacing w by �w and so
hold even if V is not simply-connected. Combining the above we determine that
P D �

2
dz2 with

� D

�
G000

G0
C
G00

2G
�
3.G0/2

4G2
�
7.G00/2

4.G0/2
C
G00h0

2G0h
�
G0h0

2Gh
�
h00

h
C
5.h0/2

4h2

�
:

as claimed. If Q D dz2, then

h D �
G

G0

and so
h0

h
D
G0

G
�
G00

G0

and
h00

h
D �

G00

G
C 2

.G00/2

.G0/2
:
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Plugging these into the formula for P gives

P D

 �
G00

G0

�0
�
1

2

�
G00

G0

�2!
dz2:

□

As an application of the previous computation, we determine the behavior of the
entropy differential at umbilic points of †:

Corollary 3.4. If † is a minimal surface in R3 and p 2 † an isolated umbilic
point, then P , the entropy differential of †, has a double pole at p. Indeed, there is
a complex coordinate z around p satisfying z.p/ D 0 and so

P D �

�
3n2 C 4n

8

�
dz2

z2
CO.1/;

where n is the order of vanishing of the Hopf differential Q at p.

Proof. By rotating † in R3, we may assume that n.p/ D e1 where .e1; e2; e3/ de-
notes the standard basis of R3. Hence, there is p-neighborhood V with a p-centered
complex coordinate z, together with Weierstrass data .V; J;G; �/ parametrizing †
near p which satisfies � D dz and G.z/ D 1C o.1/. In fact, there are a; b 2 C

with a ¤ 0 so that

G.z/ D 1C aznC1 C bznC2 CO.znC2/;

because the umbilic point is isolated. Indeed,

Q D �
hG0

G
dz2 D �a.nC 1/zndz2 CO.zn/

and n is the order of vanishing of Q at p.
We let V � D V n fpg and apply Theorem 3.2 to compute that

P D
1

2

�
�

�
3

4
n2 C n

�
z�2 �

3

2

n.nC 2/

nC 1

b

a
z�1

�
dz2 CO.1/:

However, by changing coordinates to z ! z C cz2 for an appropriate choice of c
we obtain P in the desired form. □

We may also use Proposition (??) to compute the entropy differential at branch
points.

Corollary 3.5. Suppose that .M; J / is a Riemann surface and x WM ! † � R3

is a non-flat branched minimal immersion. Let p 2M be a branch point of M of
order n and index k.

(1) If n � k C 1 ¤ 0, then the entropy differential, P , has a double pole at p
and there is a complex coordinate patch .V; z/ about p with z.p/ D 0 so
that

P D

�
.nC k C 1/2 � 4k2

8

�
dz2

z2
CO.1/I

(2) If n � k C 1 D 0, then P has at most a simple pole at p.
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Proof. We may pick a complex coordinate patch .V; z/ about p so that z.p/ D
0 and on V � D V n fpg the parameterization x is a smooth immersion. Let
.z.V �/; J;G; �/ be the Weierstrass data of this immersion where here J is the
usual complex structure. As x has an order n � 1 branch point with index k at
z.p/ D 0, up to an ambient rotation of R3 and a re-parameterization the data has
the form

G.z/ D zk

for k � 1 and

� D
�
aznCk C bznCkC1

�
dz CO.znCkC2/

where a ¤ 0. Computing gives

P D

 
.nC k C 1/2 � 4k2

8z2
C

b
a
.nC k � 1/

4z

!
dz2 CO.1/

D

 
.n � k C 1/.nC 3k C 1/

8z2
C

b
a
.nC k � 1/

4z

!
dz2 CO.1/:

The corollary follows by noting that if n � k C 1 D 0, then P has at most a simple
pole at p as claimed. If n� kC 1 ¤ 0, then P has a double pole and may be put in
the claimed form by replacing z by z C cz2 for an appropriate choice of c. □

Remark 3.6. We do not distinguish between true and false branch points. However,
any false branch point of a smooth minimal surface at a point with non-vanishing
curvature must have order of vanishing n and index nC 1.

3.3. Hill’s equation and the (spinor) Weierstrass representation

We conclude by relating the solutions w1; w2 from Theorem 2.4 to the Weierstrass
data. We observe a connection with the spinorial Weierstrass representation of [18]
but do not explore this in depth.

Proposition 3.7. Fix a simply-connected domain V � C. Suppose .V; Jstd ; G; h dz/
is the Weierstrass data of a minimal immersion with Hopf differential Q D dz2 and
entropy differential P D �

2
dz2, then

w1.z/ D

p
2

2

q
�G�1.z/h.z/

w2.z/ D

p
2

2

p
�G.z/h.z/

are single-valued and satisfy (??). Furthermore, w1 and w2 satisfy (??) provided
the branches of the square-root are chosen so w2

w1
D G.

Proof. As G and h dz is the Weierstrass data of a minimal immersion, Gh or G�1h
do not have a pole on V . Moreover, if either function vanished at a point z0, then
h.z0/ D 0. As Q D dz2, �G

0

G
h D 1. Because G is meromorphic, h has at most a

simple zero at z0 and so G has either a simple pole or a simple zero at z0. Hence, at
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z0 either Gh ¤ 0 and G�1h has a double zero or G�1h ¤ 0 and Gh has a double
zero. Taken together this implies that w1 and w2 are single-valued.

A straightforward computation gives that w1; w2 satisfy the Wronskian condi-
tion (??). Differentiating (??) once, gives that

w001
w1
D
w002
w2
D �

O�

4

for a meromorphic function O�. It is a classical fact – see for instance [15] – that if
Ow1; Ow2 solve w00 C O�

4
w D 0, then OG D Ow1

Ow2
satisfies f OG; zg D O�

2
. As w2

w1
D G, this

implies that O� D 2fG; zg D � and so w1; w2 satisfy (??). □

Corollary 3.8. Let V � C be a fixed simply-connected domain. If � is a holo-
morphic function on V and w D .w1; w2/

> satisfies (??) and (??), then the min-
imal immersion xw of Theorem 2.5 may be be chosen to have Weierstrass data
.V; Jstd ; G; �/, where

G D
w2

w1
and � D �2w1w2dz:

Remark 3.9. If we let si D wi
p

dz be holomorphic spinors, then the si are (up to
choices of normalization) the spinor Weierstrass data of [18].

Proof. Set G D w2
w1

and � D �2w1w2dz and let xw be the minimal immersion cor-

responding to this data. As w1 D
p
2
2

p
�G�1.z/h.z/ and w2 D

p
2
2

p
�G.z/h.z/,

Theorem 3.7 implies that the entropy differential of xw is �
2
dz2. A direct computa-

tion and (??) imply that the Hopf differential of xw is dz2. Finally,

x�wgE D
1

4
jhj2

�
jGj C jG�1j

�2
jdzj2 D jwj4dz ˝ d Nz D gw:

Hence, xw satisfies the conclusions of Theorem 2.5 which verifies the claim. □

4. Characterization of Minimal Surfaces in Terms of the Entropy Dif-
ferential

In this section we characterize a number of classical minimal surfaces in terms of
the entropy form. In particular, we show that the entropy form vanishes if and only
if the surface is contained in Enneper’s surface. The catenoid and helicoid are also
characterized in terms of a simple relationship between the entropy form and the
second fundamental form.

4.1. Deformed Catenoids and Helicoids

In order to get a complete characterization we must introduce two one-parameter
families of surfaces, C and H , which we call, respectively, deformed catenoids and
deformed helicoids. Specifically, C is the family of surfaces Ct with Weierstrass
data �

C; J;
t � ez

1 � tez
;

1

1 � t2
.1 � te�z/.1 � tez/dz

�
:
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Similarly, H is the family of surfaces Ht with Weierstrass data�
C; J;

t � ez

1 � tez
;
�i

1 � t2
.1 � te�z/.1 � tez/dz

�
:

In both cases, z is the usual coordinate on C, J the usual complex structure and
t 2 .�1; 1/. In particular, C0 is the vertical catenoid and H0 is the vertical helicoid.
Computing as in the preceding section we obtain that for surfaces in C

P D �
1

2
dz2 D

1

2
Q;

and for surfaces in H

P D �
1

2
dz2 D

i

2
Q:

We remark that C and H are obtained from C0 and from H0 by applying the one
parameter family of Möbius transforms

Bt W z 7!
t C z

1 � tz

to the Gauss maps of C0 and H0.
Writing z D x C iy and integrating (??) gives the parameterizations of Ct 2 C :

FC
t .x; y/ D FC

0 .x; y/C
2t

1 � t2
.0;�y C t cosh x siny; tx � sinh x cosy/ I

FC
0 .x; y/ D .cosh x cosy; cosh x siny; x/ :

Here FC
0 is a parameterization of (an infinite cover of) the catenoid. By inspection,

Ct has …2 D fx2 D 0g and …3 D fx3 D 0g as planes of reflectional symmetry.
Moreover,

FC
t .x; y C 2�/ D FC

t .x; y/ �
4�t

1 � t2
e2

and so Ct is singly-periodic. When t ¤ 0, it is straightforward to see that Ct is
not embedded. Suppose E� is the rotation of the upper half of C0 by � around the
x2-axis. One verifies that Ct is close to the union of translates of E� and of E���
where here � D tan�1

�
2t
1�t2

�
.

Similarly, elements of H are parametrized by

FH
t .x; y/ D FH

0 .x; y/C
2t

1 � t2
.0; x C t sinh x cosy; ty � cosh x siny/ I

FH
0 .x; y/ D .sinh x siny;� sinh x cosy; y/:

For t D 0 this is a parametrization of the helicoid. Note that the image of fx D 0g
is a the x3-axis while the the image of fy D n�g for n an integer are the set of
parallel lines

n
x1 D 0; x3 D

1Ct2

1�t2
n�
o

contained in the fx1 D 0g plane. Moreover,

FH
t .x; y C 2�/ D FH

t .x; y/C 2�
1 � t2

1C t2
e3

so Ht is singly-periodic. For t ¤ 0, Ht is not embedded. However, if we denote by
H˙t the two components of Htn fx1 D x2 D 0g, then each H˙t is embedded. In
fact, each is a multi-valued graphs over the plane…� which contains the x2-axis and
makes an angle � D tan�1

�
2t
1�t2

�
with the plane …3 D fx3 D 0g. In particular,
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rotating H˙t by � around the x2-axis gives a surface that looks (roughly) like a
sheared copy of H˙0 .

4.2. Characterization of minimal surfaces in terms of P and Q

We now characterize surfaces in terms of simple relationships between P and Q. In
light of Theorem 2.4, we expect there to be a three-parameter family of surfaces
for any fixed of P and Q. However, in simple settings two of these parameters
correspond to re-parameterizations.

Theorem 4.1. Let † be a smooth oriented non-flat minimal surface in R3 with
Hopf differential Q and entropy differential P . We have:

(1) If P � 0, then up to a rigid motion and homothety, † is contained in
Enneper’s surface;

(2) If � ¤ 0 and P � �Q, then, up to a rigid motion and homothety, † is
contained in a surface C 2 C . If † is properly embedded, then it is the
catenoid;

(3) If � ¤ 0 and P � iQ, then, up to a rigid motion and homothety, † is
contained in a surface H 2 H . If † is properly embedded, then it is the
helicoid.

Remark 4.2. If † is an oriented minimal surface in R3 with Hopf differential Q
and entropy differential P , then for any � > 0 the rescaling scaling of �† has Hopf
differential �Q and entropy differential P . Reversing the orientation of † changes
Q to �Q but leaves P unchanged.

Proof. After possibly rescaling† and reversing the orientation, we may assume that
P D �1

2
˛2dz2 where ˛ D 0 in Case (??), ˛2 D 1 in Case (??) and ˛2 D i in Case

(??). As† is smooth and non-flat, the second fundamental form has no singularities
and P can only have isolated singularities. Hence, by Theorem 3.4, in all cases P
has no singularities and Q has no zeros on †. Hence, for any point p 2 † there is a
simply connected neighborhood V of p and complex coordinate z W V ! C so that
the Hopf differential satisfies Q D �dz2. That is, P D ˛2

2
dz2. By Theorem 3.8,

in order to recover the surface it is enough to understand the holomorphic solutions
on z.V / to the Hill’s equation:

(4.1) @2zzw �
˛2

4
w D 0:

Clearly, this equation makes sense on all of C (with z as the usual coordinate) and
analytic continuation implies that all solutions are obtained by restricting global
solutions to z.V /. Let w.z/ D .w1.z/; w2.z//> be a pair of solution to the Hill’s
equation with Wronskian W.w1; w2/ D 1

2
.

We note there are two natural actions on the space of solutions. The first is
the natural action of SL.2;C/ of Theorem 2.4 which is transitive. The second is
an action of C that arises from the translation invariance of (4.1). Specifically,
let C act on w by � 7! w.z C �/. The translation invariance of (4.1) and of the
Wronskian condition implies that this is a well defined action. By Theorem 2.4, the
action of SU.2/ � SL.2;C/ does not change the geometry of the surface. Likewise,
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the action of C amounts to a change of coordinates and also does not change the
geometry. Our goal is to determine all geometrically distinct solutions.

First, note that the Gram-Schmidt procedure implies that any matrix B 2
SL.2;C/ may be factored as

B D UL

where U 2 SU.2/ and L 2 SL.2;C/ is lower triangular with positive entries on
the diagonal and detL D 1. This is sometimes called the QR (or in this case QL)
factorization. We write any such L as

L D

�
� 0

� ��1

�
where � > 0 and � 2 C. We now treat the case ˛ D 0 and ˛ ¤ 0 separately.
Case (??): By inspection a pair of solutions to (4.1) with ˛ D 0 and satisfying the
Wronskian condition are

w1.z/ D 1 and w2.z/ D
1

2
z:

Hence, by the QL factorization, the functions

w1.z/ D � and w2.z/ D � C
1

2
��1z;

with � > 0 and � 2 C give all geometrically distinct solutions to (4.1). Applying
the translation action with � D �2�� gives all geometrically distinct solutions in
the form

w1.z/ D � and w2.z/ D
1

2
��1z:

By Theorem 3.8 the Gauss map the associated minimal surfaces maybe chosen so

G.z/ D
w2

w1
D

z

2�2
:

Moreover, as Q D �dz2 the height differential is � D zdz. This is precisely the
Weierstrass data of a rescaling of Enneper’s surface proving the claim in this case.

Case (??) and (??): As ˛ ¤ 0, a pair of solutions to (4.1) that satisfy the
Wronskian condition are

w1.z/ D
1
p
2˛
e�

˛
2
z and w2.z/ D

1
p
2˛
e
˛
2
z :

Hence, by the QL factorization, we may write all geometrically distinct solutions
to (4.1) in the form

w1.z/ D
�
p
2˛
e�

˛
2
z and w2.z/ D

1
p
2˛

�
�e�

˛
2
z
C ��1e

˛
2
z
�

with � > 0 and � 2 C. The translation action allows us to express all geometrically
distinct solutions as

w1.z/ D i
e�i�=2
p
2˛

e�
˛
2
z and w2.z/ D i

ei�=2
p
2˛

�
e�

˛
2
z
� e

˛
2
z
�
:

where  � 0 and � 2 Œ0; 2�/. Indeed, either � D 0 and we take  D � D 0 or
� ¤ 0 and we write � D �ei� . In both cases, we act by � D 1

˛
i.� � �/C 2

˛
ln�.

Let � 2 .��=4; �=4/ satisfy
tan 2� D :
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The matrix �
cos� � sin�
sin� cos�

��
�iei�=2 0

0 �ie�i�=2

�
is the product of two elements of SU.2/ and so is in SU.2/. Acting by this matrix
gives that all geometrically distinct solutions can be put in the form

w1.z/ D
cos�

p
2˛ cos 2�

e�
˛
2
z
�

sin�
p
2˛
e
˛
2
z

and
w2.z/ D

sin�
p
2˛ cos 2�

e�
˛
2
z
�

cos�
p
2˛
e
˛
2
z;

where � 2 .��=4; �=4/. By applying the translation action with � D � 1
˛

ln cos 2�,
all geometrically distinct solutions can be put in the simplified form

w1.z/ D
cos�e�

˛
2
z
� sin�e

˛
2
z

p
2 cos 2�˛

and w2.z/ D
sin�e�

˛
2
z
� cos�e

˛
2
z

p
2 cos 2�˛

:

By Theorem 3.8 the Gauss map the associated minimal surfaces may be chosen so

G.z/ D
w2

w1
D

tan� � e˛z

1 � tan�e˛z
:

Set t D tan�. If ˛2 D 1, then we may take ˛ D 1 and as Q D �dz2 we see
that � D 1

1�t2
.1 � te�z/.1 � tez/dz which together with G.z/ is precisely the

data of a deformed catenoid. If ˛2 D i , then we write � D ˛z. In this case
Q D � 1

˛2
d�2 D id�2 and so � D � i

1�t2
.1 � te�� /.1 � te� /d� which together

with G.�/ is precisely the data of a deformed helicoid. □

5. Curvature Estimates for Embedded Minimal Surfaces in Terms of T

An interesting problem is to make the characterizations of Theorem 4.1 effective.
For instance, to show that a minimal surface with “small” entropy form must be close
to a rescaling of a piece of Enneper’s surface. A major challenge is to determine
an appropriate notion of smallness for the entropy form – something made more
difficult by the need to account for the possible singularities of T . We propose a
certain family of quantities as natural ways to measure this smallness and as an
application give a novel curvature estimate for embedded minimal surfaces.

Before introducing them we note the following consequence of Theorem 3.4.

Lemma 5.1. Let † be a smooth minimal surface with metric g and entropy form T .
For ˛ > 0 we define, OT˛, the ˛-weighted entropy form of † by OT˛ � 0 if † is flat
and by

OT˛ D jKg j
˛T

otherwise. In either case, the function j OT˛j
1

1C˛
g is locally integrable on †.

Proof. If† is flat then there is nothing to prove as OT ˛ is identically zero. Otherwise,
by Theorem 3.4, T is smooth away from the isolated poles where Kg has a zero,

in particular j OT ˛j
1

1C˛
g is locally integrable away from the zero set. As † is smooth

and Kg � 0, if Kg.p/ D 0 at a point p, then rgKg.p/ D 0. In particular
Kg D O.r

2/ where r is the distance to p. On the other hand, by Theorem 3.4, P
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has a double pole at p and so jT jg D Cr�2 C o.r�2/ for some constant C ¤ 0.

Hence, j OT˛j
1

1C˛
g D O

�
r
2˛�2
1C˛

�
. As 2˛�2

1C˛
> �2 for ˛ > 0, j OT˛j

1
1C˛
g is integrable

in a neighborhood of p. Since p was an arbitrary singularity of T , this proves the
lemma. □

We propose that a reasonable notion of size for the entropy differential T of a
smooth minimal surface † is given by

jjT jj†;˛ WD 2
1

2.˛C1/

Z
†

j OT˛j
1

1C˛
g �g D 2

1
2.˛C1/

Z
†

jT j
1

1C˛
g jKg j

˛
1C˛�g :

If †0 � †, then we obviously have a domain monotonicity property

jjT jj†0;˛ � jjT jj†;˛:

By Theorem 5.1, if † is a smooth minimal surface and †0 is pre-compact in †,
then

jjT jj†0;˛ <1

Finally, if OT†˛ is the ˛-weighted entropy form of †, then OT �†˛ D ��2˛ OT†˛ is the
˛-weighted entropy form of �†. To see this observe that T is scale invariant (by
construction) and the Gauss curvature scales like ��2. Hence, as the norm of a
(fixed) quadratic differential scales like ��2,

j OT �†˛ j
1

1C˛

�g
D ��2j OT†˛ j

1
1C˛
g and so jjT �†jj�†;˛ D jjT

†
jj†;˛

for all � > 0. That is, these quantities are scale invariant for all ˛ > 0.

Remark 5.2. Clearly, if † has an umbilic point, then lim˛!0 jjT jj†;˛ D1. Nev-
ertheless, the normalized value � WD lim˛!0 ˛jjT jj†;˛ is finite on reasonable
surfaces.

5.1. The Curvature Estimate

We now use the scale invariance of jjT jj†;˛ and Theorem 4.1 to prove an �-regularity
result:

Theorem 5.3. There are constants � D �.˛/ > 0 and C D C.˛/ > 0 so that: if †
is a properly embedded minimal surface in B2R and

jjT jj†;˛ < �;

then

R2 sup
BR\†

jAj2 � C 2:

Remark 5.4. The embeddedness condition is essential as can by seen by considering
an appropriate rescaling of Enneper’s surface. However, as ˛ !1, jjT jj†;˛ !R
† jKg j�g the total curvature of †. In this case, the above theorem holds without

the assumption of embeddedness – see White [23] or Anderson [2].

We begin with a Lemma which is crucial to the blow-up argument.
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Lemma 5.5. Fix C > 0, p 2 R3 and suppose † is a properly embedded smooth
surface in B2R.p/ � R3 satisfying

sup
BR.p/\†

jAj2 � 16C 2R�2:

Then there is a point q 2 † and scale s > 0 so that BCs.q/ � B2R.p/ and

sup
BCs.q/\†

jAj2 � 4s�2 D 4jAj2.q/:

Proof. With r.x/ D jx � pj define the function

F.x/ D

�
r.x/ �

3

2
R

�2
jAj2:

This is a Lipschitz function on B 3
2
R.p/ \† that vanishes on @B 3

2
R.p/ \†. As F

is continuous, non-negative and vanishes on @B 3
2
R.p/ \†, F achieves its positive

maximum at a point q 2 B 3
2
R.p/ \†.

The lower bound

sup
BR.p/\†

jAj2 � 16C 2R�2

implies that F.q/ � 4C 2: Set s D jAj�1.q/ and � D 3
2
R � r.q/ and note that

2Cs � � . Furthermore, if x 2 B�=2.q/, then

r.x/ �
3

2
R �

�

2
<
R

2

and so �2 � 4.r.x/ � 3
2
R/2 and B�=2.q/ � B 3

2
R.p/. Combining these facts,

sup
BCs.q/\†

�2

4
jAj2 � sup

B�=2.q/\†

�2

4
jAj2 � sup

B�=2.q/\†

F � F.q/ D �2jAj2.q/:

Which verifies the claim. □

We also note the following well-known fact:

Proposition 5.6. Suppose that Ri % 1 and that †i are properly embedded
minimal surfaces in BRi so that

(1) 0 2 †i and jA†i j.0/ D 1;
(2) sup†i jA

†i j � C <1I

then up to passing to a subsequence, the†i converge smoothly and with multiplicity
one to a properly embedded minimal surface † in R3 so that 0 2 † satisfies
jA†j.0/ D 1.

Proof. Up to passing to a subsequence, the †i converge to a smooth minimal
lamination L of R3. As 0 2 †i for each i , there is a leaf L of the lamination
containing 0, moreover jALj.0/ D 1 and soL is not flat. Furthermore, sup† jA

Lj �

C <1 and so the injectivity radius of L is positive. Hence, by [20], L is properly
embedded. Finally, if the convergence is with multiplicity greater than one, then L
would be stable and hence flat by [11]. □
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Proof of Theorem 5.3. By rescaling we may take R D 1. Assume the theorem is
false, then there is a sequence of minimal surfaces †i properly embedded in B2
so jjT†i jj†i ;˛ ! 0 and supB1\†i jA

†
i j
2 ! 1. By Theorem 5.5, there exist a

sequence of Ci !1, points qi 2 †i and scales si ! 0 so BCisi .qi / � B2 and

sup
BCi si .qi /\†i

jA†i j2 � 4s�2i D 4jA
†i j

2.qi /:

We set O†i D s�1i .†i \ BCsi .qi / � qi /. The scaling properties of jjT jj†;˛ and
domain monotonicity together imply that

jjT
O†i jj†i ;˛ � jjT

†i jj†i ;˛ ! 0:

Moreover, each O†i is properly embedded in BCi , contains 0 and satisfies

sup
BCi .0/\

O†i

jA
O†i j
2
� 4 D 4jA

O†i j
2.0/:

Hence, by Theorem 5.6, up to passing to a subsequence, the O†i converge to a
smooth properly embedded minimal surface O† in R3. The convergence is with
multiplicity one and 0 2 O† satisfies jA O†j2.0/ D 1. By the smoothness of O† and
the monotonicity formula, there is a � > 0 so that in B�.0/ \ O† one has jA O†j > 1

2

and so ��2 < Area. O† \ B�/ � 2��
2. As the O†i converge smoothly and with

multiplicity one to O†, there is an i0 large so that i > i0 implies jA O†i j > 1
4

and
�
2
�2 < Area. O† \ B�/ � 3��2. As A†i ¤ 0 , OT

O†i
˛ is smooth in B� \ O†i for

i > i0 and converges smoothly to OT O†˛ in B�. However, jjT O†i jj
B�\ O†i ;˛

! 0, hence

OT
O†
˛ � 0 on B� \ O†. Together with A O† ¤ 0 on B� \ O† this implies T O†˛ � 0 on
B� \ O† and so B� \ O† is contained in a rescaled Enneper’s surface by Theorem
Theorem 4.1. It then follows from the strong unique continuation property of smooth
minimal surfaces that O† is a rescaled Enneper’s surface in R3, contradicting that O†
is properly embedded and proving the theorem. □

5.2. Gap properties of the entropy form

In light of Theorem 5.3 an interesting question is to determine the optimal constant �
in Theorem 5.3. This is equivalent to determining a lower bound for jjT jj†;˛ when
† is a non-flat properly embedded minimal surface in R3. We present some partial
results in this direction as well as pose a question about the expected behavior.

A consequence of Theorem 5.3 and [19] is that if jjT jj†;˛ is finite on a properly
embedded surface, then the surface has finite total curvature.

Proposition 5.7. If † is a properly embedded minimal surface in R3 and

jjT jj†;˛ <1;

then Z
†

jAj2�g D 2

Z
†

jKg j�g <1:
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Proof. Since jjT jj†;˛ <1 there is a value R > 0 so that jjT jj†n NBR;˛ < � where
� is given by Theorem 5.3. This implies that there is a constant C > 0 given by
Theorem 5.3 so that for p 2 †nB2R we have B 1

2
jpjp � R3nBR and so

jAj2.p/ �
16C 2

jpj2
:

That is, † has quadratic extrinsic decay of curvature. Hence, by Theorem 1.3
of [19], † has finite total curvature. □

In order to get a more refined result, we first compute:

Lemma 5.8. If C is the catenoid, then

jjT jjC;˛ D 2�
3=2

�
�
˛
1C˛

�
�
�
1
2
C

˛
1C˛

� :
Here �.x/ is the Gamma function. Hence,

lim
˛!0

˛jjT jjC;˛ D 2� and lim
˛!1

jjT jjC;˛ D 4�:

Proof. The Weierstrass data for the catenoid is .C=h2�ii; J;�ez; dz/ where J is
the usual complex structure. Using this data and writing z D x C iy, we have

P D �
1

2
dz2; g D cosh2 x jdzj2; Kg D �

1

cosh4 x
:

As a consequence, jT jg D
p
2
2
jP jg D

p
2

2 cosh2 x
and so j OT˛jg D

p
2

2 cosh2C4˛ x
, hence

jjT jjC;˛ D 2�

Z 1
�1

1

cosh
2˛
˛C1 x

dx

and the integral was evaluated using Mathematica. □

More generally, we have:

Proposition 5.9. Let † be a non-flat properly immersed minimal surface in R3. If
E � † is an embedded end of finite total curvature with branching order n � 0,
then

lim
˛!0

˛jjT jjE;˛ �
.3nC 2/.nC 2/

4.nC 1/
�:

If U � † is open and U contains an umbilic point of order n � 1, then

lim
˛!0

˛jjT jjU;˛ �
.3nC 4/n

4.nC 1/
�:

If NE � † and NE contains no umbilic points, then we may replace the inequality by
an equality. Likewise, if NU � † and NU contains only the one umbilic point, then we
may replace the inequality by an equality.

Proof. We begin with a general computation. Let D� D Dn f0g be the punctured
disk with the usual complex coordinate z D rei� . Suppose that † is a minimal
surface conformally parametrized by D� and the following asymptotics hold for the
entropy differential, metric and Gauss curvature as r ! 0

P D
ˇ

2

dz2

z2
CO

�
1

r3

�
dz2; g D �rkdz ˝ d Nz CO

�
rkC1

�
dz ˝ d Nz;
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and
Kg D �r

l
CO

�
r lC1

�
;

where ˇ 2 R� and �; ; k C l C 2 > 0. As

jTg j D
1
p
2
jP jg D

jˇj
p
2�
r�.kC2/ CO

�
r�.kC1/

�
;

we compute that

j OTg j
1

1C˛

p
jgj D

�
jˇj
p
2�
r�.kC2/ CO

�
r�.kC1/

�� 1
1C˛

�

�
r l CO

�
r lC1

�� ˛
1C˛

�

�
�rk CO

�
rkC1

��
D 2�

1
2.1C˛/�1�

1
1C˛ jˇj

1
1C˛ 

˛
1C˛ r

�1C.kClC1/˛
1C˛

�1
CO

�
r
�1C.kClC1/˛

1C˛

�
:

Picking R0 > 0 so the asymptotic bounds hold for jzj � R0, gives

jjT jj†;˛ � 2
1

2.1C˛/

Z 2�

0

Z R0

0

j OTg j
1

1C˛

p
jgjrdrd�

D 2��1�
1

1C˛ jˇj
1

1C˛ 
˛
1C˛

Z R0

0

r
�1C.kClC1/˛

1C˛ dr C

Z R0

0

O
�
r
�1C.kClC1/˛

1C˛
C1
�
dr:

Evaluating the integrals, we conclude that

(5.1) lim
˛!0

˛jjT jj†;˛ �
2�jˇj

k C l C 2
:

We can replace inequality by equality provided the bounds hold on all of D�.
As E is a non-flat embedded end of finite total curvature and branching order

n, it is a catenoidal end if n D 0 and a planar end if n � 1. In either case, up to
rotation and homothety, E has Weierstrass data of the form

.D�; J; znC1; zn�1 .1C zH0.z// dz/

where .D�; J / is the punctured disk and H0 is a holomorphic function on D.
Writing z D rei� , we compute that as r ! 0 that

P D

�
�
.3nC 2/.nC 2/

8z2
CO

�
1

r3

��
dz2 D �

.3nC 2/.nC 2/

8

dz2

z2
CO

�
1

r3

�
dz2;

g D

�
1

4r4
CO

�
1

r3

��
dz ˝ d Nz D

1

4r4

�
dr2 C r2d�2

�
CO

�
1

r3

�
dz ˝ d Nz;

and
Kg D �16.nC 1/

2r2nC4 CO.r2nC5/:

Hence, the result follows from (5.1) with ˇ D � .3nC2/.nC2/
4

, l D 2n C 4 and
k D �4.

At an umbilic point the computations of Theorem 3.4 imply that we can parame-
terize a neighborhood of the umbilic point by D so that as r ! 0

P D �

�
3n2 C 4n

8

�
dz2

z2
CO.1/dz2; g D dz ˝ d Nz CO .r/ dz ˝ d Nz

and
Kg D �jaj

2.nC 1/2r2n CO
�
r2nC1

�
:
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Hence, the result follows from (5.1) with ˇ D � .3nC4/n
4

, l D 2n and k D 0. □

From Theorem 5.9 we obtain two corollaries.

Corollary 5.10. Let † be a non-flat properly immersed minimal surface in R3 of
finite total Gauss curvature with genus g and e embedded ends, then

lim
˛!0

˛jjT jj†;˛ D
�

4

0@8C 12g C 10.e � 2/C X
p2E

S
U

n.p/

n.p/C 1

1A :
Here E is the set of ends and n.p/ � 0 for p 2 E is the order of branching of the
end, i.e., the order of branching of the extension of the Gauss map to p, while U is
the set of umbilic points and n.p/ � 1 is the order of the umbilic point for p 2 U.

Proof. As † has finite total curvature, a classic result of Osserman [21] implies
that † is conformal to a compact Riemann surface, M , with a finite number of
punctures and that the Gauss map extends meromorphically to M . Let e1; : : : ; en
denote the punctures which correspond to the ends of †, and let u1; : : : ; um denote
the umbilic points. Pick U1; : : : ; UnCm disjoint open subsets of M each containing
either an ei or a uj . We may naturally think of the Ui as open subsets of †. Notice
that †0 D †n [nCmiD1 Ui is compact and contains no umbilic points and so there is a
C > 0 so that for all ˛, jjT jj†0;˛ � C: Hence,

lim
˛!0

˛jjT jj†;˛ D

nCmX
iD1

lim
˛!0

˛jjT jjUi ;˛:

As each Ui is either an embedded end containing no umbilic points or contains
exactly one umbilic point, Theorem 5.9 gives that
(5.2)

lim
˛!0

˛jjT jj†;˛ D
�

4

0@X
p2E

.3n.p/C 2/.n.p/C 2/

n.p/C 1
C

X
p2U

.3n.p/C 4/n.p/

n.p/C 1

1A :
The Poincaré-Hopf index theorem applied to the Hopf differential Q implies that

4g � 4 D
X
p2E

.n.p/ � 2/C
X
p2U

n.p/:

The proof is concluded by applying this identity to (5.2). □

Corollary 5.11. If † is a non-flat properly embedded minimal surface in R3, then

lim
˛!0

˛jjT jj†;˛ � 2�;

with equality if and only if † is a catenoid.

Proof. If lim˛!0 ˛jjT jj†;˛ D 1, then there is nothing to show. If this limit is
finite, then Proposition Theorem 5.7 implies that † has finite total curvature. By
the strong half-space theorem [16] and the classification of embedded ends, as † is
not plane it must have at least two (catenoidal) ends. Hence, by Theorem 5.10,

lim
˛!0

˛jjT jj†;˛ � 2�
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with equality if and only if † has genus zero, no other ends and no umbilic points.
Hence, the Gauss map extends to an unbranched cover of the sphere, and so † is
the catenoid. □

We pose the following question:

Question 5.12. Let † be a non-flat properly embedded minimal surface in R3 and
let C be the catenoid. Is it true that for finite ˛

jjT†jj†;˛ � jjT
C
jjC;˛

with equality only if† is a catenoid? This is true in the limit as ˛ ! 0 and ˛ !1.

5.3. Compactness properties for uniform bounds on T

We conclude with a compactness result for sequences of properly embedded minimal
surfaces †i which admit a uniform bound on the entropy differential. This is a
standard consequence of Theorem 5.3 and the removable singularities result of [19].

Theorem 5.13. Fix ˛ > 0 and suppose that †i is a sequence of properly embedded
minimal surfaces in an open region � � R3 with entropy forms T†i satisfying

jjT†i jj†i ;˛ �
NC <1:

Then there is a subsequence of the †i and a finite (possibly empty) set of points
p1; : : : ; pN 2 � so that:

(1) On each compact set K �� �n fp1; : : : ; pN g ;

sup
K\†i

jAj � C.K/ <1I

(2) �N < 2 NC where � D �.˛/ > 0 is given by Theorem 5.3;
(3) The †i converge in �n fp1; : : : ; pN g to a smooth minimal lamination L

of �n fp1; : : : ; pN g. Moreover, the closure of L of L in � is a smooth
lamination of �.

Proof. We define a sequence of Radon measures, �i;˛, on � by setting

�i;˛.U / D 2
1

2.˛C1/

Z
†i\U

j OT†i˛ j
1

˛C1�g

so
�i;˛.�/ D jjT

†i
˛ jj†i ;˛ �

NC <1:

By the standard compactness theorem for Radon measures, up to passing to a
subsequence, the �i;˛ weak* converge to a Radon measure �. It follows with
Theorem 5.3 that if for p 2 � there is an r > 0 so that B2r.p/ � � and
�.B2r.p// <

1
2
�, then there is a constant C > 0 so that

sup
Br .p/\†i

jAj2 �
C 2

r2
<1:

By standard covering arguments and the pigeonhole principle one concludes that
there are at most N points p1; : : : ; pN 2 � with N� < 2 NC so that no such r exists.
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It follows that for any compact set K � �n fp1; : : : ; pN g we have the curvature
estimate:

sup
K\†i

jAj � C.K/ <1:

This verifies Items (1) and (2).
To prove Item (3), we note that the uniform curvature estimates of Item (2) and

standard compactness results – see Appendix B of [10] – imply that, up to passing
to a further subsequence, the †i converge in�n fp1; : : : ; pN g to a smooth minimal
lamination, L, of �n fp1; : : : ; pN g. We claim that near each pi the lamination has
quadratic curvature decay. To prove this we apply the Lebesgue decomposition
theorem to � and to L�, Lebesgue measure on R3 restricted to �. This implies

� D �reg C �sing :

where �reg is absolutely continuous with respect to L� while �sing ? L�. In fact,
the support of�sing is fp1; : : : ; png, because L is a lamination of�n fp1; : : : ; pN g.
Hence,

lim
�!0

�.B�.pi /n fpig/ D lim
�!0

�reg.B�.pi /n fpig/ D 0

and so there is a ı > 0 so that �.B2ı.pi /n fpig/ < �. Hence, for p 2 Bı.pi /n fpig
we may apply Theorem 5.3 to the points qj 2 †j with qj ! p and use the smooth
convergence to conclude that

jAj2.p/ �
4C 2

jp � pi j2
:

Theorem 1.2 of [19] then implies that each pi is a removable singularity of L which
concludes the proof of Item (3). □

Appendix A. Ricci Solitons

We remark on an interesting connection the entropy form makes between minimal
surfaces and two-dimensional Ricci solitons. Recall, a smooth one-parameter family
of metrics gt on a fixed manifold M is a Ricci flow provided

d
dt
gt D �2Ricgt :

This flow was introduced by Hamilton in [13]. When M is a surface this simplifies
to

d
dt
gt D �2Kgtgt :

We say .M; g/ is a Ricci soliton provided there is a vector field X on M and a
constant � so that

�2Ricg D LXg � 2�g:

For such a g the family gt D .1 � 2�t/��t g is a Ricci flow – here �t is the flow of
X . When � D 0 the soliton is steady (i.e. of unchanging geometry) while when
� > 0 it is shrinking and when � < 0 it is expanding. If X D rg f then we say
g is a gradient Ricci soliton and f is a soliton potential. For such gradient Ricci
solitons

LXg D 2 r
g 2f:
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So g is a gradient Ricci soliton provided

r
g 2f C Ricg ��g D 0:

If M is a surface this implies

r
g 2f CKgg � �g D 0

which is equivalent to

�gf D 2.� �Kg/ and g Vr
2f D 0:

Covariant differentiation of the last equation gives (in coordinates)

r
g

j r
g

k .@if / D
1

2

�
@k�gf

�
gij :

Using the identity rg j r
g

k .@if / � r
g

k r
g

j .@if / D R
l
ijk
@lf , where Rl

ijk
are

the components of the curvature tensor of g, we obtain�
1

2
@k�gf CK@kf

�
gij D

�
1

2
@j�gf CK@jf

�
gik :

Contracting with gij implies

0 D Kdf C
1

2
d�gf D Kdf � dK:

Hence near a point p where Kg ¤ 0 we have

df D d log jKg j

and so
r
g 2 log jKg j D r

g 2f D .� �Kg/g:

From this we see that

�g log jKg j D 2.� �Kg/ and Vr
2
g log jKg j D 0:

The converse is also true:

Proposition A.1. Let .M; g/ be a (possibly open) Riemmanian surface withKg ¤ 0.
It is a gradient Ricci soliton if and only if

Vr
2
g log jKg j D 0 and �g log jKg j D 2.� �Kg/

for some � 2 R. Moreover, if .M; g/ is a gradient Ricci soliton, then it has soliton
potential log jKg j. The sign of � depends on whether the soliton is expanding,
steady or shrinking.

Recall that if .M; g/ is a Riemannian surface with Kg < 0 and g satisfies the
Ricci condition (2.1), then Og D jKg j3=4g satisfies K Og > 0 and � Og logK Og D
�2K Og . Hence, a consequence of Theorem 4.1 and a straightforward computation
is:

Corollary A.2. The metric of Enneper’s surface genn corresponds to the cigar
soliton metric gcig under the map g ! jKg j3=4g. Furthermore, homotheties of
genn are the only minimal surface metrics which correspond to gradient Ricci
soliton metrics in this manner.
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