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Characterizing classical minimal surfaces via the
entropy differential

JACOB BERNSTEIN AND THOMAS METTLER

ABSTRACT. We introduce on any smooth oriented minimal surface in Euclidean
3-space a meromorphic quadratic differential, P , which we call the entropy
differential. This differential arises naturally in a number of different contexts.
Of particular interest is the realization of its real part as a conservation law
for a natural geometric functional – which is, essentially, the entropy of the
Gauss curvature. We characterize several classical surfaces – including Enneper’s
surface, the catenoid and the helicoid – in terms of P . As an application, we prove
a novel curvature estimate for embedded minimal surfaces with small entropy
differential and an associated compactness theorem.

1. Introduction

Let † � R3 be a smooth, oriented minimal surface. In this paper, we introduce a
meromorphic quadratic differential P on †, which we call the entropy differential.
We use P to characterize several classical surfaces – including Enneper’s surface,
the catenoid and the helicoid. In particular, subsets of Enneper’s surface are the
only minimal surfaces on which P vanishes – a fact which we use to prove a novel
curvature estimate for embedded minimal surfaces with small entropy differential
and an associated compactness result.

The differential P arises naturally in a number of different contexts. Of particular
interest is the realization of T D ReP , which we call the entropy form, as a
conservation law for the diffeomorphism invariant functional
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This functional, which is a type of entropy for the curvature, has been previously
considered by R. Hamilton in the context of the Ricci flow on surfaces [?]. In
particular, we show that if g is a minimal surface metric (i.e. the metric induced by
a smooth minimal immersion) for which Kg ¤ 0, then the metric Og D .�Kg/3=4g
is a critical point of E with respect to compactly supported conformal deformations.
The crucial fact used here is the observation – due to Ricci [?] – that such minimal
surface metrics satisfy the so-called Ricci condition:

�g log jKg j D 4Kg :

The differential P also arises as a certain geometric Schwarzian derivative of the
Gauss map – a point of view which has antecedents in [?, ?] – and which we will
study more thoroughly in a forthcoming paper [?].
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A key observation of the present paper is that, modulo rigid motions, a minimal
surface is determined, up to a three-parameter family, by its Hopf differentialQ and
its entropy differential P . This allows one to characterize several classical minimal
surfaces in terms of simple relationships between the Hopf and entropy differentials:

Theorem 4.1. Let † be a smooth oriented non-flat minimal surface in R3 with
entropy differential P . We have:

(1) If P � 0, then up to a rigid motion and homothety, † is contained in
Enneper’s surface;

(2) If � ¤ 0 and P � �Q, then, up to a rigid motion and homothety, † is
contained in a surface C 2 C . If † is properly embedded, then it is the
catenoid;

(3) If � ¤ 0 and P � i�Q, then, up to a rigid motion and homothety, † is
contained in a surface H 2 H . If † is properly embedded, then it is the
helicoid.

The families C and H are, respectively, the deformed catenoids and deformed
helicoids. These are one parameter families of surfaces containing, respectively, the
catenoid and the helicoid – their geometry is discussed thoroughly in ??.

A consequence of Item (1) of Theorem 4.1 are a family of novel curvature
estimates for embedded minimal surfaces. Namely, we introduce a certain family
of scale invariant quantities which measure the size of the entropy form and use
standard blow-up arguments to derive curvature bounds for embedded surfaces for
which these quantities are small. Specifically, for a constant ˛ > 0 and smooth
minimal surface † with entropy form T , we define:
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We justify this family by noting that, on the one hand they are scale invariant and,
on the other, the “endpoints” are very natural. Indeed,
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i.e., one endpoint is the total Gauss curvature, a well studied quantity in minimal
surface theory. While,
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i.e., the other endpoint is the L1 norm of the entropy form which is invariant under
the standard action of PSL.2;C/ on the Gauss map of †, see [?]. We will not deal
directly with this quantity due to the fact that the presence of umbilic points tends
to make it infinite.
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