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Geodesic rigidity of conformal connections
on surfaces

thomas mettler

Abstract. We show that a conformal connection on a closed oriented
surface Σ of negative Euler characteristic preserves precisely one con-
formal structure and is furthermore uniquely determined by its unpara-
metrised geodesics. As a corollary it follows that the unparametrised
geodesics of a Riemannian metric on Σ determine the metric up to con-
stant rescaling. It is also shown that every conformal connection on the
2-sphere lies in a complex 5-manifold of conformal connections, all of
which share the same unparametrised geodesics.

1. Introduction

A projective structure p on a surface Σ is an equivalence class of affine
torsion-free connections on Σ where two connections are declared to be
projectively equivalent if they share the same geodesics up to parametrisation.
A surface equipped with a projective structure will be called a projective
surface. In [12] it was shown that an oriented projective surface (Σ, p)
defines a complex surface Z together with a projection to Σ whose fibres
are holomorphically embedded disks. Moreover, a conformal connection in
the projective equivalence class corresponds to a section whose image is a
holomorphic curve in Z. Locally such sections always exist and hence every
affine torsion-free connection on a surface is locally projectively equivalent
to a conformal connection. The problem of characterising the affine torsion-
free connections on surfaces that are locally projectively equivalent to a
Levi-Civita connection was recently solved in [2].

Here we show that if a closed holomorphic curve D ⊂ Z is the image of
a section of Z → Σ, then its normal bundle N → D has degree twice the
Euler characteristic of Σ. This is achieved by observing that the projective
structure on Σ canonically equips the co-normal bundle ofD with a Hermitian
bundle metric whose Chern connection can be computed explicitly. Using
the fact that the normal bundle N → D has degree 2χ(Σ) and that the
bundle Z → Σ has a contractible fibre, we prove that on a closed surface
Σ with χ(Σ) < 0 there is at most one section of Z → Σ whose image is a
holomorphic curve. It follows that a conformal connection on Σ preserves
precisely one conformal structure and is furthermore uniquely determined by
its unparametrised geodesics. In particular, as a corollary one obtains that
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the unparametrised geodesics of a Riemannian metric on Σ determine the
metric up to constant rescaling, a result previously proved in [11].

In the case where Σ is the 2-sphere, it follows that the normal bundle
of a holomorphic curve D ≃ CP

1 ⊂ Z, arising as the image of a section
of Z → S2, is isomorphic to O(4). Consequently, Kodaira’s deformation
theorem can be applied to show that every conformal connection on S2 lies
in a complex 5-manifold of conformal connections, all of which share the
same unparametrised geodesics.
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2. Projective structures and conformal connections

In this section we assemble the essential facts about projective structures
on surfaces and conformal connections that will be used during the proof of
the main result. Here and throughout the article – unless stated otherwise
– all manifolds are assumed to be connected and smoothness, i.e. infinite
differentiability, is assumed. Also, we let Rn denote the space of column
vectors of height n with real entries and Rn the space of row vectors of
length n with real entries so that matrix multiplication Rn × Rn → R is
a non-degenerate pairing identifying Rn with the dual vector space of Rn.
Finally, we adhere to the convention of summing over repeated indices.

2.1. Projective structures

Recall that the space A(Σ) of affine torsion-free connections on a surface Σ
is an affine space modelled on the space of sections of the real vector bundle
V = S2(T ∗Σ)⊗ TΣ.1 We have a canonical trace mapping tr : Γ(V ) → Ω1(Σ)
as well as an inclusion

ι : Ω1(Σ) → Γ(V ), α 7→ α⊗ Id + Id⊗ α,

where we define

(α⊗ Id) (v)w = α(v)w and (Id⊗ α) (v)w = α(w)v,

for all v, w ∈ TΣ. Consequently, the bundle V decomposes as V = V0 ⊕ T ∗Σ
where V0 denotes the trace-free part of V . The projection Γ(V ) → Γ(V0) is

1As usual, by an affine torsion-free connection on Σ we mean a torsion-free connection
on TΣ.
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given by

φ 7→ φ0 = φ− 1
3 ι (trφ) .

Weyl [14] observed that two affine torsion-free connections ∇ and ∇′ on Σ
are projectively equivalent if and only if their difference is pure trace

(2.1) (∇−∇′)0 = 0.

We will denote the space of projective structures on Σ by P(Σ). From (2.1)
we see that P(Σ) is an affine space modelled on the space of smooth sections
of V0 ≃ S3(T ∗Σ)⊗ Λ2(TΣ).

Cartan [4] (see [8] for a modern exposition) associates to an oriented
projective surface (Σ, p) a Cartan geometry of type (SL(3,R), G), which
consists of a principal right G-bundle π : B → Σ together with a Cartan
connection θ ∈ Ω1(B, sl(3,R)). The group G ≃ R2 ⋊GL+(2,R) ⊂ SL(3,R)
consists of matrices of the form

b⋊ a =
(

(det a)−1 b
0 a

)
,

where a ∈ GL+(2,R) and bt ∈ R2. The Cartan connection θ is an sl(3,R)-
valued 1-form on B which is equivariant with respect to the G-right action,
maps every fundamental vector field Xv on B to its generator v ∈ g, and
restricts to be an isomorphism on each tangent space of B. Furthermore, the
Cartan geometry (π : B → Σ, θ) has the following properties:

(i) Write θ = (θµν )µ,ν=0..2. Let X be a vector field on B satisfying
θi0(X) = ci, θij(X) = 0 and θ0j (X) = 0 for real constants (c1, c2) ̸=
(0, 0), where i, j = 1, 2. Then every integral curve of X projects to Σ
to yield a geodesic of p and conversely every geodesic of p arises in
this way;

(ii) an orientation compatible volume form on Σ pulls-back to B to
become a positive multiple of θ10 ∧ θ20;

(iii) there exist real-valued functions W1,W2 on B such that

(2.2) dθ + θ ∧ θ =

 0 W1θ
1
0 ∧ θ20 W2θ

1
0 ∧ θ20

0 0 0
0 0 0

 .
The fibre of B at a point p ∈ Σ consists of the 2-jets of orientation preserving
local diffeomorphisms ϕ with source 0 ∈ R2 and target p, so that ϕ−1

maps the geodesics of p passing through p to curves in R2 having vanishing
curvature at 0. The structure group G consists of the 2-jets of orientation
preserving fractional-linear transformations with source and target 0 ∈ R2.
Explicitly, the identification between the matrix Lie group G and the Lie
group of such 2-jets is given by b⋊ a 7→ j20fa,b where

(2.3) fa,b : x 7→ (det a)a · x
1 + (det a)b · x
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and · denotes usual matrix multiplication. The group G acts on B from the
right by pre-composition, that is,

(2.4) j20ϕ · j20fa,b = j20(ϕ ◦ fa,b).

Remark 2.1. Cartan’s construction is unique in the following sense: If
(B′ → Σ, θ′) is another Cartan geometry of type (SL(3,R), G) satisfying the
properties (i),(ii),(iii), then there exists a G-bundle isomorphism ψ : B → B′

so that ψ∗θ′ = θ.

Example 2.2. The Cartan geometry (π : SL(3,R) → S2, θ), where θ denotes
the Maurer-Cartan form of SL(3,R) and

π : SL(3,R) → SL(3,R)/G ≃ S
2 =

(
R

3 \ {0}
)
/R+

the quotient projection, defines an orientation and projective structure p0
on the projective 2-sphere S2. The geodesics of p0 are the great circles
S1 ⊂ S2, that is, subspaces of the form E ∩ S2, where E ⊂ R3 is a linear
2-plane. The group SL(3,R) acts on S2 from the left via the natural left
action on R3 by matrix multiplication and this action preserves both the
orientation and projective structure p0 on S2. The unparametrised geodesics
of the Riemannian metric g on S2 obtained from the natural identification
S2 ≃ S2, where S2 ⊂ R3 denotes the unit sphere in Euclidean 3-space, are
the great circles. In particular, for every ψ ∈ SL(3,R), the geodesics of
the Riemannian metric ψ∗g on S2 are the great circles as well, hence the
space of Riemannian metrics on the 2-sphere having the great circles as
their geodesics contains – and is in fact equal to – the real 5-dimensional
homogeneous space SL(3,R)/SO(3).

Example 2.3. Here we show how to construct Cartan’s bundle from a given
affine torsion-free connection ∇ on an oriented surface Σ. The reader may
want to consult [8] for additional details of this construction. Let υ : F+ → Σ
denote the bundle of positively oriented coframes of Σ, that is, the fibre of
F+ at p ∈ Σ consists of the linear isomorphisms u : TpΣ → R2 which are
orientation preserving with respect to the given orientation on Σ and the
standard orientation on R2. The group GL+(2,R) acts transitively from the
right on each υ-fibre by the rule u ·a = Ra(u) = a−1 ◦u for all a ∈ GL+(2,R).
This right action makes F+ into a principal right GL+(2,R)-bundle over Σ.
Recall that there is a tautological R2-valued 1-form η = (ηi) on F+ defined
by

η(v) = u(υ′(v)), for v ∈ TuF
+.

The form η satisfies the equivariance property (Ra)∗η = a−1η for all a ∈
GL+(2,R).

Let now ζ = (ζij) ∈ Ω1(F+, gl(2,R)) be the connection form of an affine
torsion-free connection ∇ on Σ. We have the structure equations

dηi = −ζij ∧ ηj ,

dζij = −ζik ∧ ζ
k
j + 1

2R
i
jklη

k ∧ ηl
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for real-valued curvature functions Ri
jkl on F+. As usual, we decompose the

curvature functions Ri
jkl into irreducible pieces, thus writing2

Ri
jkl = Rjlδ

i
k −Rjkδ

i
l +Rεklδ

i
j

for unique real-valued functions Rij = Rji and R on F+. Contracting over
i, k we get

Rk
jkl = 2Rjl −Rjl +Rεjl = Rjl +Rεjl.

Consequently, denoting by Ric±(∇) the symmetric and anti-symmetric part
of the Ricci tensor of ∇, we obtain

υ∗
(
Ric+(∇)

)
= Rijη

i ⊗ ηj and υ∗
(
Ric−(∇)

)
= Rεijη

i ⊗ ηj .

In two dimensions, the (projective) Schouten tensor of ∇ is defined as
Sch(∇) = Ric+(∇)− 1

3Ric
−(∇), so that writing

υ∗ (Sch(∇)) = Sijη
i ⊗ ηj ,

we have

S = (Sij) =
(

R11 R12 − 1
3R

R12 + 1
3R R22

)
.

We now define a right G-action on F+ ×R2 by the rule

(2.5) (u, ξ) · (b⋊ a) =
(
det a−1a−1 ◦ u, ξadet a+ bdet a

)
,

for all b ⋊ a ∈ G. Here ξ denotes the projection onto the second factor of
F+ × R2. Let π : F+ × R2 → Σ denote the basepoint projection of the
first factor. The G-action (2.5) turns π : F ×R2 → Σ into a principal right
G-bundle over Σ. On F+ ×R2 we define an sl(3,R)-valued 1-form

(2.6) θ =
(

−1
3 tr ζ − ξη dξ − ξζ − Stη − ξηξ

η ζ − 1
3 I tr ζ + ηξ

)
.

Then (π : F+ × R2 → Σ, θ) is a Cartan geometry of type (SL(3,R), G)
satisfying the properties (i),(ii) and (iii) for the projective structure defined
by ∇. It follows from the uniqueness part of Cartan’s construction that
(π : F+ ×R2 → Σ, θ) is isomorphic to Cartan’s bundle.

Remark 2.4. Note that Theorem 2.3 shows that the quotient of Cartan’s
bundle by the normal subgroup R2⋊ {Id} ⊂ G is isomorphic to the principal
right GL+(2,R)-bundle of positively oriented coframes υ : F+ → Σ.

2.2. Conformal connections

Recall that an affine torsion-free connection∇ on Σ is called aWeyl connection
or conformal connection if ∇ preserves a conformal structure [g] on Σ. A
torsion-free connection ∇ is [g]-conformal if for some – and hence any –
Riemannian metric g defining [g] there exists a 1-form β ∈ Ω1(Σ) such that

(2.7) ∇g = 2β ⊗ g.

2We define εij = −εji with ε12 = 1.
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Conversely, given a pair (g, β) on Σ, it follows from Koszul’s identity that
there exists a unique affine torsion-free connection ∇ which satisfies (2.7),
namely
(2.8) (g,β)∇ = g∇+ g ⊗ β♯ − ι(β),
where g∇ denotes the Levi-Civita connection of g and β♯ the g-dual vector
field to β. For a smooth real-valued function u on Σ we have
(2.9) exp(2u)g∇ = g∇− g ⊗ g∇u+ ι(du),
and hence
(2.10) (exp(2u)g,β+du)∇ = (g,β)∇.
Fixing a Riemannian metric g defining [g] identifies the space of [g]-conformal
connections with the space of 1-forms on Σ. It follows that the space of
[g]-conformal connections is an affine space modelled on Ω1(Σ). A conformal
structure [g] together with a choice of a particular [g]-conformal connection ∇
is called aWeyl structure. We will denote the space of Weyl structures on Σ by
W(Σ). Furthermore, a Weyl structure ([g],∇) is called exact if ∇ is the Levi-
Civita connection of a Riemannian metric g defining [g]. From (2.9) we see
that the space of exact Weyl structures on Σ is in one-to-one correspondence
with the space of Riemannian metrics on Σ modulo constant rescaling.

Let now Σ be oriented (pass to the orientable double cover in case Σ is
not orientable) and fix a Riemannian metric g and a 1-form β on Σ. On the
bundle υ : F+ → Σ of positively oriented coframes of Σ there exist unique
real-valued functions gij = gji and bi such that

(2.11) υ∗g = gijη
i ⊗ ηj and υ∗β = biη

i.

The R2-valued function b = (bi) satisfies the equivariance property
(2.12) (Ra)∗b = ba.

The Levi-Civita connection form of g is the unique gl(2,R)-valued connection
1-form ϕ = (ϕi

j) satisfying

dηi = −ϕi
j ∧ ηj and dgij = gkjϕ

k
i + gikϕ

k
j .

The exterior derivative of ϕ can be expressed as
dϕi

j = −ϕi
k ∧ ϕ

k
j + gjkKη

i ∧ ηk,
where the real-valued function K is constant on the υ-fibres and hence
can be regarded as a function on Σ which is the Gauss-curvature of g.
Infinitesimally, (2.12) translates to the existence of real-valued functions bij
on F+ satisfying

dbi = bjϕ
j
i + bijη

j .

From (2.8) we see that the connection form ζ = (ζij) of the [g]-conformal
connection (g,β)∇ can be written as

ζij = ϕi
j +

(
bkg

kigjl − δijbl − δilbj
)
ηl,

where the functions gij = gji satisfy gikgkj = δij . It follows with the equivari-
ance property of η and (2.11) that the equations g11 ≡ g22 ≡ 1 and g12 ≡ 0
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define a reduction λ : F+
g → Σ of υ : F+ → Σ with structure group SO(2)

which consists of the positively oriented coframes that are also g-orthonormal.
On F+

g we obtain

0 = dg11 = 2(g11ϕ1
1 + g12ϕ

2
1) = 2ϕ1

1,

0 = dg22 = 2(g21ϕ1
2 + g22ϕ

2
2) = 2ϕ2

2,

0 = dg12 = g11ϕ
1
2 + g12ϕ

2
2 + g12ϕ

1
1 + g22ϕ

2
1 = ϕ1

2 + ϕ2
1.

Therefore, writing ϕ := ϕ2
1 we have the following structure equations on F+

g

dη1 = −η2 ∧ ϕ,
dη2 = η1 ∧ ϕ,
dϕ = −Kη1 ∧ η2,

dbi = bijη
j + εijb

jϕ.

Furthermore, the connection form ζ pulls-back to F+
g to become3

ζ =
(

−b1η1 − b2η
2 b1η

2 − b2η
1 − ϕ

−b1η2 + b2η
1 + ϕ −b1η1 − b2η

2

)
=
(

−β ⋆β − ϕ
ϕ− ⋆β −β

)
,

where ⋆ denotes the Hodge-star with respect to the orientation and metric g.
A simple calculation now shows that the components of the Schouten tensor
are

S =
(
K + b11 + b22 −1

3(b12 + b21)
1
3(b12 − b21) K + b11 + b22

)
.

Note that the diagonal entry of S is K−δβ where δ denotes the co-differential
with respect to the orientation and metric g.

If we now apply the formula (2.6) for the Cartan connection of the pro-
jective structure defined by (g,β)∇ – whilst setting ξ ≡ 0 – we obtain

(2.13) φ =

 2
3β (δβ −K)η1 + 1

3(⋆dβ)η
2 −1

3(⋆dβ)η
1 + (δβ −K)η2

η1 −1
3β ⋆β − ϕ

η2 ϕ− ⋆β −1
3β

 .
Denoting by (π : B → Σ, θ) the Cartan geometry associated to the projective
structure defined by (g,β)∇, it follows from the uniqueness part of Cartan’s
construction that there exists an SO(2)-bundle embedding ψ : F+

g → B so
that ψ∗θ = φ.

For the sake of completeness we also record

dφ+ φ ∧ φ =

 0 Ŵ1φ
1
0 ∧ φ20 Ŵ2φ

1
0 ∧ φ20

0 0 0
0 0 0

 ,
where

Ŵ1φ
1
0 + Ŵ2φ

2
0 = − ⋆ d(K − δβ) + 1

3d ⋆ dβ − 2(K − δβ) ⋆ β − 2
3β ⋆ dβ.

3In order to keep notation uncluttered we omit writing λ∗ for pull-backs by λ.
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3. Flexibility and rigidity of holomorphic curves

A conformal structure [g] on the oriented surface Σ is the same as a smooth
choice of a positively oriented orthonormal coframe for every point p ∈ Σ,
well defined up to rotation and scaling; in other words, a smooth section of
F+/CO(2) where CO(2) = R+ × SO(2) is the linear conformal group.

Assume Σ to be equipped with a projective structure p and let (π :
B → Σ, θ) denote its associated Cartan geometry. Recall that F+ is ob-
tained as the quotient of B by the normal subgroup R2 ⋊ {Id} ⊂ G, hence
the conformal structures on Σ are in one-to-one correspondence with the
sections of τ : B/

(
R2 ⋊ CO(2)

)
→ Σ, where τ denotes the base-point pro-

jection. By construction, the typical fibre of τ is the homogeneous space
GL+(2,R)/CO(2) which is diffeomorphic to the open unit disk in C.

In [5, 13] it was shown that p induces a complex structure J on the
space B/

(
R2 ⋊ CO(2)

)
, thus turning this quotient into a complex surface

Z. The complex structure on Z can be characterised in terms of the Cartan
connection θ on B. To this end we write the structure equations of θ in
complex form.

Lemma 3.1. Writing

ω1 = θ10 + iθ20,

ω2 = (θ11 − θ22) + i
(
θ12 + θ21

)
,

ξ = θ01 + iθ02,

ψ = −1
2
(
3θ00 + i(θ12 − θ21)

)
,

we have

(3.1)

dω1 = ω1 ∧ ψ + 1
2ω1 ∧ ω2,

dω2 = −ω1 ∧ ξ + ω2 ∧ ψ + ψ ∧ ω2,

dξ =Wω1 ∧ ω1 −
1
2ξ ∧ ω2 + ψ ∧ ξ,

dψ = −1
2ω1 ∧ ξ +

1
4ω2 ∧ ω2 + ξ ∧ ω1,

where W = 1
2(W2 − iW1) and α denotes complex conjugation of the complex-

valued form α.

Proof. The proof is a straightforward translation of the structure equa-
tions (2.2) into complex form. □

Using Theorem 3.1 we can prove:

Proposition 3.2. There exists a unique integrable almost complex structure
J on Z such that a complex-valued 1-form α on Z is a (1,0)-form for J if
and only if the pullback of α to B is a linear combination of ω1 and ω2.
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Proof. By definition, we have Z = B/H where H = R2 ⋊ CO(2) ⊂ G. The
Lie algebra h of H consists of matrices of the form −2h4 h1 h2

0 h4 h3
0 −h3 h4

 ,
where h1, . . . , h4 are real numbers. Therefore, since the Cartan connection
maps every fundamental vector field Xv on B to its generator v, the 1-forms
ω1, ω2 are semibasic for the projection to Z, that is, vanish on vector fields
that are tangent to the fibres of B → Z. Consequently, the pullback to B of
a 1-form on Z is a linear combination of ω1, ω2 and their complex conjugates.
We write the elements of H in the following form

z ⋊ reiφ =

 r−2 Re(z) Im(z)
0 r cosφ r sinφ
0 −r sinφ r cosφ

 ,
where z ∈ C and reiφ ∈ C∗. The equivariance of θ under the G-right action
gives

(Rb⋊a)∗ θ = (b⋊ a)−1θ(b⋊ a) = (−(det a)ba−1 ⋊ a−1)θ(b⋊ a)

which implies

(3.2) (Rz⋊reiφ)
∗ ω1 =

1
r3

eiφω1

and

(3.3) (Rz⋊reiφ)
∗ ω2 =

z

r
eiφω1 + e2iφω2,

thus showing that there exists a unique almost complex structure J on Z
such that a complex-valued 1-form α on Z is a (1,0)-form for J if and only if
the pullback of α to B is a linear combination of ω1 and ω2. The integrability
of J is now a consequence of the complex form of the structure equations
given in Theorem 3.1 and the Newlander-Nirenberg theorem. □

Using this characterisation we have [12, Theorem 3]:

Theorem 3.3. Let (Σ, p) be an oriented projective surface. A conformal
structure [g] on Σ is preserved by a conformal connection defining p if and
only if the image of [g] : Σ → Z is a holomorphic curve.

3.1. Chern-class of the co-normal bundle

Here we use the characterisation of the complex structure on Z in terms of
the Cartan connection θ to compute the degree of the normal bundle of a
holomorphic curve D ⊂ Z arising as the image of a section of Z → Σ.

Lemma 3.4. Let (Σ, p) be a closed oriented projective surface and [g] : Σ → Z
a section with holomorphic image. Then the normal bundle of the holomorphic
curve D = [g](Σ) ⊂ Z has degree 2χ(Σ).
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Proof. We will compute the degree of the co-normal bundle ofD = [g](Σ) ⊂ Z
by computing its first Chern-class. We let B′ ⊂ B denote the subbundle con-
sisting of those elements b ∈ B whose projection to Z lies in D. Consequently,
B′ → D is a principal right H-bundle.

The characterisation of the complex structure on Z given in Theorem 3.2
implies that the sections of the rank 2 vector bundle

T 1,0Z∗|D → D

correspond to functions λ = (λi) : B′ → C2 such that

(ω1 ω2) ·
(
λ1

λ2

)
= λ1ω1 + λ2ω2

is invariant under the H-right action. Using (3.2) and (3.3) we see that this
condition on λ is equivalent to the equivariance of λ with respect to the
right action of H on B′ and the right action of H on C2 induced by the
representation

χ : H → GL(2,C), z ⋊ reiφ 7→
(

1
r3
eiφ z

r e
iφ

0 e2iφ

)
.

Similarly, we see that the (1,0)-forms on D are in one-to-one correspondence
with the complex-valued functions on B′ that are equivariant with respect
to the right action of H on B′ and the right action of H on C induced by
the representation

ρ : H → GL(1,C), z ⋊ reiφ 7→ 1
r3

eiφ.

The representation ρ is a subrepresentation of χ, hence the quotient repres-
entation χ/ρ is well defined and the sections of the co-normal bundle of D
are therefore in one-to-one correspondence with the complex-valued functions
ν on B′ that satisfy the equivariance condition

ν(b · z ⋊ reiφ) = (χ/ρ)
(
(z ⋊ reiφ)−1

)
ν(b) = e−2iφν(b)

for all b ∈ B′ and z ⋊ reiφ ∈ H. Here we have used that the quotient repres-
entation χ/ρ is isomorphic to the complex one-dimensional representation of
H

z ⋊ reiφ 7→ e2iφ.
In particular, given two such complex-valued functions ν1, ν2 on B′, we may
define

⟨ν1, ν2⟩ = ν1ν2,

which equips the co-normal bundle N∗ → D with a Hermitian bundle metric
h.

We will next compute the Chern connection of h and express it in terms of
the Cartan connection θ. This can be done most easily by further reducing
the bundle B′ ⊂ B. Since D ⊂ Z is the image of a section of Z → Σ and
is a holomorphic curve, it follows from the characterisation of the complex
structure J on Z given in Theorem 3.2 that there exists a complex-valued
function f on B′ such that

ω2 = fω1.
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Using the formulae (3.2) and (3.3) again, it follows that the function f
satisfies

f(b · z ⋊ reiφ) = r2
(
reiφf(b) + z

)
for all b ∈ B′ and z ⋊ reiφ ∈ H. Consequently, the condition f ≡ 0 defines a
principal right CO(2)-subbundle B′′ → D on which ω2 vanishes identically.
The representation χ/ρ restricts to define a representation of the subgroup
CO(2) ⊂ H and therefore, the sections of the co-normal bundle of D are
in one-to-one correspondence with the complex-valued functions ν on B′′

satisfying the equivariance condition

(3.4) ν(b · reiφ) = e−2iφν(b)

for all b ∈ B′′ and reiφ in CO(2). Equation (3.4) implies that infinitesimally
ν must satisfy

dν = ν(1,0)ω1 + ν(0,1)ω1 + ν
(
ψ − ψ

)
for unique complex-valued functions ν(1,0) and ν(0,1) on B′′. A simple compu-
tation shows that the form ψ − ψ is invariant under the CO(2) right action,
therefore it follows that the map

∇p : Γ(D,N∗) → Ω1(D,N∗), ν 7→ dν − ν
(
ψ − ψ

)
defines a connection on the co-normal bundle of D ⊂ Z. By construction,
this connection preserves h. As a consequence of the characterisation of
the complex structure on Z, it follows that a section ν of the co-normal
bundle N∗ → D is holomorphic if and only if ν0,1 = 0. This shows that
∇0,1

p = ∂̄N∗ , that is, the connection ∇p must be the Chern-connection of h.
The Chern-connection of h has curvature

d
(
ψ − ψ

)
= 1

2
(
ω1 ∧ ξ − ω1 ∧ ξ

)
where we have used the structure equations (3.1) and that ω2 ≡ 0 on B′′.
Since we have a section [g] : Σ → Z whose image is a holomorphic curve,
we know from Theorem 3.3 that p is defined by a conformal connection.
Let g be any metric defining [g] and denote by F+

g → Σ the SO(2)-bundle
of positively oriented g-orthonormal coframes. By the uniqueness part of
Cartan’s bundle construction we must have an SO(2)-bundle embedding
ψ : F+

g → B′′ covering the identity on Σ ≃ D so that ψ∗θ = φ where
φ = (φij)i,j=0,1,2 is given in (2.13). Recall that ω2 vanishes identically on B′′

which is consistent with (2.13), since

ψ∗ω2 = (φ11 − φ22) + i
(
φ12 + φ21

)
= −1

3β −
(
−1
3β
)
+ i ((⋆β − ϕ) + (ϕ− ⋆β)) = 0.

Therefore, by using (2.13), we see that the curvature of ∇p is given by

d
(
ψ − ψ

)
= 2i (K − δβ) dµ.
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where dµ = η1 ∧ η2 denotes the area form of g. Concluding, we have shown
that the first Chern-class c1(N∗) ∈ H2(D,Z) of N∗ → D is given by

c1(N∗) =
[ 1
π
(δβ −K)dµ

]
=
[
−K
π
dµ
]
.

Hence the degree of N∗ → D is

deg(N∗) =
∫
D
c1(N∗) = −2χ(Σ),

by the Gauss-Bonnet theorem. It follows that the normal bundle N → D
has degree 2χ(Σ). □

3.2. Rigidity of holomorphic curves

We are now ready to prove the following rigidity result.

Proposition 3.5. Let (Σ, p) be a closed oriented projective surface satisfying
χ(Σ) < 0. Then there exists at most one section [g] : Σ → Z whose image is
a holomorphic curve.

Proof. Let [g] : Σ → Z be a section whose image D = [g](Σ) is a holomorphic
curve. Since D is an effective divisor, the divisor/line bundle correspondence
yields a holomorphic line bundle L→ Z and a holomorphic section σ : Z → L
so that σ vanishes precisely on D. Recall that the fibre of Z → Σ is the open
unit disk and hence contractible. It follows that the projection to Z → Σ
induces an isomorphism Z ≃ H2(Σ,Z) ≃ H2(Z,Z). In particular, every
smooth section of Z → Σ induces and isomorphism H2(Z,Z) ≃ H2(Σ,Z)
on the second integral cohomology groups and any two such isomorphisms
agree. Keeping this in mind we now suppose that [ĝ] : Σ → Z is another
section whose image is a holomorphic curve. Using the functoriality of the
first Chern class we compute the degree of L→ Z restricted to D′ = [ĝ](Σ)

deg (L|D′) =
∫
D′
c1(L) =

∫
Σ
[g]∗ (c1(L)) =

∫
D
c1(L) = deg (L|D)

where c1(L) ∈ H2(Z,Z) denotes the first Chern-class of the line bundle
L→ Z. Using the first adjunction formula

N(D) ≃ L|D
and Theorem 3.4 yields

deg (L|D′) = deg (L|D) = deg (N(D)) < 0.
Since L|D′ → D′ has negative degree, it follows that its only holomorphic
section is the zero section. Consequently, σ vanishes identically on D′. Since
σ vanishes precisely on D we obtain the desired uniqueness D = D′. □

Combining Theorem 3.3 and Theorem 3.5 we get:

Theorem 3.6. Let Σ be a closed oriented surface Σ with χ(Σ) < 0. Then
the map

W(Σ) → P(Σ), ([g],∇) 7→ p(∇),
which sends a Weyl structure to the projective equivalence class of its con-
formal connection, is injective.
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Proof. Let ([g],∇) and ([ĝ],∇′) be Weyl structures on Σ having projectively
equivalent conformal connections. Let p be the projective structure defined
by ∇ (or ∇′). By Theorem 3.3 both [g] : Σ → Z and [ĝ] : Σ → Z have
holomorphic image, with respect to the complex structure on Z induced by
p, and hence must agree by Theorem 3.5. Since ∇ and ∇′ are projectively
equivalent, it follows that we may write

∇+ ι(α) = ∇+ α⊗ Id + Id⊗ α = ∇′

for some 1-form α on Σ. Since ∇ and ∇′ are conformal connections for the
same conformal structure [g], there must exist 1-forms β and β̂ on Σ so that

g∇+ g ⊗ β♯ − ι(β − α) = g∇+ g ⊗ β̂♯ − ι(β̂).

Hence we have
0 = g ⊗

(
β♯ − β̂♯

)
+ ι(α+ β̂ − β).

Writing γ = α + β̂ − β as well as X = β♯ − β̂♯ and taking the trace gives
3 γ = β̂ − β = −X♭. We thus have

0 = g ⊗X − 1
3 ι(X

♭).

Contracting this last equation with the dual metric g# implies X = 0. It
follows that α vanishes too and hence ∇ = ∇′ as claimed. □

Since exact Weyl structures correspond to Riemannian metrics up to
constant rescaling, we immediately obtain [11]:

Corollary 3.7. A Riemannian metric g on a closed oriented surface Σ
satisfying χ(Σ) < 0 is uniquely determined – up to constant rescaling – by
its unparametrised geodesics.

Remark 3.8. The first (non-compact) examples of non-trivial pairs of pro-
jectively equivalent Riemannian metrics, that is, metrics sharing the same
unparametrised geodesics, go back to Beltrami [1].

Remark 3.9. Clearly, pairs of distinct flat tori (after pulling back the metrics
to T 2 = S1 × S1) yield pairs of Riemannian metrics on the 2-torus that
are (generically) not constant rescalings of each other, but have the same
Levi-Civita connection. This fact together with Theorem 2.2 shows that the
assumption χ(Σ) < 0 in Theorem 3.6 is optimal.

3.3. Conformal connections on the 2-sphere

As an immediate by-product of the proof of Theorem 3.6 we see that a
conformal connection on a closed oriented surface Σ with χ(Σ) < 0 preserves
precisely one conformal structure. By Theorem 3.9, this is false in general
on the 2-torus. It is therefore natural to ask if a conformal connection on
the 2-sphere can preserve more than one conformal structure. We will show
next that this is not the case. Let therefore (g, β) and (h, α) on S2 be such
that the associated conformal connections agree

(g,β)∇ = (h,α)∇ = ∇.
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Fix an orientation on S2 and let λ : F+
g → S2 denote the SO(2)-bundle

of positively oriented g-orthonormal coframes with coframing (η1, η2, ϕ) as
described in §Section 2.2. Write λ∗h = hijη

i ⊗ ηj for unique real-valued
functions hij = hji on F+

g and λ∗β = biη
i as well as λ∗α = aiη

i for unique
real-valued functions ai, bi on F+

g . Recall from Section 2.2 that on F+
g the

connection 1-form ζ = (ζij) of ∇ takes the form

(3.5) ζ =
(

−b1η1 − b2η
2 b1η

2 − b2η
1 − ϕ

−b1η2 + b2η
1 + ϕ −b1η1 − b2η

2

)
.

By assumption, we have
∇h = 2α⊗ h.

On F+
g this condition translates to

dhij = hkjζ
k
i + hikζ

k
j + 2akhijηk.

Hence using (3.5) we obtain

d(h11 − h22) = 2h11ζ11 − 2h12ζ12 + 2h21ζ21 − 2h22ζ22 + 2akηk(h11 − h22)

= 2
[
(ak − bk)(h11 − h22)ηk + 2h12ζ21

]
,

dh12 = h12ζ
1
1 + h22ζ

2
1 + h11ζ

1
2 + h12ζ

2
2 + 2h12akηk

= 2(ak − bk)h12ηk − (h11 − h22)ζ21 .

Writing
f = (h11 − h22)2 + 4(h12)2,

we get

(3.6)

df =4(h11 − h22)
[
(ak − bk)(h11 − h22)ηk + 2h12ζ21

]
+ 8h12·

·
[
2(ak − bk)h12ηk − (h11 − h22)ζ21

]
=4(h11 − h22)2(ak − bk)ηk + 16(h12)2(ak − bk)ηk

=4f(ak − bk)ηk.

In particular, the function f on F+
g is constant along the λ-fibres and hence

the pullback of a unique function on S2 which we will also denote by f . The
Ricci curvature of ∇ is

Ric(∇) = (Kg − δgβ)g − 2dβ = (Kh − δhα)h− 2dα.

It follows that the metrics g and h are conformal on the non-empty open
subset Σ′ ⊂ S2 where the symmetric part of the Ricci curvature is positive
definite. Since dα = dβ and H1(S2) = 0, we must have that α − β = du
for some real-valued function u on S2. Consequently, it follows from (2.10)
that after possibly conformally rescaling h we can assume α = β (and hence
ai = bi) without loss of generality. Therefore, (3.6) implies that f is constant.
By construction, the function f vanishes precisely at the points where h is
conformal to g. Since we already know that f vanishes on the open subset
Σ′ it must vanish on all of S2. We have thus proved:
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Proposition 3.10. A conformal connection on the 2-sphere preserves pre-
cisely one conformal structure.

Combining Theorem 3.4, Theorem 3.3 and Theorem 3.10 with Kodaira’s
deformation theorem [9], we obtain the following result about the deformation
space of a conformal connection on the 2-sphere S2.
Theorem 3.11. Every conformal connection on the 2-sphere lies in a complex
5-manifold of conformal connections, all of which share the same unparamet-
rised geodesics.
Remark 3.12. Recall that Kodaira’s theorem states that if Y ⊂ Z is an embed-
ded compact complex submanifold of some complex manifold Z and satisfies
H1(Y,O(N)) = 0, then Y belongs to a locally complete family {Yx |x ∈ X}
of compact complex submanifolds of Z, where X is a complex manifold.
Furthermore, there is a canonical isomorphism TxX ≃ H0(Yx,O(N)).
Proof of Theorem 3.11. Let ∇ be a conformal connection on the oriented 2-
sphere defining the projective structure p. Let [g] : S2 → Z be the conformal
structure that is preserved by ∇, then Theorem 3.3 implies that Y =
[g](S2) ⊂ Z is a holomorphic curve biholomorphic to CP1. By Theorem 3.5
the normal bundle N of Y ⊂ Z has degree 4 and hence we have (by standard
results)

dimH1(CP1,O(4)) = 0, and dimH0(CP1,O(4)) = 5.
Consequently, Kodaira’s theorem applies and Y belongs to a locally complete
family {Yx |x ∈ X} of holomorphic curves of Z, where X is a complex 5-
manifold. A holomorphic curve in the family X that is sufficiently close to Y
will again be the image of a section of Z → S2 and hence yields a conformal
structure [g′] on S2 that is preserved by a conformal connection ∇′ defining
p. Since by Theorem 3.10 a conformal connection on S2 preserves precisely
one conformal structure, the claim follows. □

Remark 3.13. In [12, Corollary 2] it was shown that the conformal con-
nections on S2 whose (unparametrised) geodesics are the great circles are in
one-to-one correspondence with the smooth quadrics in CP2 without real
points. The space of smooth quadrics in CP2 is the complex 5-dimensional
space PSL(3,C)/PSL(2,C), with the smooth quadrics without real points
being an open submanifold thereof. Thus, the space of smooth quadrics
without real points is complex five-dimensional, which is in agreement with
Theorem 3.11.
Remark 3.14. Inspired by the work of Hitchin [7] (treating the case n = 2)
and Bryant [3] (treating the case n = 3), it was shown in [6] that the
deformation space Mn+1 of a holomorphically embedded rational curve with
self-intersection number n ≥ 2 in a complex surface Z comes canonically
equipped with a holomorphic GL(2)-structure, which is a (holomorphically
varying) identification of every holomorphic tangent space of M with the
space of homogeneous polynomials of degree n in two complex variables.
Therefore, every conformal connection on the 2-sphere gives rise to a complex
5-manifold M carrying a holomorphic GL(2)-structure.
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Remark 3.15. It is an interesting problem to classify the pairs of Weyl
structures on the 2-torus having projectively equivalent conformal connections.
The Riemannian case was treated in [10].
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