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One-dimensional projective structures,
convex curves and the ovals of Benguria

and Loss

jacob bernstein and thomas mettler

Abstract. Benguria and Loss have conjectured that, amongst all smooth
closed curves in R2 of length 2π, the lowest possible eigenvalue of the
operator L = −∆+ κ2 is 1. They observed that this value was achieved
on a two-parameter family, O, of geometrically distinct ovals containing
the round circle and collapsing to a multiplicity-two line segment. We
characterize the curves in O as absolute minima of two related geometric
functionals. We also discuss a connection with projective differential
geometry and use it to explain the natural symmetries of all three
problems.

1. Introduction

In [1], Benguria and Loss conjectured that for any, σ, a smooth closed curve
in R2 of length 2π, the lowest eigenvalue, λσ, of the operator Lσ = −∆σ+κ2σ
satisfied λσ ≥ 1. That is, they conjectured that for all such σ and all
functions f ∈ H1(σ),

(1.1)
∫
σ
|∇σf |2 + κ2σf

2 ds ≥
∫
σ
f2 ds,

where ∇σf is the intrinsic gradient of f , κσ is the geodesic curvature and ds
is the length element. This conjecture was motivated by their observation
that it was equivalent to a certain one-dimensional Lieb-Thirring inequality
with conjectured sharp constant. They further observed that the above
inequality is saturated on a two-parameter family of strictly convex curves
which contains the round circle and degenerates into a multiplicity-two line
segment. The curves in this family look like ovals and so we call them the
ovals of Benguria and Loss and denote the family by O. Finally, they showed
that for closed curves λσ ≥ 1

2 .
Further work on the conjecture was carried out by Burchard and Thomas

in [3]. They showed that λσ is strictly minimized in a certain neighborhood of
O in the space of closed curves – verifying the conjecture in this neighborhood.
More globally, Linde [5] improved the lower bound to λσ ≥ 0.608 when σ is
a planar convex curves. In addition, he showed that λσ ≥ 1 when σ satisfied
a certain symmetry condition. Recently, Denzler [4] has shown that if the
conjecture is false, then the infimum of λσ over the space of closed curves is
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achieved by a closed strictly convex planar curve. Coupled with Linde’s work,
this implies that for any closed curve λσ ≥ 0.608. In a different direction,
the first author and Breiner in [2] connected the conjecture to a certain
convexity property for the length of curves in a minimal annulus.

In the present article, we consider the family O and observe that the
curves in this class are the unique minimizers of two natural geometric
functionals. To motivate these functionals, we first introduce an energy
functional modeled on (1.1). Specifically, for a smooth curve, σ, of length
L(σ) and function, f ∈ C∞(σ), set

(1.2) ES [σ, f ] =
∫
σ
|∇σf |2 + κ2σf

2 − (2π)2

L(σ)2 f
2 ds.

Clearly, the conjecture of Benguria and Loss is equivalent to the non-
negativity of this functional. For any strictly convex smooth curve, σ,
set

(1.3) EG[σ] =
∫
σ

|∇σκσ|2

4κ3σ
− (2π)2

L(σ)2
1
κσ

ds+ 2π,

and

(1.4) E∗
G[σ] =

∫
σ

|∇σκσ|2

4κ2σ
− κ2σ ds+ (2π)2

L(σ) .

Notice EG is scale invariant, while E∗
G scales inversely with length. We will

show that EG and E∗
G are dual to each other in a certain sense – justifying

the notation.
Our main result is that the functionals (1.3) and (1.4) are always non-

negative and are zero only for ovals.

Theorem 1.1. If σ is a smooth strictly convex closed curve in R2, then both
EG[σ] ≥ 0 and E∗

G[σ] ≥ 0 with equality if and only if σ ∈ O.

To the best of our knowledge both inequalities are new. Clearly,

EG[σ] = ES [σ, κ−1/2
σ ],

and so the non-negativity of (1.3) would follow from the non-negativity of
(1.2). Hence, Theorem 1.1 provides evidence for the conjecture of Benguria
and Loss.

We also discuss the natural symmetry of these functionals. To do so we
need appropriate domains for the functionals. To that end, we say a (possibly
open) smooth planar curve is degree-one if its unit tangent map is a degree
one map from S1 to S1 – for instance, any closed convex curve. A degree-one
curve is strictly convex if the unit tangent map is a diffeomorphism. We
show (see §3.3) that there are natural (left and right) actions of SL(2,R)
on D∞, the space of smooth, degree-one curves and on D∞

+ , the space of
smooth strictly convex degree-one curves, which preserve the functionals.

Theorem 1.2. There are actions of SL(2,R) on D∞ × C∞, the domain of
ES, and on D∞

+ the domain of EG and E∗
G so that for L ∈ SL(2,R)

ES [(σ, f) · L] = ES [σ, f ], EG[σ · L] = EG[σ], and E∗
G[L · σ] = E∗

G[σ].
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Furthermore, there is an involution ∗ : D∞
+ → D∞

+ so that

∗(L · σ) = ∗σ · L−1 and EG[∗σ] = L(σ)
2π E∗

G[σ].

We observe that O is precisely the orbit of the round circle under these
actions. Generically, the action does not preserve the condition of being a
closed curve. Indeed, the image of the set of closed curves under this action
is an open set in the space of curves and so is not well suited for the direct
method in the calculus of variations. Arguably, this is the source of the
difficulty in answering Benguria and Loss’s conjecture. Indeed, we prove
Theorem 1.1 in part by overcoming it.

2. Preliminaries

Denote by S1 =
{
x21 + x22 = 1

}
⊂ R2 the unit circle in R2. Unless otherwise

stated, we always assume that S1 inherits the standard orientation from R2

and consider dθ to be the associated volume form and ∂θ the dual vector
field. Abusing notation slightly, let θ : S1 → [0, 2π) be the compatible chart
with θ(e1) = 0. Let π : R→ S1 be the covering map so that π∗dθ = dx and
π(0) = e1 – here x is the usual coordinate on R. Denote by I : S1 → S1 the
involution given by I(p) = −p. Hence, θ(I(p)) = θ(p) + π mod 2π.

Definition 2.1. An immersion σ : [0, 2π] → R2 is a degree-one curve of
class Ck+1,α, if there is

• a degree-one map Tσ : S1 → S1 of class Ck,α, the unit tangent map
of σ,

• a point xσ ∈ R2, the base point of σ, and
• a value L(σ) > 0, the length of σ,

so that
σ(t) = xσ + L(σ)

2π

∫ t

0
Tσ(π(x)) dx.

The curve σ is strictly convex provided the unit tangent map Tσ has a Ck,α

inverse and is closed provided σ(0) = σ(2π).

A degree-one curve, σ, is uniquely determined by the data (Tσ,xσ, L(σ)).
Denote by Dk+1,α the set of degree-one curves of class Ck+1,α and by
D

k+1,α
+ ⊂ Dk+1,α the set of strictly convex degree-one curves of of class

Ck+1,α. The length element associated to σ is ds = L(σ)
2π dx = L(σ)

2π π∗dθ =
π∗d̃s. If σ ∈ D2, then the geodesic curvature, κσ, of σ satisfies κσ = π∗κ̃σ
where κ̃σ ∈ Ck−1,α(S1) satisfies∫

S1
κ̃σ d̃s = 2π.

Conversely, given such a κσ there is a degree-one curve with geodesic curvature
κσ. Abusing notation slightly, we will not distinguish between ds and d̃s
and between κσ and κ̃σ. Clearly, σ ∈ D2

+ if and only if κσ > 0.
The standard parameterization of S1 is given by the data (T0, e1, 2π) where

T0(p) = − sin(θ(p))e1 + cos(θ(p))e2.
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Let Diffk,α
+ (S1) denote the orientation preserving diffeomorphisms of S1 of

class Ck,α – that is bijective maps of class Ck,α with inverse of class Ck,α.
Endow this space with the usual Ck,α topology. For σ ∈ D

k+1,α
+ , we call the

map
φσ = T−1

0 ◦Tσ

the induced diffeomorphism of σ. Clearly, the induced diffeomorphism of the
standard parameterization of S1 is the identity map.

For f ∈ Ck(S1), let f ′ = ∂θf , f ′′ = (f ′)′ and likewise for higher order
derivatives. Observe that, for φ ∈ Diff1

+(S1), we have φ′ > 0 where φ′ ∈
C0(S1) satisfies φ∗dθ = φ′dθ. A simple computation shows that if σ ∈ D2

+,
then φ′σ = κσ

L(σ)
2π .

3. Symmetries of the functionals

Consider the group homomorphism Γ : SL(2,R) → Diff∞
+ (S1) given by

Γ(L) = x 7→ L · x
|L · x|

where x ∈ S1 and L ∈ SL(2,R). Denote the image of Γ by Möb(S1) which
we refer to as the Möbius group of S1. One computes that

T0 ◦ Γ(L) =
L ·T0
|L ·T0|

.

These are precisely the unit tangent maps of the ovals of [1]. That is,

O =
{
σ ∈ D∞

+ : φσ ∈ Möb(S1)
}
.

3.1. The Schwarzian derivative

For φ ∈ Diff3
+(S1) the Schwarzian derivative of φ is defined as

Sθ(φ) =
φ′′′

φ′
− 3

2

(
φ′′

φ′

)2
,

where primes denote derivatives with respect to θ. A fundamental feature of
the Schwarzian derivative is that it satisfies the following co-cycle property

(3.1) Sθ(φ ◦ ψ) = (Sθ(φ) ◦ ψ) · (ψ′)2 + Sθ(ψ),

where φ, ψ ∈ Diff3
+(S1). After some computation, one verifies that the

Schwarzian derivative gives the following intrinsic characterization of Möb(S1)

(3.2) φ ∈ Möb(S1) ⇐⇒ Sθ(φ) + 2(φ′)2 − 2 = 0.

The Schwarzian derivative arises most naturally in the context of projective
differential geometry. This perspective also gives a conceptual proof of (3.2).
For this proof as well as the necessary background the reader may consult
the Section B as well as the references cited there.
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3.2. Projective Symmetries

We now describe the natural symmetries of (1.2), (1.3) and (1.4). We also
introduce a notion of duality for strictly convex degree-one curves – this
duality will streamline some of the arguments. For σ ∈ Dk+1,α, define the
dual curve, σ∗ ∈ Dk+1,α to be the unique curve with

φσ∗ = φ−1
σ , xσ∗ = xσ and L(σ∗) = L(σ).

That is, σ∗ is the curve whose induced diffeomorphism is the inverse to the
induced diffeomorphism of σ. Clearly, (σ∗)∗ = σ. To proceed further, we
note that the functionals (1.3) and (1.4) can, by integrating by parts, be
made to naturally involve the Schwarzian derivative. To see this fix σ ∈ D4

+
with L(σ) = 2π. As κσ = φ′σ,

(3.3)

EG[σ] =
∫
S1

(φ′′σ)2

4(φ′σ)3
− 1
φ′σ

+ φ′σ dθ

=
∫
S1

(
φ′′σ

2(φ′σ)3
)′
φ′σ + 3(φ′′σ)2

4(φ′σ)3
− 1
φ′σ

+ φ′σ dθ

= 1
2

∫
S1

Sθ(φσ) + 2(φ′σ)2 − 2
φ′σ

dθ,

where the second equality follows by integrating by parts. Likewise,

(3.4) E∗
G[σ] = −1

2

∫
S1
Sθ(φσ) + 2(φ′σ)2 − 2 dθ.

An immediate consequence of this is the following useful fact,

Proposition 3.1. For σ ∈ D4
+, we have EG[σ] = L(σ)

2π E∗
G[σ∗].

Proof. By scaling we may assume that L(σ) = 2π. Write ψσ = φ−1
σ . The

co-cycle property for the Schwarzian derivative implies that

Sθ(ψσ) = −Sθ(φσ) ◦ φ
−1
σ

(φ′σ ◦ φ−1
σ )2

,

where we have used that
φ′σ = 1

ψ′
σ ◦ φσ

.

Hence, by (3.3) and (3.4)

EG[σ] =
1
2

∫
S1

Sθ(φσ) + 2(φ′σ)2 − 2
φ′σ

dθ

= −1
2

∫
S1
(Sθ(ψσ) ◦ φσ)φ′σ + 2(ψ′

σ ◦ φσ)2φ′σ − 2φ′σ dθ

= −1
2

∫
S1
Sθ(ψσ) + 2(ψ′

σ)2 − 2 dθ

= E∗
G[σ∗].

□

We now may define the desired actions. Consider first the right action of
Möb(S1) on Dk+1,α, σ ·ϕ = σ′ where σ′ ∈ Dk+1,α is the unique element with

Tσ′ = Tσ ◦ ϕ, xσ′ = xσ and L(σ′) = L(σ).
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Notice, that if σ ∈ D
k+1,α
+ is strictly convex, then so is σ′ and in this case

we have that φσ′ = φσ ◦ ϕ. With this in mind, we also consider a left action
of Möb(S1) on D

k+1,α
+ , ϕ · σ = σ′, where σ′ ∈ Dk+1,α is the unique element

with
φσ′ = ϕ ◦ φσ, xσ′ = xσ and L(σ′) = L(σ).

We observe that for σ ∈ Dk+1
+ and ϕ ∈ Möb(S1),

ϕ · σ∗ = (σ · ϕ−1)∗.

Finally, we define a right action of Möb(S1) on Ck,α(S1) by

f · ϕ =
(
ϕ′)−1/2

f ◦ ϕ.

If we use dθ to identify C∞(S1) with Ω−1/2(S1), then this is the natural
pull-back action on Ω−1/2(S1) – the space of weight −1/2 densities (see
Section B).

Proposition 3.2. For any ϕ ∈ Möb(S1), σ ∈ D∞ and f ∈ C∞(S1),

ES [σ, f ] = ES [σ · ϕ, f · ϕ].

Likewise, for any ϕ ∈ Möb(S1) and σ ∈ D∞
+ ,

EG[σ] = EG[σ · ϕ] and E∗
G[σ] = E∗

G[ϕ · σ].

Proof. By scaling, it suffices to take L(σ) = 2π so ds = dθ. Set

f ′ϕ = (ϕ′)1/2f ′ ◦ ϕ− 1
2

ϕ′′

(ϕ′)3/2
f ◦ ϕ.

We show the first symmetry by computing,

(f ′ϕ)2 = (f ′ ◦ ϕ)2ϕ′ − ϕ′′

ϕ′ (f
′ ◦ ϕ)(f ◦ ϕ) + 1

4
(ϕ′′)2

(ϕ′)3 (f ◦ ϕ)2

= (f ′ ◦ ϕ)2ϕ′ − 1
2
ϕ′′

(ϕ′)2∂θ (f ◦ ϕ)2 + 1
4
(ϕ′′)2

(ϕ′)2 f
2
ϕ

= (f ′ ◦ ϕ)2ϕ′ − ∂θ

(
ϕ′′(f ◦ ϕ)2

2(ϕ′)2

)
+
(

ϕ′′

2(ϕ′)2
)′

(f ◦ ϕ)2 + 1
4
(ϕ′′)2

(ϕ′)2 f
2
ϕ

= (f ′ ◦ ϕ)2ϕ′ − ∂θ

(
ϕ′′(f ◦ ϕ)2

2(ϕ′)2

)
+ 1

2Sθ(ϕ)f
2
ϕ

= (f ′ ◦ ϕ)2ϕ′ − ∂θ

(
ϕ′′(f ◦ ϕ)2

2(ϕ′)2

)
+
(
1− (ϕ′)2

)
f2ϕ

+ 1
2(Sθ(ϕ) + 2(ϕ′)2 − 2)f2ϕ

= (f ′ ◦ ϕ)2ϕ′ − ∂θ

(
ϕ′′(f ◦ ϕ)2

2(ϕ′)2

)
+
(
1− (ϕ′)2

)
f2ϕ.

The last equality used ϕ ∈ Möb(S1) and (3.2). Integrating by parts gives,∫
S1
(f ′ϕ)2 − f2ϕ dθ =

∫
S1
(f ′ ◦ ϕ)2ϕ′ − (f ◦ ϕ)2ϕ′ dθ.
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Hence, after a change of variables∫
S1
(f ′ϕ)2 − f2ϕ dθ =

∫
S1
(f ′)2 − f2 dθ.

Finally,
(κϕfϕ)2 = κϕ(ϕ(θ))2f ◦ ϕ2ϕ′

and so a change of variables gives,∫
S1
(κϕfϕ)2 dθ =

∫
S1
κ2f2 dθ.

That is, ES [σ, f ] = ES [σ · ϕ, f · ϕ].
The co-cycle property of the Schwarzian and (3.4) immediately implies

E∗
G[ϕ · σ] = −1

2

∫
S1
Sθ(ϕ ◦ φσ) + 2((ϕ ◦ φσ)′)2 − 2 dθ

= −1
2

∫
S1
Sθ(φσ)− 2(φ′σ)2(ϕ′ ◦ φσ)2 + 2(φ′σ)2 + 2(φ′σ)2(ϕ′ ◦ φσ)2

− 2 dθ
= E∗

G[σ]
Finally, using Theorem 3.1

EG[σ · ϕ] = E∗
G[(σ · ϕ)∗] = E∗

G[ϕ−1 · σ∗] = E∗
G[σ∗] = EG[σ].

□

Theorem 1.2 is an immediate consequence of Theorem 3.1 and Theorem 3.2
and the fact that Möb(S1) is isomorphic to SL(2,R).

As a final remark, we observe that we may extend the duality operator to
D∞

+ × C∞(S1) and define a natural dual functional to ES . Namely, set

(σ, f)∗ = (σ∗, f ◦ φ−1
σ ) and E∗

S [σ, f ] =
∫
σ

|∇σf |2
κσ

− κσf
2 + (2π)2

L(σ)2
f2

κσ
ds.

We then have,

Proposition 3.3. If σ ∈ D∞
+ and f ∈ C∞(S1), then

ES [(σ, f)∗] =
L(σ)
2π E∗

S [σ, f ].

Proof. By scaling, we may assume that L(σ) = 2π. Writing ψσ = φ−1
σ , we

compute

ES [(σ, f)∗] =
∫
S1
((f ◦ ψσ)′)2 + (ψ′

σ)2(f ◦ ψσ)2 − (f ◦ ψσ)2 dθ

=
∫
S1
(ψ′

σ)2(f ′ ◦ ψσ)2 + (ψ′
σ)2(f ◦ ψσ)2 −

(f ◦ ψσ)2

ψ′
σ

ψ′
σ dθ

=
∫
S1
(ψ′

σ ◦ ψ−1
σ )(f ′)2 + (ψ′

σ ◦ ψ−1
σ )f2 − f2

ψ′
σ ◦ ψ−1

σ

dθ

=
∫
S1

(f ′)2

φ′σ
+ f2

φ′σ
− φ′σf

2 dθ

= E∗
S [σ, f ].

□
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4. Deriving the geometric estimates

To prove Theorem 1.1 we will use the direct method in the calculus of
variations on an appropriate subclass of the class of degree-one convex curves.
This subclass is larger than the class of closed curves. We first note that the
conjecture of Benguria and Loss holds for symmetric curves.

Proposition 4.1. For σ ∈ D2, if the induced diffeomorphism satisfies
φσ ◦ I = I ◦ φσ, then ES [σ, f ] ≥ 0 with equality if and only if σ ∈ O and
f = κ

−1/2
σ is the lowest eigenfunction of Lσ.

Proof. By scaling we may assume L(σ) = 2π. The symmetry implies that
κσ ◦ I = κσ and Tσ ◦ I = −Tσ. Hence, ES [σ, f ] = ES [σ, f ◦ I] and so, the
variational characterization of the lowest eigenvalue implies that the lowest
eigenfunction f must satisfy f ◦ I = f . As observed in [1],

ES [σ, f ] =
∫
S1

|y′|2 − |y|2 dθ

where y = fTσ. Moreover, y(p) = (a cos θ(p) + b sin θ(p), c cos θ(p) +
d sin θ(p)) if and only if σ ∈ O. As y ◦ I = −y,∫

S1
y dθ = 0

and the proposition follows from the one-dimensional Poincaré inequality. □

Corollary 4.2. For σ ∈ D3
+, if the induced diffeomorphism satisfies φσ ◦ I =

I ◦ φσ, then EG[σ] ≥ 0 with equality if and only if σ ∈ O.

Proof. Take f = κ
−1/2
σ in (1.2) and use Theorem 4.1. □

Motivated by [5], we make the following definition which is a weakening
of the preceding symmetry condition.

Definition 4.3. A point p ∈ S1 is a balance point of φ ∈ Diff0
+ if φ(I(p)) =

I(φ(p)). Denote the number (possibly infinite) of balance points of φ by
nB(φ) ∈ N ∪ {∞}.

Clearly, if p is a balance point then so is I(p) and so nB(φ) is even or ∞.
Further, it follows from the intermediate value theorem that nB(φ) ≥ 2.

Our definition of balance point is a slight generalization of Linde’s [5]
notion of critical point for convex closed curves. Indeed, a critical point of
a closed convex curve is just a balance point of its induced diffeomorphism.
The key observation of Linde [5, Lemma 2.1] is that closed convex curves
have at least six critical points. We will only need to know that there are
at least four critical points and, so, for the sake of completeness, include an
adaptation of Linde’s argument to show this.

Lemma 4.4. If ψ ∈ Diff1
+(S1) satisfies∫

S1
ψ′ cos θ dθ =

∫
S1
ψ′ sin θ dθ = 0,

then nB(ψ) ≥ 4. Hence, if σ ∈ D2
+ is closed, then nB(φσ) ≥ 4.
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Proof. As
∫
S1 ψ

′ dθ = 2π and ψ′ is continuous, there is a point p0, so that
if γ± are the components of S1\ {p0, I(p0)}, then

∫
γ±
ψ′ dθ = π. That is, p0

and I(p0) are balance points. Expanding ψ′ as a Fourier series, rotating so
θ(p0) = 0 and abusing notation slightly, gives that

ψ = C + θ +
∞∑
n=2

(an sinnθ + bn cosnθ) = C + θ + f(θ) + g(θ)

where C is a constant, f are the remaining odd terms in the expansion
and g are the remaining even terms. By construction, ψ(0) + π = ψ(π),
f(θ+π) = −f(θ) and g(θ+π) = g(θ) and so f(0) = 0 = f(π) and all balance
points of ψ in γ+ correspond to zeros of f in (0, π). If f does not change
sign on (0, π), then either f ≡ 0 and ψ has an infinite number of balance
points, or

∫ π
0 f(θ) sin θ dθ ≠ 0. However, as f(θ + π) sin(θ + π) = f(θ) sin θ,

this would imply
∫ 2π
0 f(θ) sin θ dθ ≠ 0 which is impossible. Hence, f must

change sign and so f has at least one zero in (0, π) which verifies the first
claim.

To verify the second claim. We first scale so L(σ) = 2π. If σ is closed,
then

∫
S1 Tσ dθ = 0. That is,

∫
S1 T0 ◦ φσ dθ = 0. Changing variables, gives∫
S1
(φ−1

σ )′T0 dθ.

Hence, nB(φ−1
σ ) ≥ 4 and it is clear that nB(φσ) ≥ 4 as well. □

The spaces on which the functionals (1.3) and (1.4) have good lower
bounds seem to be spaces of curves whose induced diffeomorphisms have
non-trivial number of balance points. Motivated by this, set

BDiffk,α
+ (S1, N) =

{
φ ∈ Diffk,α

+ (S1) : nB(φ) ≥ N
}
.

Hence, BDiffk,α
+ (S1, 2) = Diffk,α

+ (S1) and Möb(S1) ⊂ BDiff∞
+ (S1, N) for all

N . Let BDiffk,α
+ (S1, N) be the closure of BDiffk,α

+ (S1, N) in Diffk,α
+ (S1),

˚BDiffk,α
+ (S1, N) be the interior and ∂BDiffk,α

+ (S1, N) be the topological
boundary. The function nB is not continuous on these spaces. For example,
the family φλ ∈ Diff∞

+ (S1) given by

(4.1) θ(φλ(p)) = 2 cot−1
(
λ cot

(1
2θ(p)

))
,

for λ > 0 has nB(φλ) = 2 for λ ̸= 1 and nB(φ1) = ∞ and φλ → φ1 in
Diff∞

+ (S1) as λ→ 1. Likewise, the family ψτ ∈ Diff1,1
+ (S1), for τ ∈ R given

by
(4.2)

θ(ψτ (p)) =

 cot−1 (τ + cot(θ(p)− π
2 )
)
+ π

2 θ(p) ∈
[
π
2 ,

3π
2

]
θ(p) θ(p) ∈

[
0, π2

)
∪
(
3π
2 , 2π

)
,

has nB(ψτ ) = 2 for τ ̸= 0 and nB(ψ0) = ∞. Moreover, setting

(4.3) ψλ
τ = φ−1

λ ◦ ψτ ◦ φλ ∈ Diff1,1
+ (S1)
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gives a family so that for λ > 1, nB(ψλ
τ ) = ∞ and ψλ

τ → ψτ in Diff1,α
+ (S1) as

λ→ 1 for any α ∈ [0, 1). Observe that ψτ is the extension by the identity of
the restriction of an element of Möb(S1) to one component of S1\ {e2,−e2}
and there are no other elements of Möb(S1) for which such an extension
exists as an element of Diff1

+(S1).
The elements of (4.1) show that Möb(S1) ⊂ ∂BDiff1

+(S1, 4), while the
elements of (4.2) show that ∂BDiff1

+(S1, 4) contains elements with nB = 2.
In order to proceed further, we must refine the notion of balance point. If φ ∈
Diff1

+(S1), then a balance point p of φ is stable if and only if φ′(p) ̸= φ′(I(p))
and is unstable if φ′(p) = φ′(I(p)). Denote the number of stable balance
points of φ by nSB(φ). For instance, the ψτ of (4.2) have nSB(ψτ ) = 0.

Lemma 4.5. If φ ∈ Diff1
+(S1), then for each N ∈ N there is a C1 neigh-

borhood, V = VN , of φ so that min {nSB(φ), N} ≤ nSB(ψ) for all ψ ∈ V .
Furthermore, if φ satisfies nB(φ) = nSB(φ) <∞, then nB is constant in a
C1 neighborhood of φ.

Proof. Let B be the set of balance points of φ and S ⊂ B be the set of
stable balance points. It follows from the inverse function theorem that for
each p ∈ S, there is an open interval, Ip, in S1 so that B ∩ Ip = {p}. It is
straightforward to show, after fixing smaller open intervals, I ′p, satisfying
p ⊂ I ′p and Ī ′p ⊂ Ip, that there are C1 neighborhoods, Vp, of φ in Diff1

+(S1)
so that all ψ ∈ Vp have only one stable balance point in I ′p and no unstable
balance points.

If nSB(φ) > N , then let SN ⊂ S be some choice of N distinct points
of S, otherwise, let SN = S. As SN is finite, VN = ∩p∈SNVp is a an
open C1 neighborhood of φ in Diff1

+(S1) so that for any ψ ∈ VN , there are
min {nSB(φ), N} stable balance points in U ′

N = ∪p∈SN I
′
p and no unstable

balance points. Hence, nSB(ψ) ≥ min {nSB(φ), N} which completes the
proof of the first claim. The second claim follows by taking N = nSB(φ) <∞.
As nB(φ) = nSB(φ), there are no balance points in S1\U ′

N and so small C0

perturbations of φ also have no balance points in S1\U ′
N . In other words, by

shrinking VN one can ensure that nB(ψ) = nSB(ψ) = nSB(φ) = nB(φ) for
all ψ ∈ VN . □

Lemma 4.6. If k ≥ 1 and φ ∈ ∂BDiffk,α
+ (S1, 4), then φ has at least one pair

of unstable balance points.

Proof. If φ ∈ ∂BDiffk,α
+ (S1, 4) for k ≥ 1, then φ ∈ ∂BDiff1

+(S1, 4). Hence, we
can restrict attention to the C1 setting. If nB(φ) = 2, then the two balance
points must be unstable as otherwise Theorem 4.5 would imply that any C1

perturbation of φ also has only two balance points – that is φ ̸∈ BDiff1
+(S1, 4).

If nB(φ) = ∞, then it must have some unstable balance points, as the set
balance points is closed while the set of stable balance points is discrete and
so is a proper subset. Finally, if 4 ≤ nB(φ) <∞, then Theorem 4.5 implies
at least two of them are unstable. Otherwise, any C1 perturbation of φ
would continue to have at least four balance points, i.e., φ is in the interior
of BDiff1

+(S1, 4). □
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We next introduce the appropriate energy space for E∗
G – we work with

this functional as it has nicer analytic properties. It will be convenient
to think of E∗

G as a functional on Diff2
+(S1) by considering E∗

G[φ] = E∗
G[σ]

where φ = φσ and L(σ) = 2π. To motivate our choice of energy space set
u = log φ′ ∈ C∞(S1). Notice, that u satisfies the non-linear constraint∫

S1
eu dθ = 2π.

A simple change of variables shows that the functional

E[u] =
∫
S1

1
4(u

′)2 − e2u dθ

satisfies E[u] + 2π = E∗
G[φ]. The Euler-Lagrange equation of E[u] with

respect to the constraint is a semi-linear ODE of the form

(4.4) 1
4u

′′ + e2u + βeu = 0

for some β. Define the following energy space for E

H1
2π(S1) =

{
u ∈ H1(S1) :

∫
S1

eu dθ = 2π
}
⊂ H1(S1).

The Sobolev embedding theorem implies H1(S1) ⊂ C1/2(S1). Hence, H1
2π(S1)

is a closed subset of H1(S1) with respect to the weak topology of H1(S1).
Let

HDiff+(S1) =
{
φ ∈ Diff1

+(S1) : log φ′ ∈ H1
2π(S1)

}
⊂ Diff1,1/2

+ (S1).

have a strong (resp. weak) topology determined by φi → φ when log φ′i →
log φ′ strongly in H1(S1) (resp. weakly in H1(S1)). Clearly, E∗

G extends to
HDiff+(S1). As Diff1,1

+ (S1) ⊂ HDiff+(S1), the family given by (4.2) satisfies
ψτ ∈ HDiff+(S1) and one computes that E∗

G[ψτ ] = 0.
We will need the following smoothing lemma:

Lemma 4.7. For φ ∈ HDiff+(S1), there exists a sequence φi ∈ Diff∞
+ (S1)

with φi → φ in the strong topology of HDiff+(S1). Furthermore, if φ satisfies
φ ◦ I = I ◦ φ, then the φi may be chosen so φi ◦ I = I ◦ φi.

Proof. Fix p0 ∈ S1, let νϵ(p, p0) be a family of C∞ mollifiers with νϵ(p, p0) ≥ 0,
supp(νϵ(·, p0)) ⊂ Bϵ(p0), νϵ(p, p0) = νϵ(p0, p), νϵ(I(p0), I(p)) = νϵ(p0, p) and∫
S1 νϵ(p, p0) dθ(p) = 1. That is, limϵ→0 νϵ(p, p0) = δp0(p) the Dirac delta
with mass at p0. Set

Pϵ =
∫
S1
νϵ(·, p)φ′(p) dθ(p) ∈ C∞(S1).

Hence,
∫
S1 Pϵ dθ = 2π and Pϵ ≥ minS1 φ′ > 0. It follows, that there are

φϵ ∈ Diff∞
+ (S1) so that φϵ(p0) = φ(p0) and φ′ϵ = Pϵ. As log φ′ ∈ H1(S1),

φ′ ∈ H1(S1) and so Pϵ → φ′ strongly in H1(S1). This convergence together
with the uniform lower bound on Pϵ and the Sobolev embedding theorem
implies that logPϵ converge strongly in H1(S1) to log φ′ – that is, φϵ → φ
strongly in HDiff+(S1).

Finally, we observe that if φ ◦ I = I ◦φ, then φ′ ◦ I = φ′ and so Pϵ ◦ I = Pϵ.
In particular, if φ ◦ I = I ◦ φ, then φϵ ◦ I = I ◦ φϵ. □
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Lemma 4.8. If φ ∈ HDiff+(S1) satisfies φ ◦ I = I ◦ φ, then E∗
G[φ] ≥ 0 with

equality if and only if φ ∈ Möb(S1).

Proof. By Theorem 4.7, there are a sequence of φi ∈ Diff∞
+ (S1), with φi ◦ I =

I ◦φi and φi → φ strongly in HDiff+(S1). In particular, E∗
G[φi] → E∗

G[φ]. Set
ψi = φ−1

i and note that ψi ◦ I = I ◦ ψi. Further, let σi ∈ D+
i have induced

diffeomorphism ψi. By (3.4), Theorem 3.1 and Theorem 4.2,

E∗
G[φi] = E∗

G[σ∗i ] = EG[σi] ≥ 0,

proving the desired inequality. If one has equality, then the inequality implies
that φ is critical with respect to variations preserving the symmetry. It
follows that φ is smooth and so φ ∈ Möb(S1) by Theorem 4.2. □

A symmetrization argument and Theorem 4.8 imply:

Proposition 4.9. If φ ∈ HDiff+(S1) ∩ ∂BDiff1
+(S1, 4), then

E∗
G[φ] ≥ 0

with equality if and only if φ = ψτ ◦ φ̂ where ψτ is of the form (4.2) for some
τ ∈ R and φ̂ ∈ Möb(S1).

Proof. Let φ ∈ HDiff+(S1)∩∂BDiff1
+(S1, 4). As φ ∈ Diff1, 12

+ (S1), Theorem 4.6
implies that φ has at least one unstable balance point p0. Let γ± be the two
components of S1\ {p0, I(p0)}. Up to relabeling, we may assume that

E∗
G[φ] ≥ 2

(∫
γ−

1
4(u

′)2 − e2u dθ + 2π
)

where u = log φ′. Now define

ũ(p) =
{

u(p) p ∈ γ̄−
u(I(p)) p ∈ γ+

Here, γ̄− is the closure of γ− in S1. Clearly, ũ is continuous,
∫
S1 eũ dθ = 2π

and
E∗
G[φ] ≥ E[ũ] + 2π.

Hence, there is a φ̃ ∈ Diff1,1
+ (S1) ⊂ HDiff+(S1) so that ũ = log φ̃′. By

construction, φ̃ ◦ I = I ◦ φ̃ and so by Theorem 4.8

E∗
G[φ] ≥ E∗

G[φ̃] ≥ 0,

with equality if and only if φ̃ ∈ Möb(S1).
In the case of equality for φ we could reflect either γ+ or γ−, hence the

preceding argument implies, φ|γ± = φ± for φ± ∈ Möb(S1) which satisfy
φ±(γ+) = γ+. By precomposing with a rotation, we may assume that
{p0, I(p0)} = {e2,−e2} and θ(γ+) =

(
π
2 ,

3π
2

)
. Taking φ̂ = φ− ∈ Möb(S1),

one has φ ◦ φ̂−1 ∈ Diff1
+(S1) and is the identity map on γ− and some element

of Möb(S1) on γ+. This implies that φ ◦ φ̂−1 = ψτ where ψτ is of the form
(4.2) for some τ ∈ R. That is, φ = ψτ ◦ φ̂. □

We next analyze certain ODEs generalizing (4.4).
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Proposition 4.10. Fix γ ≥ 2π. If u ∈ C∞(S1) satisfies the ODE

(4.5) 1
4u

′′ − αe2u + βeu = 0

and the constraints

(4.6)
∫
S1

eu dθ = 2π and
∫
S1

e2u dθ = γ,

then either γ = 2π, α = β and u ≡ 0 or γ > 2π and there is an n ∈ N so
that α = −n2 and β = − γ

2πn
2 and

u(p) = − log

 γ

2π +

√(
γ

2π

)2
− 1 cos(n(θ(p)− θ0))


for some θ0. In this case,

E[u] = −2πn
2

4 + (n2 − 4)
4 γ.

Hence, if n ≥ 2, then
E[u] ≥ −2π.

with equality if and only if γ = 2π or n = 2.

Proof. It is straightforward to see that (4.5) has the conservation law
1
4(u

′)2 − αe2u + 2βeu = η.

Integrating this we see that

E[u] + (1− α)γ + 4πβ = 2πη.

However, integrating (4.5) gives that

−αγ + 2πβ = 0

and hence
E[u] = 2πη − γ − 2πβ.

Now set U = e−u one has that
1
4U

′′ = −1
4e

−uu′′ + 1
4e

−u(u′)2 = −αeu + β + αeu − 2β + ηe−u = ηU − β

That is, U satisfies
U ′′ − 4ηU = −4β.

As U ∈ C∞(S1), either U = β
η , or 4η = −n2 for some n ∈ Z+ and

U = β

η
+ C1 cos

√
−4ηθ + C2 sin

√
−4ηθ

for some constants C1, C2. In the first case, the constraints force η = β and
so u = 0, α = β = η, γ = 2π and E = −2π.

In the second case, we first note that U > 0 and so
β

η
>
√
C2
1 + C2

2 .
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Using the calculus of residues, we compute that∫
S1

eu dθ =
∫
S1

1
U

dθ

=
∫
S1

1
β
η + C1

2 (zn + z−n) + C2
2i (zn − z−n)

dz
iz

= 2π√(
β
η

)2
− C2

1 − C2
2

.

Keeping in mind that U > 0, the first constraint is satisfied if and only if

β = η
√
1 + C2

1 + C2
2 .

Hence,

u = − log
(√

1 + C2
1 + C2

2 + C1 cos
√
−4ηθ + C2 sin

√
−4ηθ

)
.

Plugging this into (4.5), shows that α = η. Hence,

γ = 2πβ/α = 2π
√
1 + C2

2 + C2
2 .

We conclude that,

E[u] = 2πη − γ − ηγ = −2πn
2

4 + (14n
2 − 1)γ.

Hence, if n ≥ 2, then as γ ≥ 2π

E[u] ≥ −2πn
2

4 + 2π(n
2

4 − 1) ≥ −2π.

with equality if and only if n = 2. □

Remark 4.11. If n = 1, then as γ → ∞, E[u] → 0. If n = 2, then u = log φ′
for φ ∈ Möb(S1).

Combining Theorem 4.9 and Theorem 4.10 gives:

Proposition 4.12. If φ ∈ HDiff+(S1) ∩ BDiff1
+(S1, 4), then

E∗
G[φ] ≥ 0

with equality if and only if φ = ψτ ◦ φ̂ where ψτ is of the form (4.2) for some
τ ∈ R and φ̂ ∈ Möb(S1). If, in addition, φ ∈ Diff2

+(S1) or φ ∈ BDiff1
+(S1, 4),

then equality occurs if and only if φ ∈ Möb(S1).

Remark 4.13. This result is sharp in that the inequality fails for (4.1).

Proof. If inequality does not hold, then there is a φ0 ∈ HDiff+(S1) ∩
BDiff1

+(S1, 4) so that E∗
G[φ0] < 0. Let u0 = log φ′0 and set γ0 =

∫
S1(φ′)2 dθ =∫

S1 e2u0 dθ. The Cauchy-Schwarz inequality implies that γ0 ≥ 2π with
equality if and only if u0 ≡ 0. Now consider the minimization problem

(4.7) E(γ) = inf
{
E∗
G[φ] φ ∈ HDiff+(S1) ∩ BDiff1

+(S1, 4),
∫
S1
(φ′)2 dθ = γ

}
.

Clearly, our assumption ensures that E(γ0) ≤ E∗
G[φ0] < 0. Notice without

the constraint
∫
S1(φ′)2 dθ the symmetry of Theorem 1.2 would imply that E
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is not coercive for the H1-norm of u = log φ′. However, with the constraint
we are minimizing the Dirichlet energy of u and so the Rellich compactness
theorem gives a umin ∈ H1

2π(S1) satisfying

E(γ0) =
∫
S1

1
4(u

′
min)2 − e2umin dθ + 2π =

∫
S1

1
4(u

′
min)2 dθ − γ0 + 2π < 0.

and, hence, a φmin ∈ HDiff+(S1) ∩ BDiff1
+(S1, 4) so that log φ′min = umin.

However, Theorem 4.9 implies that φmin ∈ ˚BDiff1
+(S1, 4). This implies that

umin is critical with respect to arbitrary variations in H1(S1) which preserve
the constraints ∫

S1 eu dθ = 2π and
∫
S1 e2u dθ = γ0.

Hence, umin weakly satisfies the Euler-Lagrange equation
1
4u

′′
min − αe2umin + βeumin = 0.

As this is a semi-linear ODE and umin ∈ C1/2(S1) by Sobolev embedding,
umin ∈ C2+α(S1) and satisfies this equation classically. Hence, umin is smooth
by standard ODE theory. Notice, that if φλ is one of the elements of (4.1),
then

uλ = log φ′λ = − log
(1
2(λ+ λ−1) + 1

2(λ− λ−1) cos θ(p)
)
.

Applying, Theorem 4.10 to umin we see that, up to a rotation, if n = 1, then
φmin = φλ for some λ. As nB(φmin) ≥ 4, this is impossible. Hence, n ≥ 2
and so E[umin] ≥ 0 which contradicts E(γ0) < 0 and proves the inequality.

Equality cannot hold for φ ∈ ˚BDiff1
+(S1, 4). If it did, φ would be a critical

point for E∗
G with respect to arbitrary variations in HDiff+(S1). Applying

Theorem 4.10 to u = log φ′ shows this is impossible. Hence, equality is only
achieved on ∂BDiff1

+(S1, 4) and so the claim follows from Theorem 4.9 and
the observation that, for ψτ as in (4.2), ψτ ∈ Diff2

+(S1) or BDiff1
+(S1, 4) if

and only if τ = 0. □

We may now conclude the main geometric estimates.

Proof of Theorem 1.1. The natural scaling of the problem means that we may
apply a homothety to take L(σ) = 2π. As σ is a smooth closed strictly convex
curve, it is a smooth degree-one strictly convex curve. Let φσ ∈ Diff+(S1),
be the induced diffeomorphism and let ψσ = φ−1

σ . By Theorem 4.4, φσ, ψσ ∈
BDiff1

+(S1, 4). The claim now follows from Propositions Theorem 4.12 and
Theorem 3.1. □

Appendix A. On extending the conjecture of Benguria and
Loss

Benguria and Loss’s conjecture concerns closed curves. In light of the present
paper, specifically the symmetry of Theorem 1.2, it is tempting to think that
their conjecture can be extended to degree-one curves with more than two
balance points. However, this is not the case.
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Lemma A.1. For every N ∈ N, there is a σ ∈ D∞
+ so that φσ ∈ BDiff∞

+ (S1, N)
and ES [σ, f ] < 0 for some function f ∈ C∞(S1).

Proof. Consider στ to be the curve inD
2,1
+ which has στ (e1) = e1, L(στ ) = 2π

and induced diffeomorphism φστ = ψτ where ψτ is given by (4.2). Note, that
for τ ≠ 0, στ is not closed. One computes that for fτ = κ

−1/2
στ ∈ C0,1(S1) ⊂

H1(S1), that ES [στ , fτ ] = EG[στ ] = 0. However,

Lστ fτ = −f ′′τ + κ2στ
fτ = fτ + C(τ)δe2 − C(τ)δ−e2 ,

distributionally and the constant C(τ) ̸= 0 if and only if τ ≠ 0. Hence,
for τ ̸= 0, fτ is not an eigenfunction and so there must be a f̂τ ∈ C2(S1)
with ES [στ , f̂τ ] < 0. Consider the elements ψλ

τ ∈ Diff1,1
+ (S1) given by (4.3)

and pick σλτ ∈ D
2,1
+ so that σλτ (e1) = e1, L(σλτ ) = 2π and the induced

diffeomorphism is ψλ
τ . Clearly, σλτ → στ as λ→ 1 in the C2 topology. Hence,

ES [σλτ , f̂τ ] → ES [στ , f̂τ ] as λ → 1. Hence, for τ ̸= 0 and λ > 1 sufficiently
close to 1, we obtain a σ ∈ D∞

+ with nB(σ) = ∞ and ES [σ, f̂τ ] < 0 by
smoothing out σλτ as in Theorem 4.7. Smoothing out f̂τ gives f so that
ES [σ, f ] < 0. □

Appendix B. Projective structures

We review some basic concepts from projective differential geometry which
will motivate the definition of Möb(S1) made above as well as provide the
natural context for the symmetries of the functionals of (1.2), (1.3) and (1.4).
This is a vast subject with many different perspectives and we present only
a summarized version. We refer the interested reader to the excellent book
[6] by Ovsienko and Tabachnikov as well as their article [7] – these were our
main sources for this material.

B.1. One-Dimensional Projective Differential Geometry

LetM be a one-dimensional oriented manifold. We fix a square root (T ∗M)1/2
of the cotangent bundle of M so that we have an isomorphism of line bundles

(T ∗M)1/2 ⊗ (T ∗M)1/2 ≃ T ∗M.

Remark B.1. Note that on the circle there are two non-isomorphic choices of
such a root, the trivial line bundle and the Möbius strip. In what follows we
will work with the trivial root on the circle.

For an integer ℓ we denote by Ωℓ/2(M) the space of smooth densities of
weight ℓ/2 on M . That is, an element in Ωℓ/2(M) is a smooth section of the
ℓ-th tensorial power of (T ∗M)1/2. As usual, for ℓ < 0 we define(

(T ∗M)1/2
)⊗ℓ

=
(
(TM)1/2

)⊗(−ℓ)

where (TM)1/2 denotes the dual bundle of (T ∗M)1/2.
Note that an affine connection ∇ on TM ≃ (T ∗M)−1 induces a connection

on all tensorial powers of (T ∗M)1/2. By standard abuse of notation, we will
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denote these connections by ∇ as well. In particular, we have first order
differential operators

∇ : Ωℓ/2(M) → Ωℓ/2+1(M).

A real projective structure, P on M is a second-order elliptic differential
operator

P : Ω−1/2(M) → Ω3/2(M)
so that there is some affine connection ∇ on M and P ∈ Ω2(M) with

P = ∇2 + P.

One verifies that, given two real projective structures P1 and P2, P2−P1 ∈
Ω2(M) is a zero-order operator. Hence, the space of real projective structures
is an affine space with associated vector space Ω2(M). Given an orientation
preserving smooth diffeomorphism φ :M1 →M2 we define the push forward
and pull back of real projective structures Pi on Mi in an obvious fashion.
That is,

(φ∗P1) · θ = (φ−1)∗ (P1 · φ∗θ) and (φ∗P2) · θ = φ∗
(
P2 · (φ−1)∗θ

)
.

The Schwarzian derivative of φ relative to P1,P2 is

SP1,P2(φ) = φ∗P2 −P1 ∈ Ω2(M1).

The Schwarzian satisfies the following co-cycle condition

(B.1) SP1,P3(φ2 ◦ φ1) = φ∗1SP2,P3(φ2) + SP1,P2(φ1).

Given a φ ∈ Diff∞
+ (M) and a real projective structure P write SP(φ) =

SP,P(φ). An orientation preserving diffeomorphism φ is a Möbius transfor-
mation of P if and only if SP(φ) = 0. The co-cycle condition implies that
the set of such maps forms a subgroup, Möb(P), of Diff∞

+ (M).
Let RP1 be the one-dimensional real projective space – in other words the

space of unoriented lines through the origin in R2. Let (x1, x2) be the usual
linear coordinates on R2. If (x1, x2) ̸= 0, then we denote by [x1 : x2] the
point in RP1 corresponding to the line through the origin and (x1, x2). On
the chart U = {[x1, x2] : x2 ̸= 0} we have the affine coordinate τ = x1/x2 for
RP

1. Let τ∇ be the (unique) connection so that ∂τ is parallel. There is a
unique real projective structure P

RP
1 on RP1 so that P

RP
1 = τ∇2. This is

the standard real projective structure on RP1.
If φ ∈ Diff∞

+ (RP1), then one computes that

S
RP

1(φ) = SP
RP1

(φ) =
(
φ′′′

φ′
− 3

2

(
φ′′

φ′

)2)
dτ2

where here φ′ = ∂τ (τ ◦ φ) and likewise for the higher derivatives. This is the
classical form of the Schwarzian derivative introduced in §3. Write Möb(RP1)
for the Möbius group of P

RP
1 and observe these are the fractional linear

transformations. Indeed, if φ ∈ Möb(RP1), then there is a matrix

L =
(
a b
c d

)
∈ SL(2,R)
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so that
τ(φ(p)) = aτ(p) + b

cτ(p) + d
.

This corresponds to the natural action of SL(2,R) on the space of lines
through the origin. Let

γ : SL(2,R) → Diff∞
+ (RP1).

denote this group homomorphism. Notice that ker ρ = ±Id and so this map
induces an injective homomorphism

γ̃ : PSL(2,R) → Diff∞
+ (RP1)

whose image is Möb(RP1).
Consider the natural map T : S1 → RP

1 given by sending a point p to the
tangent line to S1 through p. Let θ∇ be the unique connection on S1 so that
∂θ is parallel and let PS1 = θ∇2. If φ ∈ Diff∞

+ (S1), then one computes that

SS1(φ) = SP
S1
(φ) =

(
φ′′′

φ′
− 3

2

(
φ′′

φ′

)2)
dθ2

where here φ′ has already been defined. Define Sθ(φ) so SS1(φ) = Sθ(φ)dθ2.
As T ◦ I = T , if φ ∈ Diff∞

+ (S1) satisfies φ ◦ I = I ◦ φ, then there is a
well-defined element T̃ (φ) ∈ Diff∞

+ (RP1) so that the following diagram is
commutative:

S1
φ−−−−→ S1yT yT

RP
1 T̃ (φ)−−−−→ RP

1

A straightforward computation shows that,

S
S1,RP1(T ) = SP

S1 ,PRP1
(T ) = 2dθ2.

Hence, for a φ ∈ Diff∞
+ (S1) which satisfies φ ◦ I = I ◦ φ the co-cycle relation

for the Schwarzian implies

0 = S
S1,RP1(T ◦ φ)− S

S1,RP1(T̃ (φ) ◦ T )
= 2φ∗dθ2 + SS1(φ)− T ∗S

RP
1(T̃ (φ)) + 2dθ2

= SS1(φ) + 2(φ′)2dθ2 + 2dθ2 − T ∗S
RP

1(T̃ (φ))

That is,
SS1(φ) + 2(φ′)2dθ2 − 2dθ2 = T ∗S

RP
1(T̃ (φ)).

One verifies from their definitions that T̃ (Möb(S1)) = Möb(RP1) and which
gives (3.2). Finally, we note the following commutative diagram

SL(2,R) Γ−−−−→ Mob(S1)yπ yT̃
PSL(2,R) γ̃−−−−→ Mob(RP1)

where π is the natural projection.
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Remark B.2. We have defined a real projective structure on M is terms of a
differential operator. Equivalently (and more commonly), a real projective
structure on M may be defined to be a maximal atlas mapping open sets in
M into RP1 such that the transition functions are restrictions of fractional
linear transformations. For the equivalency of the two definitions the reader
may consult [6].
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