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On Kähler metrisability of two-dimensional
complex projective structures

THOMAS METTLER

ABSTRACT. We derive necessary conditions for a complex projective structure
on a complex surface to arise via the Levi-Civita connection of a (pseudo-)Kähler
metric. Furthermore we show that the (pseudo-)Kähler metrics defined on some
domain in the projective plane which are compatible with the standard complex
projective structure are in one-to-one correspondence with the hermitian forms
on C3 whose rank is at least two. This is achieved by prolonging the relevant
finite-type first order linear differential system to closed form. Along the way we
derive the complex projective Weyl and Liouville curvature using the language of
Cartan geometries.

1. Introduction

Recall that an equivalence class of affine torsion-free connections on the tangent
bundle of a smooth manifold N is called a (real) projective structure [11, 38,
39]. Two connections r and r 0 are projectively equivalent if they share the same
unparametrised geodesics. This condition is equivalent to r and r 0 inducing the
same parallel transport on the projectivised tangent bundle PTN .

It is a natural task to (locally) characterise the projective structures arising via the
Levi-Civita connection of a (pseudo-)Riemannian metric. R. Liouville [25] made
the crucial observation that the Riemannian metrics on a surface whose Levi-Civita
connection belongs to a given projective class precisely correspond to nondegenerate
solutions of a certain projectively invariant finite-type linear system of partial
differential equations. In [3] Bryant, Eastwood and Dunajski used Liouville’s
observation to solve the two-dimensional version of the Riemannian metrisability
problem. In another direction it was shown in [29] that on a surface locally every
affine torsion-free connection is projectively equivalent to a conformal connection
(see also [28]). Local existence of a connection with skew-symmetric Ricci tensor
in a given projective class was investigated in [36] (see also [23] for a connection
to Veronese webs). Liouville’s result generalises to higher dimensions [30] and
the corresponding finite-type differential system was prolonged to closed form
in [14, 30]. Several necessary conditions for Riemann metrisability of a projective
structure in dimensions larger than two were given in [33]. See also [7, 16] for the
role of Einstein metrics in projective geometry.

Now let M be a complex manifold of complex dimension d > 1 with integrable
almost complex structure map J . Two affine torsion-free connections r and r 0

on TM which preserve J are called complex projectively equivalent if they share
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the same generalised geodesics (for the notion of a curved complex projective
structure on Riemann surfaces see [5]). A generalised geodesic is a smoothly
immersed curve 
 � M with the property that the 2-plane spanned by P
 and J P

is parallel along 
 . Complex projective geometry was introduced by Otsuki and
Tashiro [35, 37]. Background on the history of complex projective geometry and
its recently discovered connection to Hamiltonian 2-forms (see [1] and references
therein) may be found in [26].

In the complex setting it is natural to study the Kähler metrisability problem,
i.e. try to (locally) characterise the complex projective structures which arise via
the Levi-Civita connection of a (pseudo-)Kähler metric. Similar to the real case,
the Kähler metrics whose Levi-Civita connection belongs to a given complex
projective class precisely correspond to nondegenerate solutions of a certain complex
projectively invariant finite-type linear system of partial differential equations [12,
26, 31].

In this note we prolong the relevant differential system to closed form in the
surface case. In doing so we obtain necessary conditions for Kähler metrisability of
a complex projective structure Œr� on a complex surface and show in particular that
the generic complex projective structure is not Kähler metrisable. Furthermore we
show that the space of Kähler metrics compatible with a given complex projective
structure is algebraically constrained by the complex projective Weyl curvature
of Œr�. We also show that the (pseudo-)Kähler metrics defined on some domain
in CP2 which are compatible with the standard complex projective structure are
in one-to-one correspondence with the hermitian forms on C3 whose rank is at
least two. A result whose real counterpart is a well-known classical fact. This note
concerns itself with the complex 2-dimensional case, but there are obvious higher
dimensional generalisations that can be treated with the same techniques.

The reader should be aware that the results presented here can also be obtained
by using the elegant and powerful theory of Bernstein–Gelfand–Gelfand (BGG)
sequences developed by Čap, Slovák and Souček [10] (see also the article of
Calderbank and Diemer [6]). In particular, the prolongation computed here is an
example of a prolongation connection of a first BGG equation in parabolic geometry
and may be derived using the techniques developed in [18].

This note aims at providing an intermediate analysis between the abstract BGG
machinery and pure local coordinate computations. This is achieved by carrying out
the computations on the parabolic Cartan geometry of a complex projective surface.
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2. Complex projective surfaces

2.1. Definitions

Let M be a complex 2-manifold with integrable almost complex structure map
J and r an affine torsion-free connection on TM . We call r complex-linear if
rJ D 0. A generalised geodesic for r is a smoothly immersed curve 
 �M with
the property that the 2-plane spanned by P
 and J P
 is parallel along 
 , i.e. 
 satisfies
the reparametrisation invariant condition

(2.1) r P
 P
 ^ P
 ^ J P
 D 0:

We call two complex linear torsion-free connections r and r 0 on M complex pro-
jectively equivalent, if they have the same generalised geodesics. An equivalence
class of complex projectively equivalent connections is called a complex projective
structure and will be denoted by Œr�. A complex 2-manifold equipped with a
complex projective structure will be called a complex projective surface.

Remark 2.1. What we here call a complex projective structure was originally
called a holomorphic projective structure by Tashiro [37] and others. Once it was
realised that in general complex projective structures are not holomorphic in any
reasonable way, the name h-projective structure was used – and is still so – see
for instance [15, 21, 26]. Furthermore, what we here call generalised geodesics
are called h-planar curves in the literature using the name h-projective. One might
argue that the notion of a complex projective structure can be confused with well-
established notions in algebraic geometry. For this reason complex projective is
sometimes also abbreviated to c-projective (see for instance [2]).

Extending r to the complexified tangent bundle TCM ! M , it follows from
the complex linearity of r that for every local holomorphic coordinate system
z D .zi / W U ! C2 on M there exist unique complex-valued functions � i

jk
on U ,

so that
r@

zj
@zk D � ijk@zi :

We call the functions � i
jk

the complex Christoffel symbols ofr. Tashiro showed [37]
that two torsion-free complex linear connections r and r 0 on M are complex pro-
jectively equivalent if and only if there exists a .1;0/-form ˇ 2 �1;0.M;R/ so
that

(2.2) r
0
ZW � rZW D ˇ.Z/W C ˇ.W /Z

for all .1;0/ vector fields Z;W 2 �.T 1;0M/. In analogy to the real case one can
use (2.2) to show that r and r 0 are complex projectively equivalent if and only if
they induce the same parallel transport on the complex projectivised tangent bundle
PT 1;0M .

Writing � i
jk

and O� i
jk

for the complex Christoffel symbols of r and r 0 with
respect to some holomorphic coordinates z D .zi / and ˇ D ˇidzi , equation (2.2)
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translates to

(2.3) O� ijk D �
i
jk C ı

i
jˇk C ı

i
kˇj :

Note that formally equation (2.3) is identical to the equation relating two real
projectively equivalent connections on a real manifold. In particular, similarly to
the real case (see [11, 38]), the functions

(2.4) …ijk D �
i
jk �

1

3

�
� llj ı

i
k C �

l
lkı

i
j

�
are complex projectively invariant in the sense that they only depend on the coordin-
ates z. Moreover locally Œr� can be recovered from the functions …i

jk
and two

torsion-free complex linear connections are complex projectively equivalent if and
only if they give rise to the same functions …i

jk
in every holomorphic coordinate

system.
A complex projective structure Œr� is called holomorphic if the functions …i

jk

are holomorphic in every holomorphic coordinate system. Gunning [17] obtained
relations on characteristic classes of complex manifolds carrying holomorphic
projective structures. The condition on a manifold to carry a holomorphic projective
structure is particularly restrictive in the case of compact complex surfaces. See
also the beautiful twistorial interpretation of holomorphic projective surfaces by
Hitchin [19] and Theorem 2.8.

2.2. Cartan geometry

A complex projective structure admits a description in terms of a normal Cartan
geometry modelled on complex projective space CPn, following the work of
Ochiai [34]: see [20] and [40]. The reader unfamiliar with Cartan geometries
may consult [9] for a modern introduction. We will restrict to the construction in
the complex two-dimensional case.

Let PSL.3;C/ act on CP2 from the left in the obvious way and let P denote the
stabiliser subgroup of the element Œ1; 0; 0�t 2 CP2. We have:

Theorem 2.2. Suppose .M; J; Œr�/ is a complex projective surface. Then there
exists (up to isomorphism) a unique real Cartan geometry .� W B ! M; �/

of type .PSL.3;C/; P / such that for every local holomorphic coordinate system
z D .zi / W U ! C2, there exists a unique section �z W U ! B satisfying

(2.5) .�z/
�� D

0@ 0 �01 �02
�10 �11 �12
�20 �21 �22

1A
where

�i0 D dzi ; and �ij D …
i
jkdzk; and �0i D …ikdzk;

with

…ij D …
k
il…

l
jk �

@…kij

@zk

and…i
jk

denote the complex projective invariants with respect to zi defined in (2.4).
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Remark 2.3. Suppose ' W .M; J; Œr�/ ! .M 0; J 0; Œr�0/ is a biholomorphism
between complex projective surfaces identifying the complex projective structures,
then there exists a diffeomorphism O' W B ! B 0 which is a P -bundle map covering
' and which satisfies O'�� 0 D � . Conversely, every diffeomorphism ˆ W B ! B 0

that is a P -bundle map and satisfies ˆ�� 0 D � is of the form ˆ D O' for a unique
biholomorphism ' WM !M 0 identifying the complex projective structures.

Example 2.4. Let B D PSL.3;C/ and let � denote its Maurer-Cartan form. Setting
M D B=P ' CP2 and � W PSL.3;C/! CP2 the natural quotient projection, one
obtains a complex projective structure on CP2 whose generalised geodesics are the
smoothly immersed curves 
 � CP1 where CP1 � CP2 is any linearly embedded
projective line. This is precisely the complex projective structure associated to the
Levi-Civita connection of the Fubini-Study metric on CP2. This example satisfies
d� C � ^ � D 0 and is hence called flat.

Let .� W B ! M; �/ be the Cartan geometry of a complex projective structure
.J; Œr�/ on a simply-connected surface M whose Cartan connection satisfies d� C
� ^ � D 0. Then there exists a local diffeomorphism ˆ W B ! PSL.3;C/
pulling back the Maurer-Cartan form of PSL.3;C/ to � and consequently, a local
biholomorphism ' WM ! CP2 identifying the projective structure on M with the
standard flat structure on CP2.

2.3. Bianchi-identities

Theorem 2.2 implies that the curvature form ‚ D d� C � ^ � satisfies

(2.6) ‚ D d� C � ^ � D

0@ 0 ‚01 ‚02
0 ‚11 ‚12
0 ‚21 ‚22

1A
with

‚0i D Li�
1
0 ^ �

2
0 CKil N|�

l
0 ^ �

|
0 ; ‚ik D W

i
kl N|�

l
0 ^ �

|
0

for unique complex-valued functions Li ; Kil N| , andW i
kl N|

on B satisfyingW l
li N|
D 0.

Note that by construction, with respect to local holomorphic coordinates z D .zi /,
we obtain

(2.7) .�z/
�W i

kl N| D �
@…i

kl

@ Nzj
:

Differentiation of the structure equations (2.6) gives

0 D d2� i0 D W
i
lk N|�

l
0 ^ �

k
0 ^ �

|
0 ; and 0 D d2�00 D Kik N|�

i
0 ^ �

k
0 ^ �

|
0

which yields the algebraic Bianchi-identities

W i
lk N| D W

i
kl N| ; and Kik N| D Kki N| :

2.3.1. Complex projective Weyl curvature

The identities d2� i
k
D 0 yield

�ikl N| ^ �
l
0 ^ �

|
0 D 0
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with

�ikl N| D dW i
kl N|CW

i
kl N|

�
�00 C �

0
0

�
CKkl N|�

i
0�W

i
ls N|�

s
k�W

i
ks N|�

s
l CW

s
kl N|�

i
s�W

i
kl Ns�

s
l

which implies that there exist complex-valued functions W i
kl N| Ns

and W i
kl N|s

on B
satisfying

W i
kl N| Ns D W

i
lk N| Ns D W

i
kl Ns N| ; W k

kl N| Ns D W
k
kl N|s D 0; W i

kl N|s D W
i
lk N|s

such that

(2.8) dW i
kl N| D

�
W i
kl N|s C ı

i
kKsl N| C ı

i
lKsk N| � 3ı

i
sKkl N|

�
�s0 CW

i
kl N| Ns�

s
0 C '

i
kl N|

where

(2.9) 'ikl N| D �W
i
kl N|

�
�00 C �

0
0

�
CW i

ls N|�
s
k CW

i
ks N|�

s
l �W

s
kl N|�

i
s CW

i
kl Ns�

s
j :

Let End0.TM; J / denote the bundle whose fibre at p 2 M consists of the J -
linear endomorphisms of TpM which are complex-traceless. It follows with the
structure equations (2.6),(2.8),(2.9) and straightforward computations, that there
exists a unique .1;1/-form W on M with values in End0.TM; J / for which

W

�
@

@zl
;
@

@z|

�
@

@zk
D .�z/

�W i
kl N|

@

@zi
D �

@…i
kl

@ Nzj
@

@zi

in every local holomorphic coordinate system z D .zi / on M . Here, as usual, we
extend tensor fields on M complex multilinearly to the complexified tangent bundle
of M . The bundle-valued 2-form W is called the complex projective Weyl curvature
of Œr�. We obtain:

Proposition 2.5. A complex projective structure Œr� on a complex surface .M; J /
is holomorphic if and only if the complex projective Weyl tensor of Œr� vanishes.

2.3.2. Complex projective Liouville curvature

From d2�0i ^ �
1
0 ^ �

2
0 D 0 one sees after a short computation that

(2.10) dLi D �4Li�00 C Lj �
j
i C Lij �

j
0 C Li N|�

|
0

for unique complex-valued functions Li N| ; Lij on B . Using this last equation it is
easy to check that the �-semibasic quantity

(2.11) .L1�
1
0 C L2�

2
0 /˝

�
�10 ˝ �

2
0

�
is invariant under the P right action and thus the �-pullback of a tensor field �
on M which is called the complex projective Liouville curvature (see the note of
R. Liouville [24] for the construction of � in the real case).

Remark 2.6. In the case of real projective structures on surfaces, the projective
Weyl curvature vanishes identically. Furthermore, note that contrary to the complex
projective Liouville curvature, the complex projective Weyl tensor exists as well in
higher dimensions, but also contains .2;0/ parts (see [37] for details).

The differential Bianchi-identity (2.8) implies that if the functions W i
kl N|

vanish
identically, then the functions Kik N| must vanish identically as well. We have thus
shown:
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Proposition 2.7. A complex projective structure Œr� on a complex surface .M; J /
is flat if and only the complex projective Liouville and Weyl curvature vanish.

Remark 2.8. In [22] Kobayashi and Ochiai classified compact complex surfaces
carrying flat complex projective structures. More recently Dumitrescu [13] showed
among other things that a holomorphic projective structure on a compact complex
surface must be flat (see also the results by McKay about holomorphic Cartan
geometries [27]).

2.3.3. Further identities

We also obtain

0 D d2�0i D �ik N| ^ �
|
0 ^ �

k
0

with

�ik N| D� dKik N| C
1

2
"skLi N|�

s
0 �Kik N|

�
2�00 C �

0
0

�
CKsk N|�

s
i CKsi N|�

s
k�

�W s
ik N|�

0
s CKik Ns�

s
j :

It follows that there are complex-valued functions Kik N|l and Kkl N{ N| on B satisfying

Kik N|l D Kki N|l ; and Kkl N{ N| D KlkN{ N| D Kkl N| N{

such that

(2.12) dKik N| D
�
Kik N|s C

1

4

�
"skLi N| C "siLk N|

��
�s0 CKik N| Ns�

s
0 C 'ik N|

where

'ik N| D �Kik N|

�
2�00 C �

0
0

�
CKsk N|�

s
i CKsi N|�

s
k �W

s
ik N|�

0
s CKik Ns�

s
j :

2.4. Complex and generalised geodesics

It is worth explaining how the generalised geodesics of Œr� appear in the Cartan
geometry .� W B ! M; �/. To this end let G � P � PSL.3;C/ denote the
quotient group of the group of upper triangular matrices of unit determinant modulo
its center. The quotient B=G is the total space of a fibre bundle over M whose
fibre P=G is diffeomorphic to CP1. In fact, B=G may be identified with the total
space of the the complex projectivised tangent bundle � W P .T 1;0M/ ! M of
.M; J /. Writing � D .� ij /i;jD0::2, Theorem 2.2 implies that the real codimension
4-subbundle of TB defined by �20 D �

2
1 D 0 descends to a real rank 2 subbundle

E � TP .T 1;0M/. The integral manifolds ofE can most conveniently be identified
in local coordinates. Let z D .z1; z2/ W U ! C2 be a local holomorphic coordinate
system onM and write � for the pullback of � with the unique section �z associated
to z in Theorem 2.2. We obtain a local trivialisation of Cartan’s bundle

' W U � P ! ��1.U /

so that for .z; p/ 2 U � P we have

(2.13) .'��/.z;p/ D .!P /p C Ad.p�1/ ı �z



8 T. METTLER

where !P denotes the Maurer-Cartan form of P and Ad the adjoint representation
of PSL.3;C/. Consider the Lie group QP � SL.3;C/ whose elements are of the
form

(2.14)
�

det a�1 b

0 a

�
for a 2 GL.2;C/ and bt 2 C2. By construction, the elements of P are equivalence
classes of elements in QP where two elements are equivalent if they differ by scalar
multiplication with a complex cube root of 1. The canonical projection QP ! P will
be denoted by �. Note that a piece N of an integral manifold of E that is contained
in ��1.U / is covered by a map

.z1; z2; p/ W N ! U � QP

where p W N ! QP may be taken to be of the form

p D

0@ 1
.a1/2C.a2/2

0 0

0 a1 �a2
0 a2 a1

1A
for smooth complex-valued functions ai W N ! C satisfying .a1/2 C .a2/2 ¤ 0.

We first consider the case where N is one-dimensional. We fix a local coordinate
t on N . It follows with (2.13) and straightforward calculations that�

' ı .z1; z2; � ı p/
��
�20 D

a1 Pz
2 � a2 Pz

1�
.a1/2 C .a2/2

�2 dt

where Pzi denote the derivative of zi with respect to t . Hence we may take

a1 D Pz
1 and a2 D Pz

2:

Writing ˇ D
�
' ı .z1; z2; � ı p/

��
�21 and using (2.13) again, we compute

ˇ D
�
Pz1 Rz2 � Pz2 Rz1 C

�
Pz1 Pz2.…221 �…

1
11/C . Pz

1/2…211 � . Pz
2/2…112

�
Pz1C

C
�
Pz1 Pz2.…222 �…

1
12/C . Pz

1/2…212 � . Pz
2/2…122

�
Pz2
� dt
. Pz1/2 C . Pz2/2

:

Note that since…i
ik
D 0 for k D 1; 2, it follows that ˇ � 0 is equivalent to .z1; z2/

satisfying the following ODE system

Pzi
�
Rzj C…

j

kl
Pzk Pzl

�
D Pzj

�
Rzi C…ikl Pz

k
Pzl
�
; i; j D 1; 2:

This last system is easily seen to be equivalent to the system (2.1). Consequently,
the one-dimensional integral manifolds of E are the generalised geodesics of Œr�.

Note that in the case of two-dimensional integral manifolds the above compu-
tations carry over where t is now a complex parameter, i.e. the two-dimensional
integral manifolds are immersed complex curves Y �M for which r PY PY is propor-
tional to PY for some (and hence any) r 2 Œr�. This last condition is equivalent to Y
being a totally geodesic immersed complex curve with respect to .Œr�; J / (c.f. [32,
Lemma 4.1]) . A totally geodesic immersed complex curve Y � M which is
maximally extended is called a complex geodesic. Since the complex geodesics are
the (maximally extended) two-dimensional integral manifolds of E, they exist only
provided that E is integrable. We will next determine the integrability conditions
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for E. Recall that E � TP .T 1;0M/ is defined by the equations �21 D �
2
0 D 0 on

B . It follows with the structure equations (2.6) that

d�20 D 0 mod �20 ; �
2
1

and
d�21 D W

2
11 N|�

1
0 ^ �

|
0 mod �20 ; �

2
1 :

Consequently, E is integrable if and only if W 2
11 N1
D W 2

11 N2
D 0. As a consequence

of (2.8) and W 2
11 N1
D 0 we obtain

0 D '2
11 N1
D �W 2

11 N1

�
�00 C �

0
0

�
CW 2

1s N1
�s1 CW

2
1s N1
�s1 �W

s
11 N1
�2s CW

2
11Ns�

s
j ;

which is equivalent to 2W 2
12 N1
D W 1

11 N1
. Using the symmetries of the complex

projective Weyl tensor we compute

W 1
11 N1
D �W 2

21 N1
D 2W 2

12 N1
D 2W 2

21 N1
;

thus showing that W 1
11 N1
D W 2

12 N1
D 0. From this we obtain

0 D '1
11 N1
D 2W 1

12 N1
�21 �W

2
11 N1
�12 CW

1
11 N2
�21 :

thus implying W 1
12 N1
D W 2

11 N1
D W 1

11 N2
D 0. Continuing in this vein allows to

conclude that all components of the complex projective Weyl tensor must vanish.
We may summarise:

Proposition 2.9. Let .M; J; Œr�/ be a complex projective surface. Then the follow-
ing statements are equivalent:

(i) Œr� is holomorphic;
(ii) The complex projective Weyl tensor of Œr� vanishes;

(iii) The rank 2 bundle E ! P .T 1;0M/ is Frobenius integrable;
(iv) Every complex line L � T 1;0M is tangent to a unique complex geodesic.

Remark 2.10. The standard flat complex projective structure on CP2 is holomorphic
and the complex geodesics are simply the linearly embedded projective lines CP1 �

CP2.

Remark 2.11. Note that the integrability conditions for E are a special case of a
more general result obtained by Čap in [8]. There it is shown that E is part of
an elliptic CR structure of CR dimension and codimension 2, which the complex
projective structure induces on P .T 1;0M/. Furthermore, it is also shown that the
integrability of E is equivalent to the holomorphicity of the complex projective
surface.

3. Kähler metrisability

In this section we will derive necessary conditions for a complex projective structure
Œr� on a complex surface .M; J / to arise via the Levi-Civita connection of a
(pseudo-)Kähler metric. There exists a complex projectively invariant linear first
order differential operator acting on J -hermitian .2;0/ tensor fields on M with
weight 1=3, i.e sections of the bundle S2J .TM/˝

�
ƒ4.T �M/

�1=3. This differential
operator has the property that nondegenerate sections in its kernel are in one-to-one
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correspondence with (pseudo-)Kähler metrics on M whose Levi-Civita connection
is compatible with Œr� (see [12, 26, 31]).

3.1. The differential analysis

We will show that in the surface case, the (pseudo-)Kähler metrics on .M; J; Œr�/
whose Levi-Civita connection is compatible with Œr� can equivalently be character-
ised in terms of a differential system on Cartan’s bundle .� W B !M; �/.

Proposition 3.1. Suppose the (pseudo-)Kähler metric g is compatible with Œr�.
Then, writing ��g D gi N|� i0 ı �

|
0 and setting hi N| D gi N|

�
g1 N1g2 N2 � jg1 N2j

2
��2=3, we

have

(3.1) dhi N| D hi N|
�
�00 C �

0
0

�
C hi Ns�

s
j C hs N|�

s
i C hi"sj �

s
0 C hj "si�

s
0

for some complex-valued functions hi on B . Conversely, suppose there exist
complex-valued functions hi N| D hj N{ and hi on B solving (3.1) and satisfying�
h1 N1h2 N2 � jh1 N2j

2
�
¤ 0, then the symmetric 2-form

hi N|
�
h1 N1h2 N2 � jh1 N2j

2
��2

� i0 ı �
|
0

is the �-pullback of a Œr�-compatible (pseudo-)Kähler metric on M .

Proof. Let g be a (pseudo-)Kähler metric on .M; J / and write g D gi N| dzi ı dz|

for local holomorphic coordinates z D .z1; z2/ W U ! C2 on M . Denoting by r
the Levi-Civita connection of g, on U the identity rg D 0 is equivalent to

@gk N|

@zi
D gs N|�

s
ik and

@gk N|

@z{
D gk Ns�

s
ij ;

where � i
jk

denote the complex Christoffel symbols of r. Abbreviate G D detgi N| ,
then we obtain

@G

@zi
D G �ssi :

Hence, the partial derivative of hk N| D gk N| G�2=3 with respect to zi becomes

@hk N|

@zi
D gl N| �

l
ik G

�2=3
�
2

3
gk N| �

s
si G

�2=3
D hl N|

�
� lik �

2

3
�ssiı

l
k

�
D hl N|

�
� lik �

1

3
�ssiı

l
k �

1

3
�sskı

l
i

�
�
1

3
hl N|

�
�ssiı

l
k � �

s
skı

l
i

�
:

Note that the last two summands in the last equation are antisymmetric in i; k, so
that we may write

�
1

3
hl N|

�
�ssiı

l
k � �

s
skı

l
i

�
D hj "ik

for unique complex-valued functions hi on U . We thus get

(3.2)
@hk N|

@zi
D hs N|…

s
ik C hj "ik :

In entirely analogous fashion we obtain

(3.3)
@hk N|

@z{
D hk Ns…

s
ij C hk"ij :
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Recall from Theorem 2.2 that the coordinate system z W U ! C2 induces a unique
section �z W U ! B of Cartan’s bundle such that

(3.4) .�z/
� �00 D 0; .�z/

� � i0 D dzi ; .�z/
� � ij D …

i
jkdzk :

Consequently, using (3.2), (3.3), (3.4) we see that (3.1) is necessary.
Conversely, suppose there exist complex-valued functions hi N| D hj N{ and hi on

B solving (3.1) for which �
h1 N1h2 N2 � jh1 N2j

2
�
¤ 0:

Setting gi N| D hi N|
�
h1 N1h2 N2 � jh1 N2j

2
��2 we get

(3.5) dgi N| D �gi N|
�
�00 C

N�00
�
C gi Ns�

s
j C gs N|�

s
i C gi N| Ns�

s
0 C gi N|s�

s
0

with

gi N| Ns D
.hi N|hl Ns C hi Nshl N| /"

lkhk

.h1 N1h2 N2 � jh1 N2j
2/3

; and gi N|k D
.hi N|hk Ns C hk N|hi Ns/"

suhu

.h1 N1h2 N2 � jh1 N2j
2/3

:

It follows with (3.5) that there exists a unique J -Hermitian metric g onM such that
��g D gi N| �

i
0ı�

|
0 . Choose local holomorphic coordinates z D .z1; z2/ W U ! C2

on M . By abuse of notation we will write gi N| ; gi N| Ns; gi N|k for the pullback of the
respective functions on B by the section �z W U ! B associated to z. From (3.5)
we obtain
@gi N|

@zs
D gu N|…

u
isCgi N|s D gu N|

�
…uis C g

Nvugi Nvs

�
D gu N|

�
…uis C ı

u
i bs C ı

u
s bi

�
D gu N|�

u
is

where we write

bi D
hi Ns"suhu

.h1 N1h2 N2 � jh1 N2j
2/11=3

and � ijk D …
i
jk C ı

i
j bk C ı

i
kbj :

Likewise we obtain
@gi N|

@zs
D gi Nu�

u
js:

It follows that there exists a complex-linear connection r on U defining Œr� and
whose complex Christoffel symbols are given by � i

jk
. By construction, the connec-

tion r preserves g and hence must be the Levi-Civita connection of g. Furthermore,
r being complex-linear implies that g is Kähler. This completes the proof. □

3.1.1. First prolongation

Differentiating (3.1) yields

(3.6) 0 D d2hi N| D "si�j ^ �s0 C "sj�i ^ �
s
0 � .hs N|W

s
iv Nu C hi NsW

s
ju Nv/�

u
0 ^ �

v
0

with
�k D dhk C hk

�
�00 � �

0
0

�
� hj �

j

k
C "ijhk N|�

0
i :

This implies that we can write

(3.7) �i D aij �
j
0

for unique complex-valued functions aij on B . Equations (3.6) and (3.7) imply

(3.8) "kiajl � "ljaik D hj NsW
s

ik Nl
� hi NsW

s

jl Nk
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Contracting this last equation with "jl"ik implies that the function

h D �
1

2
"ijaij

is real-valued. We get

ajl D "jlh �
1

2
"iuhsN{W

s
jl Nu;

and thus

dhi D hi
�
�00 � �

0
0

�
C hj �

j
i C hi Ns"

sl�0
l
C

�
"ijh �

1

2
"uvhs NuW

s
ij Nv

�
�
j
0 :

Plugging the formula for aij back into (3.8) yields the integrability conditions

hs N|W
s

ik Nl
� hi NsW

s

jl Nk
D
1

2
"lj "

uvhs NuW
s
ik Nv �

1

2
"ki"

uvhuNsW
s
jl Nv
:

This last equation can be simplified so that we obtain:

Proposition 3.2. A necessary condition for a complex projective surface .M; J; Œr�/
to be Kähler metrisable is that

(3.9) hj NsW
s

ik Nl
C hl NsW

s
ik N| D hk NsW

s
jl N{
C hi NsW

s

jl Nk

admits a nondegenerate solution hi N| D hj N{ .

Remark 3.3. Note that under suitable constant rank assumptions the system (3.9)
defines a subbundle of the bundle over M whose sections are hermitian forms on
.M; J /. For a generic complex projective structure Œr� this subbundle does have
rank 0.

3.1.2. Second prolongation

We start by computing

0 D d2hi ^ �10 ^ �
2
0 D �

�
hi N|"jkLk

�
�10 ^ �

1
0 ^ �

2
0 ^ �

2
0

which is equivalent to �
h1 N1 h1 N2
h2 N1 h2 N2

�
�

�
L2
�L1

�
D 0

which cannot have any solution with .h11h22 � jh12j2/ ¤ 0 unless L1 D L2 D 0.
This shows:

Theorem 3.4. A necessary condition for a complex projective surface to be Kähler
metrisable is that it is Liouville-flat, i.e. its complex projective Liouville curvature
vanishes.

Remark 3.5. Note that the vanishing of the Liouville curvature is equivalent to
requesting that the curvature of � is of type .1;1/ only, which agrees with general
results in [9].
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Assuming henceforth L1 D L2 D 0 we also get

(3.10) 0 D d2hi D
�
"ij�C 'ij

�
^ �

j
0

with

� D dhC 2hRe.�00 /C 2"
ijRe.hi�0j / �

1

2
"klhkN{"

ijK
js Nl
�s0

and

'ij D drij C rij �00 � rsi�
s
j � rsj �

s
i � hlW

l
ij Ns�

s
0 C

1

2
"uv

�
hi NuKvs N| C hj NuKvsN{

�
�s0

where

rij D �
1

2
"uvhs NuW

s
ij Nv:

It follows with Cartan’s lemma that there are functions aijk D aikj such that

"ij�C 'ij D aijk�
k
0 :

Since 'ij is symmetric in i; j , this implies

� D
1

2
"j iaijs�

s
0 :

Since h is real-valued, we must have

"j iaijs D "uv"
klhk NuKls Nv:

Concluding, we get

dh D �2hRe.�00 /C 2"
klRe.hl�

0
k /C

1

2
"ij "klRe.hkN{Kls N|�

s
0/:

This completes the prolongation procedure.

Remark 3.6. Note that further integrability conditions can be derived from (3.10),
we won’t write these out though.

Using Theorem 3.1 we obtain:

Theorem 3.7. Let .M; J; Œr�/ be a complex projective surface with Cartan geometry
.� W B !M; �/. If U � B is a connected open set on which there exist functions
hi N| D hj N{ , hi and h that satisfy the rank 9 linear system

(3.11)

dhi N| D 2hi N|Re.�00 /C hi Ns�
s
j C hs N|�

s
i C hi"sj �

s
0 C hj "si�

s
0 ;

dhk D 2ihkIm.�00 /C hl�
l
k C hkN{"

ij �0j C

�
"klh �

1

2
"ijhsN{W

s
kl N|

�
� l0;

dh D �2hRe.�00 / � 2"
lkRe.hl�

0
k /C

1

2
"ij "klRe.hkN{Kls N|�

s
0/;

and .h1 N1h2 N2 � jh1 N2j
2/ ¤ 0, then the quadratic form

g D
hi N|�

i
0 ı �

|
0

.h1 N1h2 N2 � jh1 N2j
2/2

is the �-pullback toU of a (pseudo-)Kähler metric on �.U / �M that is compatible
with Œr�.

From this we get:
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Corollary 3.8. The Kähler metrics defined on some domain U � CP2 which are
compatible with the standard complex projective structure on CP2 are in one-to-one
correspondence with the hermitian forms on C3 whose rank is at least two.

Proof. Suppose the complex projective structure Œr� has vanishing complex pro-
jective Weyl and Liouville curvature. Then the differential system (3.11) may be
written as

(3.12) dH C �H CH�� D 0

with

H D H� D

0@ h �h2 h1
�h2 �h22 h21
h1 h12 �h11

1A
where � denotes the conjugate transpose matrix. Recall that in the flat case � D
g�1dg for some smooth g W B ! PSL.3;C/, hence the solutions to (3.12) are

H D g�1C
�
g�1

��
where C D C � is a constant hermitian matrix of rank at least two. The statement
now follows immediately with Theorem 3.7. □

Remark 3.9. On can deduce from Theorem 3.8 that a Kähler metric g giving rise
to flat complex projective structures must have constant holomorphic sectional
curvature. A result first proved in [37] (in all dimensions).

Remark 3.10. One can also ask for existence of complex projective structures
Œr� whose degree of mobility is greater than one, i.e. they admit several (non-
proportional) compatible Kähler metrics. In [15] (see also [21]) it was shown that
the only closed complex projective manifold with degree of mobility greater than
two is CPn with the projective structure arising via the Fubini-Study metric.
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[7] A. Čap, A. R. Gover, H. R. Macbeth, Einstein metrics in projective geometry, Geom. Dedicata

168 (2014), 235–244. arXiv:1207.0128 1
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