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Weyl metrisability of two-dimensional
projective structures

thomas mettler

Abstract. We show that on a surface locally every affine torsion-free
connection is projectively equivalent to a Weyl connection. First, this
is done using exterior differential system theory. Second, this is done
by showing that the solutions of the relevant PDE are in one-to-one
correspondence with the sections of the ‘twistor’ bundle of conformal
inner products having holomorphic image. The second solution allows
to use standard results in algebraic geometry to show that the Weyl
connections on the two-sphere whose geodesics are the great circles are in
one-to-one correspondence with the smooth quadrics without real points
in the complex projective plane.

1. Introduction

In [11], Eisenhart and Veblen solve the Riemannian metrisability problem
for a manifold equipped with a real analytic affine torsion-free connection ∇;
i.e. they determine the necessary and sufficient conditions for ∇ to locally be
a Levi-Civita connection or equivalently, the holonomy of ∇ being a subgroup
of the orthogonal group. One can also ask to determine the necessary and
sufficient conditions for ∇ to be projectively equivalent to a Levi-Civita
connection. Recall that two affine connections on a manifold are said to
be projectively equivalent if they have the same unparametrised geodesics.
A projective equivalence class of affine torsion-free connections is called
a projective structure and will be denoted by [∇]. Although known since
Roger Liouville’s initial paper [18] which dates back to 1889, the projective
local Riemannian metrisability problem has been solved only recently for
real analytic projective structures on surfaces by Bryant, Dunajski and
Eastwood [3]. A global characterisation of compact Zoll projective surfaces
admitting a compatible Levi-Civita connection was given in [16]. In [10],
the general case is shown to give rise to a linear pde system of finite type.
An algorithmic procedure for checking if a given projective structure on a
manifold contains a Levi-Civita connection is given in [23] (see also [19]).
In [9], it was shown that locally the Riemannian metrisability problem for
projective surfaces is equivalent to finding a Kähler metric on an associated
conformal 4-manifold of neutral signature.

There are two problems related to the projective Riemannian metrisability
problem that are motivated by two different viewpoints:
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First, the projective Riemannian metrisability problem may be thought
of as an inverse problem in the calculus of variations, where one looks for a
length functional whose (unparametrised) geodesics are prescribed. However,
the functional is constrained to be the length functional of a Riemannian
metric. Naturally one might look for a general length functional, more
precisely a Finsler metric, whose geodesics are prescribed. This problem
is studied in [1] and it is shown that locally on a surface every projective
structure (or more generally path geometry) is Finsler metrisable.

Second, the projective Riemann metrisability problem may be thought of
as looking for a connection ∇ in a projective equivalence class [∇], whose
parallel transport maps are linear isometries for some Riemannian metric g.
From this viewpoint one might also ask for existence of a connection ∇ ∈ [∇],
whose parallel transport maps are merely linear conformal maps for some
conformal structure [g]. It is this latter problem we investigate in this article.
More precisely, we study the (projective) Weyl metrisability problem, i.e. the
problem of finding an affine torsion-free connection preserving a conformal
structure, a so-called Weyl connection, whose unparametrised geodesics are
prescribed by some projective structure [∇].

Weyl connections were introduced by Weyl [27] as an attempt to unify
gravity and electromagnetism and are nowadays mainly studied in the con-
text of the Einstein-Weyl equations in dimensions d ≥ 3 (see [8, 25] and
references therein). Also, in [28] Wojtkowski observed a relation between
Weyl connections and isokinetic dynamics as introduced by Hoover [13]
and discussed by Gallavotti and Ruelle in the context of non equilibrium
statistical mechanics [12].

This article is organised as follows. In §2 we use Cartan’s projective
connection [6] and the theory of exterior differential systems [2, 14] to
show that locally every smooth projective structure [∇] on a surface is Weyl
metrisable. In §3 we characterise the complex structure on the total space of
the ‘twistor bundle’ [7, 24] of conformal inner products C(M) → M over
an oriented surface M in terms of Cartan’s projective connection. We use
this characterisation to prove the main result: A conformal structure [g]
on M is preserved by a [∇]-representative if and only if [g] : M → C(M)
has holomorphic image. As an application of the main result we show in
§4 that the Weyl connections on the 2-sphere whose geodesics are the great
circles are in one-to-one correspondence with the smooth quadrics C ⊂ CP

2

without real points.
The reader should note that in a certain sense the main results of this

article generalise to higher dimensions in the context of Segre structures,
see [20] for further details.

2. An EDS solution for local Weyl metrisability

In this section we will use the theory of exterior differential systems (eds) to
show that locally every smooth affine torsion-free connection on a surface is
projectively equivalent to a Weyl connection. The notation and terminology
for eds are chosen to be consistent with [2].
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2.1. Cartan’s projective connection

Weyl showed [27] that two affine connections with the same torsion ∇̄ and
∇ on a smooth manifold N are projectively equivalent if and only if there
exists a (unique) 1-form ε ∈ A1(N) such that

(1) ∇̄XY −∇XY = ε(X)Y + ε(Y )X

for every pair of vector fields X,Y on N . In more geometric terms, (1)
means that the parallel transports of projectively equivalent connections
along any curve agree, when thought of as maps between projective space,
thus justifying the name projective structure.

As an application of his method of equivalence, Cartan has shown how
to associate a parabolic Cartan geometry to a manifold equipped with a
projective structure [∇]. We will only state Cartan’s result for oriented
projective surfaces, i.e. two-dimensional, connected, oriented, C∞-manifolds
equipped with a C∞ projective structure. For the general case the reader
can consult Cartan’s original paper [6] or [15] for a more modern exposition
(see [5] for background on parabolic Cartan geometries).

Let H ⊂ SL(3,R) be the Lie group of matrices of the form

H =
{(

det(a)−1 b
0 a

) ∣∣∣∣∣ a ∈ GL+(2,R), bt ∈ R2
}
.

The elements of H will be denoted by ha,b.

Theorem 2.1 (Cartan, [6]). Let (M, [∇]) be an oriented projective surface.
Then there exists a Cartan geometry (π : B → M, θ) of type (SL(3,R), H)
consisting of a right principal H-bundle π : B →M and a Cartan connection
θ ∈ A1(B, sl(3,R)) with the following properties:

(i) Writing θ = (θij)i,j=0,1,2, the leaves of the foliation defined by
{
θ20, θ

2
1
}⊥

project to geodesics on M and the π-pullback of every positive volume
form on M is a positive multiple of θ10 ∧ θ20.

(ii) The curvature 2-form Θ = dθ + θ ∧ θ satisfies

(2) Θ =

 0 L1 θ
1
0 ∧ θ20 L2 θ

1
0 ∧ θ20

0 0 0
0 0 0


for some smooth functions Li : B → R.

Recall that a 2-frame at p ∈ M is a 2-jet j20ϕ of a local diffeomorphism
ϕ : U0 → M which is defined in a neighbourhood of 0 ∈ R2 and satisfies
ϕ(0) = p. The fibre of π : B → M at p ∈ M precisely consists of those 2-
frames j20ϕ at p for which ϕ is orientation preserving at 0 and for which ϕ−1◦γ
has vanishing curvature at 0 for every [∇]-geodesic γ through p. The Lie
group H̃ of 2-jets of orientation preserving linear fractional transformations
fa,b

x 7→ a · x
1 + b · x

, bt ∈ R2, a ∈ GL+(2,R)
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acts smoothly from the right on B by j20ϕ · j20fa,b = j20 (ϕ ◦ fa,b). Note that
H and H̃ are isomorphic via the map ha,b 7→ j20fã,b̃ where ã = det(a)a and
b̃ = det(a)b. Henceforth we will use this identification whenever needed.

2.2. Coordinate sections of Cartan’s bundle

Let x = (x1, x2) : U → R2 be local orientation preserving coordinates on M
and Γi

kl : U → R denote the Christoffel symbols of a representative of [∇]
with respect to the coordinates x. Then the functions

Πi
kl = Γi

kl −
1
3

δik∑
j

Γj
jl + δil

∑
j

Γj
jk


are projective invariants in the sense that they do not depend on the repres-
entative chosen to compute them, but only on x. Locally [∇] can be recovered
from the projective invariants Πi

kl by defining them to be the Christoffel
symbols with respect to x of an affine torsion-free connection ∇′, which is
well defined on U and projectively equivalent to [∇]. Consequently, two
affine torsion-free connections on M are projectively equivalent, if and only
if their Christoffel symbols give rise to the same functions Πi

kl. Associated to
the coordinates x is a coordinate section σx : U → B which assigns to every
point p ∈ U the 2-frame j20ϕ ∈ B at p defined by

(3) ϕ(0) = p, ∂k(x ◦ ϕ)i(0) = δik, ∂k∂l(x ◦ ϕ)i(0) = −Πi
kl(p).

This section indeed does take values in B as can be shown with a simple
computation. The section σx : U → B satisfies

(4) σ∗xθ
0
0 = 0, σ∗xθ

1
0 = dx1, σ∗xθ

2
0 = dx2,

thus the structure equations (2) yield

(5)
0 = σ∗xdθ00 = −σ∗xθ01 ∧ dx1 − σ∗xθ

0
2 ∧ dx2,

0 = σ∗xdθ10 = −σ∗xθ11 ∧ dx1 − σ∗xθ
1
2 ∧ dx2,

0 = σ∗xdθ20 = −σ∗xθ21 ∧ dx1 − σ∗xθ
2
2 ∧ dx2.

Since σ∗x(θ00) = −σ∗x(θ11 + θ22) = 0 holds, Cartan’s lemma implies that there
exist functions κ0, κ1, κ2, κ3 and ζ1, ζ2, ζ3 on U such that σ∗xθ = ηx where

(6) ηx =

 0 ζ1dx1 + ζ2dx2 ζ2dx1 + ζ3dx2
dx1 −κ1dx1 − κ2dx2 −κ2dx1 − κ3dx2
dx2 κ0dx1 + κ1dx2 κ1dx1 + κ2dx2

 .
The θ-structure equations then imply that the functions ζi and κj satisfy the
relations

(7)

ζ1 =
∂κ1
∂x1

− ∂κ0
∂x2

+ 2κ21 − 2κ0κ2,

ζ2 =
∂κ2
∂x1

− ∂κ1
∂x2

+ κ1κ2 − κ0κ3,

ζ3 =
∂κ3
∂x1

− ∂κ2
∂x2

+ 2κ22 − 2κ1κ3.
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In terms of the Πi
kl, the functions κi : U → R can be expressed as

κ0 = Π2
11, κ1 = Π2

12, κ2 = Π2
22, κ3 = −Π1

22.

The coefficients Πi
kl of Cartan’s projective connection were discovered in-

dependently of Cartan’s work from the invariant theoretic view point by
Thomas [26]. They generalise to the n-dimensional case by replacing 3 with
n+ 1.

Note that the coordinate section σx : U → B is an integral manifold of
the eds with independence condition (I,Ω) where

I =
〈
θ00, dθ10, dθ20

〉
and Ω = θ10 ∧ θ20. Conversely, if s : U → B is an integral manifold of the eds
(I,Ω), then π ◦ s : U →M is a local diffeomorphism, thus locally, without
losing generality, we can assume that U ⊂M and s is a section of π : B →M .
Assume U is simply connected, then

s∗dθ10 = s∗dθ20 = 0
implies that there exist functions (x1, x2) : U → R2 such that

s∗θ10 = dx1, s∗θ20 = dx2.
Now s∗(θ10 ∧ θ20) = dx1 ∧ dx2 > 0 implies that x = (x1, x2) : U → R2 is a
local orientation preserving coordinate system on M satisfying σx = s.

2.3. Coordinate sections and Weyl metrisability

Note that an affine torsion-free connection ∇ preserves a conformal structure
[g], if and only if for some (and hence any) Riemannian metric g ∈ [g], there
exists a 1-form β, so that
(8) ∇g = 2β ⊗ g.

The affine torsion-free connections preserving [g] are called Weyl connections
for [g]. Given a Riemannian metric g and a 1-form β, the affine torsion-free
connection Dg,β defined by

(X,Y ) 7→ Dg
XY + g(X,Y )β♯ − β(X)Y − β(Y )X,

is the unique Weyl connection for [g] solving (8). Here Dg denotes the
Levi-Civita connection of g and β♯ the g-dual vector field to β.

On the total space B of the Cartan geometry of an oriented projective
surface (M, [∇]) consider the eds with independence condition (I,Ω) defined
by

(9) I =
〈
θ00, dθ10, dθ20, θ10 ∧ (3 θ21 + θ12), θ20 ∧ (θ21 + 3 θ12)

〉
, Ω = θ10 ∧ θ20.

This eds is of interest due to the following:

Lemma 2.2. Let ∇ be a Weyl connection on the oriented surface M and (π :
B →M, θ) the Cartan geometry associated to [∇]. Then in a neighbourhood
Up of every point p ∈ M , there exists a coordinate section σx : Up → B
which is an integral manifold of (I,Ω). Conversely, let (M, [∇]) be an
oriented projective surface with Cartan geometry (π : B →M, θ). Then every
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coordinate section σx : U ⊂M → B which is an integral manifold of (I,Ω)
gives rise to a Weyl connection on U which is projectively equivalent to ∇.

Proof. Let ∇ be a Weyl connection for [g] and (π : B → M, θ) the Cartan
geometry associated to [∇]. For a given point p ∈ M let x = (x1, x2) :
Up → R2 be local p-centred coordinates which are orientation preserving and
isothermal for [g]. Then there exist smooth functions ri : U → R such that

∇(x∗gE) = 2(r1dx1 + r2dx2)⊗ x∗gE ,

where gE denotes the Euclidean standard metric on R2. Now a simple
computation shows that the projective invariants κi : U → R of the projective
structure [∇], defined with respect to x, satisfy the relations

(10) κ0 = 3κ2 = r2, 3κ1 = κ3 = −r1.

It follows with (6) that the associated coordinate section σx satisfies

σ∗x

(
θ10 ∧ (3 θ21 + θ12)

)
= (3κ1 − κ3) dx1 ∧ dx2 = 0,

σ∗x

(
θ20 ∧ (θ21 + 3 θ12)

)
= (3κ2 − κ0) dx1 ∧ dx2 = 0,

thus showing that σx is an integral manifold of (I,Ω). Conversely, let (M, [∇])
be an oriented projective surface with Cartan geometry (π : B → M, θ).
Suppose σx : U → B is a coordinate section and an integral manifold of
(I,Ω). Then the projective invariants κi : U → R with respect to x satisfy
(10) and thus the Weyl connection Dg,β defined on U by the pair

g = x∗gE , β = −κ3dx1 + κ0dx2,

is projectively equivalent to ∇. □

Theorem 2.2 translates the Weyl metrisability problem into finding integral
manifolds of the eds (I,Ω). For the application of the theory of exterior
differential systems it is more convenient to work with a linear Pfaffian
system. Let A = B ×R2 and denote by ai : A→ R the projection onto the
i-th coordinate of R2 and by τ : A → B the canonical projection. On A
define

ω1 = τ∗θ10, ω2 = τ∗θ20,

and
ϑ1 = τ∗θ11 + a1ω

1 + a2ω
2,

ϑ2 = τ∗θ22 − a1ω
1 − a2ω

2,

ϑ3 = τ∗θ12 + a2ω
1 + 3a1ω2,

ϑ4 = τ∗θ21 − 3a2ω1 − a1ω
2.

Then it is straightforward to check that the integral manifolds of the eds

I′ =
〈
ϑ1, ϑ2, ϑ3, ϑ4

〉
, Ω′ = ω1 ∧ ω2,

are in one-to-one correspondence with the integral manifolds of (I,Ω). We
follow the strategy explained in [2, Chapter IV, §2] to prove:
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Theorem 2.3. The eds (I′,Ω′) is locally equivalent to a determined first
order elliptic pde system for 4 real-valued functions of 2 variables. In
particular locally every projective surface is Weyl metrisable.

Proof. Let

I = span
{
ϑ1, ϑ2, ϑ3, ϑ4

}
⊂ T ∗A,

J = span
{
ϑ1, ϑ2, ϑ3, ϑ4, ω1, ω2

}
⊂ T ∗A,

L = J/I ≃ span
{
ω1, ω2

}
⊂ T ∗A,

where span means linear combinations with coefficients in C∞(A,R). It is
easily verified that J is a Frobenius system, in particular (I′,Ω′) is locally
equivalent to a first order pde system

(11) F b(yi, za, ∂za/∂yi) = 0

for 4 = rank I real-valued functions za of 2 = rankL variables yi [2, Prop.
5.10, Chapter IV]. Let λ : P = P(L) → A denote the bundle which is
obtained by projectivisation of the (quotient) vector-bundle L → A. We
have the structure equations

dϑi =
2∑

k=1
ϕi
k ∧ ω

k, mod ϑl, l = 1, . . . , 4

with

(12) ϕi
k =


ϕ1 ϕ2
ϕ3 ϕ4

−3ϕ2 2ϕ3 + ϕ1
2ϕ2 + ϕ4 −3ϕ3


for 4 linearly independent 1-forms ϕl on A. Therefore we have 4 non-trivial
(symbol) relations for the 8 entries of ϕi

k and since s0 = rank I = 4, the
linear Pfaffian system (I′,Ω′) and the corresponding pde system (11) are
determined. Moreover straightforward computations using (12) show that
the characteristic variety Ξ ⊂ P of (I′,Ω′) at a ∈ A is given by

Ξa =
{[
ξ1ω

1(a) + ξ2ω
2(a)

]
∈ λ−1(a)

∣∣∣ ((ξ1)2 + (ξ2)2
)2

= 0
}
,

thus Ξ is empty. This shows that (I′,Ω′) and the corresponding pde system
(11) are elliptic. It follows with standard results in elliptic pde theory
(see [22, p. 15]) that (11) has smooth local solutions. Using Theorem 2.2 we
conclude that locally every smooth projective surface is Weyl metrisable. □

3. A complex geometry solution for Weyl metrisability

In this section we will show that the Weyl metrisability problem for an
oriented projective surface is globally equivalent to finding a section of the
bundle of conformal inner products with holomorphic image.
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3.1. The bundle of conformal inner products

Recall that a conformal inner product on a real vector space V is an equival-
ence class [b] of inner products on V , where two inner products are called
equivalent if one is a positive multiple of the other.

Let N be a manifold of even dimension 2n and let F(N) → N be the
right principal GL(2n,R)-bundle of 1-frames over N . We embed GL(n,C)
as a closed subgroup of GL(2n,R). Let F(N)/GL(n,C) → N be the bundle
whose fibre at p ∈ N consists of the complex structures on TpN . It was
observed in [7, 24] that the choice of an affine connection ∇ on N induces
an almost complex structure J on F(N)/GL(n,C). If ∇ is torsion-free,
then J is integrable if and only if the Weyl projective curvature tensor of ∇
vanishes. In fact, J only depends on the projective equivalence class of ∇.
In the case where N is oriented, this almost complex structure J restricts
to become an almost complex structure on the subbundle F+(N)/GL(n,C)
where F+(N) → N denotes bundle of positively oriented frames.

For the case of an oriented surface M , the fibre of the bundle ρ : C(M) =
F+(M)/GL(1,C) → M at p ∈ M may be identified with the space of
conformal inner products on TpM . Consequently, a conformal structure on
M may also be thought of as a section of the bundle of conformal inner
products ρ : C(M) →M . Note that in two dimensions the Weyl projective
curvature tensors vanishes identically for every projective structure [∇]. It
follows that the almost complex structure J is always integrable.

3.2. The complex surface C(M) and Cartan’s connection

In this subsection we will characterise the complex structure on C(M) in
terms of the Cartan geometry (π : B → M, θ) associated to [∇]. To this
end let C ⊂ H be the closed Lie subgroup consisting of elements ha,b with
a ∈ GL(1,C) where we identify GL(1,C) with the non-zero 2-by-2 matrices
of the form (

x −y
y x

)
.

Consider the smooth map

ν : B → C(M), j20ϕ 7→
[
(ϕ∗gE)ϕ(0)

]
.

Lemma 3.1. The map ν : B → C(M) makes B into a right principal
C-bundle over C(M).

Proof. Since C is a closed Lie subgroup of H, it is sufficient to show that ν
is a smooth surjection whose fibres are the C-orbits. Clearly ν is smooth
and surjective. Suppose ν(j20ϕ) = ν(j20 ϕ̃) for some elements j20ϕ, j20 ϕ̃ ∈ B.
Then these two elements are in the same fibre of π : B → M , hence there
exists ha,b ∈ H such that j20 ϕ̃ = j20ϕ · ha,b and
(13) c (ϕ∗gE)ϕ(0) =

(
(ϕ ◦ fa,b)∗ gE

)
ϕ(0)

which is equivalent to
c(gE)0 = (ã∗gE)0,
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where ã ∈ GL+(2,R) is the linear map x 7→ (det a) a · x and c ∈ R+. This is
equivalent to ã being in GL(1,C) or ha,b ∈ C. In other words, the ν fibres
are the C-orbits. □

We will now use the forms α1 = θ10 + iθ20 and α2 = (θ12 + θ21) + i(θ22 − θ11)
to define an almost complex structure on C(M). Note that the forms α1, α2
are ν-semibasic, i.e. αi(X) vanishes for every vector field X ∈ X(B) which is
tangent to the fibres of ν.
Proposition 3.2. There exists a unique complex structure J on C(M) such
that a complex valued 1-form µ ∈ A1(C(M),C) is of type (1,0) if and only
if ν∗µ is a linear combination of {α1, α2} with coefficients in C∞(B,C).
Proof. Let T i

j denote the vector fields dual to the coframing θij . For ξ ∈
TC(M) define

J(ξ) = ν ′
(
−θ20(ξ̃)T 1

0 + θ10(ξ̃)T 2
0 − 1

2(θ
2
2 − θ11)(ξ̃)(T 1

2 + T 2
1 )+

+1
2(θ

1
2 + θ21)(ξ̃)(T 2

2 − T 1
1 )
)
,

where ξ̃ ∈ TB satisfies ν ′(ξ̃) = ξ. Any other vector in TB which is mapped
to ξ under ν ′ is of the form (Rc)′(ξ̃)+χ for some c ∈ C and χ ∈ ker ν ′. Using
the identities

(Rc)∗θ = c−1 θ c, ν ◦Rc = ν, c ∈ C

and the fact that α1, α2 are ν-semibasic, it follows from straightforward
computations that J is a well defined almost complex structure on C(M)
which has all the desired properties. Moreover the structure equations (2)
imply

(14)
dα1 =

(
−3θ22 + i

(
2θ12 + θ21

))
∧ α1 +

(
−θ20 + 2iθ10

)
∧ α2,

dα2 =
(
θ02 − iθ01

)
∧ α1 + i

(
θ12 − θ21

)
∧ α2,

and hence, by Newlander-Nirenberg [21], J is integrable. Clearly such a
complex structure is unique. □

In fact it is not hard to show that every ρ-fibre admits the structure of a
Riemann surface biholomorphic to the unit disk D2 such that the canonical
inclusion into C(M) is a holomorphic embedding.

3.3. The compatibility problem and holomorphic curves

In this subsection we will relate holomorphic curves in C(M) to the Weyl
metrisability problem. We will use the following lemma whose prove is
elementary and thus omitted.
Lemma 3.3. Let (X,J) be a complex surface, µ1, µ2 ∈ A1(X,C) a basis for
the (1,0)-forms of J and f : Σ → X a 2-submanifold with

f∗(Re(µ1) ∧ Im(µ1)) ̸= 0.
Then f : Σ → X is a holomorphic curve if and only if f∗(µ1 ∧ µ2) = 0.
Moreover through every point p ∈ X passes such a holomorphic curve.
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Remark 3.4. Here a 2-submanifold f : Σ → X is called a holomorphic curve
if (J ◦ f ′)(TpΣ) = f ′(TpΣ) for every p ∈ Σ.

Let [g] be a conformal structure on (M, [∇]) and x : U → R2 local
orientation preserving coordinates which are isothermal for [g]. Then it is
easy to check that the coordinate section σx : U → B satisfies ν ◦ σx = [g]|U .

We will now relate conformal structures [g] : M → C(M), which are
holomorphic curves in C(M) to the eds with independence condition (I,Ω)
on B given by

I =
〈
θ00, dθ10, dθ20,Re(α1 ∧ α2), Im(α1 ∧ α2)

〉
, Ω = Re(α1) ∧ Im(α1).

Note that we may write(
θ10 ∧ (3θ21 + θ12)

)
+ i
(
θ20 ∧ (θ21 + 3θ12)

)
= α1 ∧ α2 + 3iᾱ1 ∧ θ00 + 2idᾱ1

where ᾱ1 = θ10 − iθ20. It follows that the eds (I,Ω) equals the eds (9).

Lemma 3.5. Let [g] be a conformal structure on (M, [∇]) and x = (x1, x2) :
U → R2 local orientation preserving [g]-isothermal coordinates. Then the
coordinate section σx : U → B is an integral manifold of (I,Ω) if and only
if [g]|U : U → C(M) is a holomorphic curve.

Proof. Let s : ρ−1(U) → B be a local section of the bundle ν : B → C(M)
and let µ1 = s∗α1, µ2 = s∗α2 be a local basis for the (1,0)-forms on ρ−1(U).
Note that such sections exist, since the principal bundle H → H/C is trivial.
Now

ν∗µk = (s ◦ ν)∗αk = R∗
tαk,

for some smooth function t : π−1(U) → C. Write the elements of C ⊂ H in
the form

cz,w =

 |z|−2 Re(w) Im(w)
0 Re(z) − Im(z)
0 Im(z) Re(z)

 ,
for some complex numbers z ≠ 0 and w. Since θ is a Cartan connection,
we have R∗

hθ = h−1θh, for every h ∈ H which yields together with a short
computation

(15) R∗
cz,w

(
α1
α2

)
=
(
z̄/|z|4 0
iw̄/z̄ z̄/z

)(
α1
α2

)
.

Using (15) it follows
ν∗µ1 = λ1α1, ν∗µ2 = λ2α1 + λ3α2,

for some smooth functions λk : π−1(U) → C with λ1λ3 ≠ 0. Then (6) and
the identity [g]|U = ν ◦ σx yield

σ∗x (Re(α1) ∧ Im(α1)) = dx1 ∧ dx2 ̸= 0,
σ∗xdα1 = d(dx1 + idx2) = 0,

σ∗xθ
0
0 = 0,

and
(16) ([g]|U )∗µ1 = (ν ◦ σx)∗µ1 = σ∗x(λ1α1) = (λ1 ◦ σx)(dx1 + idx2) ̸= 0,
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which shows that ([g]|U )∗(Re(µ1) ∧ Im(µ1)) ̸= 0. Therefore according to
Theorem 3.3, [g]|U : U → C(M) is a holomorphic curve if and only if

([g]|U )∗(µ1 ∧ µ2) = (ν ◦ σx)∗(µ1 ∧ µ2) = (λ1λ3 ◦ σx)σ∗x(α1 ∧ α2) = 0,
which finishes the proof. □

The eds (I,Ω) precisely governs the Weyl metrisability problem for an
oriented projective surface.

Proposition 3.6. Let [g] be a conformal structure on (M, [∇]). Then the
following two statements are equivalent:

(i) There exists a Weyl connection for [g] on M which is projectively
equivalent to ∇.

(ii) The coordinate section σx : U → B associated to any local orientation
preserving [g]-isothermal coordinate chart x = (x1, x2) : U → R2 is
an integral manifold of (I,Ω).

Proof. (i) ⇒ (ii): This direction is an immediate consequence of Theorem 2.2.
(ii)⇒ (i): Let x : U → R2, be local orientation preserving isothermal
coordinates for [g] and σx : U → B the corresponding coordinate section
which is an integral manifold of (I,Ω). Fix a [g]−representative g, then

g|U = e2fx∗gE

for some smooth f : U → R. Since σx is an integral manifold, the projective
invariants κi : U → R with respect to x satisfy 3κ1 = κ3 and 3κ2 = κ0. On
U define the 1-form

β = −κ3dx1 + κ0dx2 + df,
then the Weyl connection Dg,β on U associated to the pair (g|U , β) is pro-
jectively equivalent to ∇. Let x̃ : Ũ → R2 be another local orientation
preserving isothermal coordinate chart for [g] overlapping with U . Writing
g|Ũ = e2f̃ x̃∗gE for some smooth f̃ : Ũ → R and κ̃i : Ũ → R for the projective
invariants of [∇] with respect to x̃, then again the Weyl connection Dg,β̃ on
Ũ associated to the pair (g|Ũ , β̃) with

β̃ = −κ̃3dx̃1 + κ̃0dx̃2 + df̃
is projectively equivalent to ∇. On U ∩ Ũ we have[

Dg + g ⊗ β♯
]
= [∇] =

[
Dg + g ⊗ β̃♯

]
,

using Weyl’s result (1), this is equivalent to the existence of a 1-form ε on
U ∩ Ũ such that

Dg
XY + g(X,Y )β# = Dg

XY + g(X,Y )β̃# + ε(X)Y + ε(Y )X

for every pair of vector fields X,Y on U ∩ Ũ . In particular the choice of a
basis of g-orthonormal vector fields implies ε = 0. Thus β = β̃ on U ∩ Ũ
and therefore, using a coordinate cover, β extends to a well defined global
1-form which proves the existence of a smooth Weyl connection on M which
is projectively equivalent to ∇. □

Summarising the results found so far we have the main
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Theorem 3.7. A conformal structure [g] on an oriented projective surface
(M, [∇]) is preserved by a [∇]-representative if and only if [g] :M → C(M)
is a holomorphic curve.
Proof. This follows immediately from Theorem 3.5 and Theorem 3.6. □

Remark 3.8. It is easy to check that for a given projective structure [∇]
on M every holomorphic curve [g] :M → C(M) determines a unique Weyl
connection which is projectively equivalent to ∇. Theorem 3.7 therefore
gives a one-to-one correspondence between the Weyl connections on an ori-
ented surface whose unparametrised geodesics are prescribed by a projective
structure [∇] and sections of the fibre bundle ρ : C(M) → M which are
holomorphic curves. Note also that a conformal structure [g] on an ori-
ented surface determines a unique complex structure whose holomorphic
coordinates are given by orientation preserving isothermal coordinates for
[g]. It follows that a conformal structure [g] on an oriented projective surface
(M, [∇]) is preserved by a [∇]-representative if and only if [g] :M → C(M) is
holomorphic with respect to the complex structure on C(M) and the complex
structure on M induced by [g] and the orientation.
Corollary 3.9. An affine torsion-free connection ∇ on a surface M is locally
projectively equivalent to a Weyl connection.
Proof. Since the statement is local we may assume that M is oriented. Let
(π : B →M, θ) be the Cartan geometry associated to [∇]. For a given point
p ∈ M , choose q ∈ C(M) with ρ(q) = p and a coordinate neighbourhood
Up. Let µ1, µ2 be a basis for the (1,0)-forms on ρ−1(Up) as constructed
in Theorem 3.5. Using Theorem 3.3 there exists a complex 2-submanifold
f : Σ → ρ−1(Up) passing through q for which f∗(Re(µ1)∧ Im(µ1)) ̸= 0. Since
the π : B → M pullback of a volume form on M is a nowhere vanishing
multiple of θ10 ∧ θ20, the ρ pullback of a volume form on Up is a nowhere
vanishing multiple of Re(µ1) ∧ Im(µ1) and hence ρ ◦ f : Σ → Up is a local
diffeomorphism. Composing f with the locally available inverse of this local
diffeomorphism one gets a local section of the bundle of conformal inner
products which is defined in a neighbourhood of p and which is a holomorphic
curve. Using Theorem 3.7 it follows that ∇ is locally projectively equivalent
to a Weyl connection. □

4. The flat case

In this section we use Theorem 3.7 and results from algebraic geometry to
globally identify the set of Weyl connections on the 2-sphere whose geodesics
are the great circles.

4.1. Cartan’s connection in the flat case

Consider the projective 2-sphere S2 =
(
R3 \ {0}

)
/R+ equipped with its

“outwards” orientation and projective structure [∇0] whose geodesics are the
“great circles” S1 ⊂ S2, i.e. subspaces of the form E ∩ S2 for some 2-plane
E ⊂ R3. Let (π : B → S2, θ) denote Cartan’s structure bundle of (S2, [∇0]).
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Note that SL(3,R) is a right principal H-bundle over S2 with base-point
projection

π̃ : SL(3,R) → S
2, g = (g0, g1, g2) 7→ [g0],

where an element g ∈ SL(3,R) is written as three column vectors (g0, g1, g2).
Now let ψ : SL(3,R) → B be the map which associates to g ∈ SL(3, R) the
2-frame generated by the map fg where

fg : R2 → S
2, x 7→

[
g ·
(
x
1

)]
.

It turns out that ψ is an H-bundle isomorphism which pulls-back θ to the
Maurer Cartan form ω of SL(3,R). In particular since dω + ω ∧ ω = 0, the
functions Li : SL(3,R) → R vanish. Oriented projective surfaces for which
the functions Li vanish are called projectively flat or simply flat.

4.2. The bundle of conformal inner products in the flat case

In the canonical flat case (S2, [∇0]) the bundle of conformal inner products
ρ : C(S2) → S2 can be identified explicitly. Let [b] ∈ C(S2) be a conformal
inner product at [x] = ρ([b]). Identify T[x]S2 with x⊥ ⊂ R3 where ⊥ denotes
the orthogonal complement of x in R3 with respect to the Euclidean standard
metric. Let (v1, v2) ∈ R3 ×R3 be a positively oriented conformal basis for
[b]. The pair (v1, v2) is unique up to a transformation of the form

(r (v1 cosϕ− v2 sinϕ) , r (v1 sinϕ+ v2 cosϕ))

for some r ∈ R+ and ϕ ∈ [0, 2π]. Thus we may uniquely identify [b] with
an element reiϕ (v1 + iv2) in CP

2. Note that the image of the standard
embedding ι : RP2 → CP

2 precisely consists of those elements [z] ∈ CP2 for
which Re(z) and Im(z) are linearly dependent. It is easy to verify that the
just described map is a diffeomorphism C(S2) → CP

2 \RP2 which will be
denoted by ψ. Thus ρ0 = ρ ◦ ψ−1 : CP2 \RP2 → S2 makes CP2 \RP2 into
a D2-bundle over S2 whose projection map is explicitly given by

ρ0 : CP2 \RP2 → S
2, [z] 7→ [Re(z) ∧ Im(z)].

Proposition 4.1. For (M, [∇]) = (S2, [∇0]) there exists a biholomorphic
fibre bundle isomorphism ϕ : C(M) → CP

2 \RP2 covering the identity on
S2.

Proof. Suppose there exists a smooth surjection λ : SL(3,R) → CP
2 \RP2

whose fibres are the C-orbits and which pulls back the (1,0)-forms of CP2 \
RP

2 to linear combinations of α1 and α2. Then it is easy to check that the
map ϕ = λ ◦ ν−1 : C(S2) → CP

2 \RP2 is well defined and has all the desired
properties. Consider the smooth map λ̃ : B = SL(3,R) → C3 given by

(g0 g1 g2) 7→ g0 ∧ (g1 + ig2) .

We have

(17) λ̃ ◦Rha,b
= det a−1 (1, i) · at ·

(
Re(λ̃)
Im(λ̃)

)
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and

(18) dλ̃ = ig1 ∧ g2
(
θ10 + iθ20

)
+ Im(λ̃)θ21 − Re(λ̃)θ22 + iRe(λ̃)θ12 − i Im(λ̃)θ11.

Denote by q : C3 \ {0} → CP
2 the quotient projection, then (17) implies

that λ = q ◦ λ̃ is a smooth surjection onto CP2 \RP2 whose fibres are the
C-orbits. Moreover it follows with (18) and straightforward computations
that λ pulls back the (1,0)-forms of CP2 \ RP2 to linear combinations of
α1, α2. □

4.3. Weyl connections on S2 and smooth quadrics C ⊂ CP
2

Theorem 3.7 and Theorem 4.1 now allow to prove:

Corollary 4.2. The Weyl connections on the 2-sphere whose unparametrised
geodesics are the great circles are in one-to-one correspondence with the
smooth quadrics (i.e. smooth algebraic curves of degree 2) C ⊂ CP

2 without
real points.

Remark 4.3. The proof can be adapted from [4, Theorem 9].1 The proof
given here relies on Theorem 3.7 and Theorem 4.1. Another proof could be
given by using results from [16, 17].

Proof of Theorem 4.2. Suppose ∇ is a Weyl connection for some conformal
structure [g] on S2 whose geodesics are the great circles. Then by Theorem 3.7
and Theorem 4.1 [g] : S2 → CP

2 \ RP2 is a holomorphic curve and hence
by Chow’s Theorem C = [g](S2) ⊂ CP

2 \RP2 is a smooth algebraic curve
whose genus is 0, since its the image of the 2-sphere under a section of
a fibre bundle. Note that by standard results of algebraic geometry, the
genus g and degree d of a smooth plane algebraic curve satisfy the relation
g = (d − 1)(d − 2)/2. It follows that C is either a line or a quadric. Since
every line in CP2 has a real point, C must be a quadric.

Conversely let C ⊂ CP
2 be a smooth quadric without real points. In order

to show that C is the image of a smooth section of ρ : CP2 \ RP2 → S2,
which is a holomorphic curve, it is sufficient to show that ρ0|C : C → S2 is a
diffeomorphism. The fibre of ρ : CP2 \RP2 → S2 at u = [(u1, u2, u3)t] ∈ S2
is an open subset of the real line u1z1 + u2z2 + u3z3 = 0. Smoothness of C
implies that C cannot contain that line as a component and since a quadric
in CP2 without real points does not have any real tangent lines, it follows
from Bezout’s theorem that C intersects that line transversely in two distinct
points. Clearly the line intersects C in CP1 \RP1 which has two connected
components: ρ−1(u)∪ ρ−1(−u). The intersection of the quadric with the line
consists of one point in each of these components. It follows that ρ|C : C → S2

is a submersion and hence by the compactness of C and S2 a covering map
which is at most 2-to-1. But since C is diffeomorphic to S2, ρ must restrict
to C to be a diffeomorphism onto S2. Hence (ρ|C)−1 : S2 → CP

2 \ RP2 is
a smooth section and holomorphic curve whose image is C. According to

1The reason for this is a duality between certain Finsler and Weyl surfaces as reported
by Robert L. Bryant in his talk “Aufwiedersehen Surfaces, revisited” at the ICM 2006.
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Theorem 3.7 this section determines a unique Weyl connection on S2 whose
geodesics are the great circles. □
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