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Weyl metrisability of two-dimensional projective
structures

THOMAS METTLER

ABSTRACT. We show that on a surface locally every affine torsion-free connec-
tion is projectively equivalent to a Weyl connection. First, this is done using
exterior differential system theory. Second, this is done by showing that the
solutions of the relevant PDE are in one-to-one correspondence with the sections
of the ‘twistor’ bundle of conformal inner products having holomorphic image.
The second solution allows to use standard results in algebraic geometry to show
that the Weyl connections on the two-sphere whose geodesics are the great circles
are in one-to-one correspondence with the smooth quadrics without real points in
the complex projective plane.

1. Introduction

In [11], Eisenhart and Veblen solve the Riemannian metrisability problem for a
manifold equipped with a real analytic affine torsion-free connection r; i.e. they
determine the necessary and sufficient conditions for r to locally be a Levi-Civita
connection or equivalently, the holonomy of r being a subgroup of the orthogonal
group. One can also ask to determine the necessary and sufficient conditions for
r to be projectively equivalent to a Levi-Civita connection. Recall that two affine
connections on a manifold are said to be projectively equivalent if they have the
same unparametrised geodesics. A projective equivalence class of affine torsion-free
connections is called a projective structure and will be denoted by Œr�. Although
known since Roger Liouville’s initial paper [18] which dates back to 1889, the
projective local Riemannian metrisability problem has been solved only recently for
real analytic projective structures on surfaces by Bryant, Dunajski and Eastwood [4].
A global characterisation of compact Zoll projective surfaces admitting a compatible
Levi-Civita connection was given in [16]. In [10], the general case is shown to give
rise to a linear PDE system of finite type. An algorithmic procedure for checking
if a given projective structure on a manifold contains a Levi-Civita connection is
given in [23] (see also [19]). In [9], it was shown that locally the Riemannian
metrisability problem for projective surfaces is equivalent to finding a Kähler metric
on an associated conformal 4-manifold of neutral signature.

There are two problems related to the projective Riemannian metrisability prob-
lem that are motivated by two different viewpoints:

First, the projective Riemannian metrisability problem may be thought of as an
inverse problem in the calculus of variations, where one looks for a length func-
tional whose (unparametrised) geodesics are prescribed. However, the functional
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is constrained to be the length functional of a Riemannian metric. Naturally one
might look for a general length functional, more precisely a Finsler metric, whose
geodesics are prescribed. This problem is studied in [1] and it is shown that locally
on a surface every projective structure (or more generally path geometry) is Finsler
metrisable.

Second, the projective Riemann metrisability problem may be thought of as
looking for a connection r in a projective equivalence class Œr�, whose parallel
transport maps are linear isometries for some Riemannian metric g. From this
viewpoint one might also ask for existence of a connection r 2 Œr�, whose parallel
transport maps are merely linear conformal maps for some conformal structure
Œg�. It is this latter problem we investigate in this article. More precisely, we
study the (projective) Weyl metrisability problem, i.e. the problem of finding an
affine torsion-free connection preserving a conformal structure, a so-called Weyl
connection, whose unparametrised geodesics are prescribed by some projective
structure Œr�.

Weyl connections were introduced by Weyl [27] as an attempt to unify gravity and
electromagnetism and are nowadays mainly studied in the context of the Einstein-
Weyl equations in dimensions d � 3 (see [8, 25] and references therein). Also,
in [28] Wojtkowski observed a relation between Weyl connections and isokinetic
dynamics as introduced by Hoover [13] and discussed by Gallavotti and Ruelle in
the context of non equilibrium statistical mechanics [12].

This article is organised as follows. In §2 we use Cartan’s projective connec-
tion [6] and the theory of exterior differential systems [2, 14] to show that locally
every smooth projective structure Œr� on a surface is Weyl metrisable. In §3 we
characterise the complex structure on the total space of the ‘twistor bundle’ [7, 24]
of conformal inner products C.M/!M over an oriented surface M in terms of
Cartan’s projective connection. We use this characterisation to prove the main result:
A conformal structure Œg� on M is preserved by a Œr�-representative if and only
if Œg� WM ! C.M/ has holomorphic image. As an application of the main result
we show in §4 that the Weyl connections on the 2-sphere whose geodesics are the
great circles are in one-to-one correspondence with the smooth quadrics C � CP2

without real points.
The reader should note that in a certain sense the main results of this article

generalise to higher dimensions in the context of Segre structures, see [20] for
further details.

2. An EDS solution for local Weyl metrisability

In this section we will use the theory of exterior differential systems (EDS) to show
that locally every smooth affine torsion-free connection on a surface is projectively
equivalent to a Weyl connection. The notation and terminology for EDS are chosen
to be consistent with [2].

2.1. Cartan’s projective connection

Weyl showed [27] that two affine connections with the same torsion Nr and r on a
smooth manifold N are projectively equivalent if and only if there exists a (unique)
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1-form " 2 A1.N / such that

(2.1) NrXY � rXY D ".X/ Y C ".Y /X

for every pair of vector fields X; Y on N . In more geometric terms, (2.1) means
that the parallel transports of projectively equivalent connections along any curve
agree, when thought of as maps between projective space, thus justifying the name
projective structure.

As an application of his method of equivalence, Cartan has shown how to associ-
ate a parabolic Cartan geometry to a manifold equipped with a projective structure
Œr�. We will only state Cartan’s result for oriented projective surfaces, i.e. two-
dimensional, connected, oriented, C1-manifolds equipped with a C1 projective
structure. For the general case the reader can consult Cartan’s original paper [6]
or [15] for a more modern exposition (see [5] for background on parabolic Cartan
geometries).

Let H � SL.3;R/ be the Lie group of matrices of the form

H D

(�
det.a/�1 b

0 a

� ˇ̌̌̌
ˇ a 2 GLC.2;R/; bt 2 R2

)
:

The elements of H will be denoted by ha;b .

Theorem 2.1 (Cartan, [6]). Let .M; Œr�/ be an oriented projective surface. Then
there exists a Cartan geometry .� W B ! M; �/ of type .SL.3;R/;H/ con-
sisting of a right principal H -bundle � W B ! M and a Cartan connection
� 2 A1.B; sl.3;R// with the following properties:

(i) Writing � D .� ij /i;jD0;1;2, the leaves of the foliation defined by
˚
�20 ; �

2
1

	?
project to geodesics on M and the �-pullback of every positive volume
form on M is a positive multiple of �10 ^ �

2
0 .

(ii) The curvature 2-form ‚ D d� C � ^ � satisfies

(2.2) ‚ D

0@ 0 L1 �
1
0 ^ �

2
0 L2 �

1
0 ^ �

2
0

0 0 0

0 0 0

1A
for some smooth functions Li W B ! R.

Recall that a 2-frame at p 2 M is a 2-jet j 20 ' of a local diffeomorphism
' W U0 ! M which is defined in a neighbourhood of 0 2 R2 and satisfies
'.0/ D p. The fibre of � W B !M at p 2M precisely consists of those 2-frames
j 20 ' at p for which ' is orientation preserving at 0 and for which '�1 ı  has
vanishing curvature at 0 for every Œr�-geodesic  through p. The Lie group QH of
2-jets of orientation preserving linear fractional transformations fa;b

x 7!
a � x

1C b � x
; bt 2 R2; a 2 GLC.2;R/

acts smoothly from the right on B by j 20 ' � j
2
0 fa;b D j 20

�
' ı fa;b

�
. Note that

H and QH are isomorphic via the map ha;b 7! j 20 fQa; Qb where Qa D det.a/a and
Qb D det.a/b. Henceforth we will use this identification whenever needed.
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2.2. Coordinate sections of Cartan’s bundle

Let x D .x1; x2/ W U ! R2 be local orientation preserving coordinates on M and
� i
kl
W U ! R denote the Christoffel symbols of a representative of Œr� with respect

to the coordinates x. Then the functions

…ikl D �
i
kl �

1

3

0@ıikX
j

�
j

jl
C ıil

X
j

�
j

jk

1A
are projective invariants in the sense that they do not depend on the representative
chosen to compute them, but only on x. Locally Œr� can be recovered from the
projective invariants …i

kl
by defining them to be the Christoffel symbols with

respect to x of an affine torsion-free connection r 0, which is well defined on U and
projectively equivalent to Œr�. Consequently, two affine torsion-free connections
on M are projectively equivalent, if and only if their Christoffel symbols give rise
to the same functions …i

kl
. Associated to the coordinates x is a coordinate section

�x W U ! B which assigns to every point p 2 U the 2-frame j 20 ' 2 B at p defined
by

(2.3) '.0/ D p; @k.x ı '/
i .0/ D ıik; @k@l.x ı '/

i .0/ D �…ikl.p/:

This section indeed does take values inB as can be shown with a simple computation.
The section �x W U ! B satisfies

(2.4) ��x �
0
0 D 0; ��x �

1
0 D dx1; ��x �

2
0 D dx2;

thus the structure equations (2.2) yield

(2.5)

0 D ��x d�00 D ��
�
x �

0
1 ^ dx1 � ��x �

0
2 ^ dx2;

0 D ��x d�10 D ��
�
x �

1
1 ^ dx1 � ��x �

1
2 ^ dx2;

0 D ��x d�20 D ��
�
x �

2
1 ^ dx1 � ��x �

2
2 ^ dx2:

Since ��x .�
0
0 / D ��

�
x .�

1
1 C �

2
2 / D 0 holds, Cartan’s lemma implies that there exist

functions �0; �1; �2; �3 and �1; �2; �3 on U such that ��x � D �x where

(2.6) �x D

0@ 0 �1dx1 C �2dx2 �2dx1 C �3dx2

dx1 ��1dx1 � �2dx2 ��2dx1 � �3dx2

dx2 �0dx1 C �1dx2 �1dx1 C �2dx2

1A :
The � -structure equations then imply that the functions �i and �j satisfy the relations

(2.7)

�1 D
@�1

@x1
�
@�0

@x2
C 2�21 � 2�0�2;

�2 D
@�2

@x1
�
@�1

@x2
C �1�2 � �0�3;

�3 D
@�3

@x1
�
@�2

@x2
C 2�22 � 2�1�3:

In terms of the …i
kl

, the functions �i W U ! R can be expressed as

�0 D …
2
11; �1 D …

2
12; �2 D …

2
22; �3 D �…

1
22:
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The coefficients …i
kl

of Cartan’s projective connection were discovered independ-
ently of Cartan’s work from the invariant theoretic view point by Thomas [26]. They
generalise to the n-dimensional case by replacing 3 with nC 1.

Note that the coordinate section �x W U ! B is an integral manifold of the EDS

with independence condition .I; �/ where

I D
˝
�00 ; d�

1
0 ; d�

2
0

˛
and � D �10 ^ �

2
0 . Conversely, if s W U ! B is an integral manifold of the EDS

.I; �/, then � ı s W U !M is a local diffeomorphism, thus locally, without losing
generality, we can assume that U �M and s is a section of � W B !M . Assume
U is simply connected, then

s�d�10 D s
�d�20 D 0

implies that there exist functions .x1; x2/ W U ! R2 such that

s��10 D dx1; s��20 D dx2:

Now s�.�10 ^ �
2
0 / D dx1^ dx2 > 0 implies that x D .x1; x2/ W U ! R2 is a local

orientation preserving coordinate system on M satisfying �x D s.

2.3. Coordinate sections and Weyl metrisability

Note that an affine torsion-free connection r preserves a conformal structure Œg�,
if and only if for some (and hence any) Riemannian metric g 2 Œg�, there exists a
1-form ˇ, so that

(2.8) rg D 2ˇ ˝ g:

The affine torsion-free connections preserving Œg� are called Weyl connections for
Œg�. Given a Riemannian metric g and a 1-form ˇ, the affine torsion-free connection
Dg;ˇ defined by

.X; Y / 7! DgXY C g.X; Y /ˇ
]
� ˇ.X/Y � ˇ.Y /X;

is the unique Weyl connection for Œg� solving (2.8). Here Dg denotes the Levi-Civita
connection of g and ˇ] the g-dual vector field to ˇ.

On the total space B of the Cartan geometry of an oriented projective surface
.M; Œr�/ consider the EDS with independence condition .I; �/ defined by

(2.9) I D
˝
�00 ; d�

1
0 ; d�

2
0 ; �

1
0 ^ .3 �

2
1 C �

1
2 /; �

2
0 ^ .�

2
1 C 3 �

1
2 /
˛
; � D �10 ^ �

2
0 :

This EDS is of interest due to the following:

Lemma 2.2. Let r be a Weyl connection on the oriented surface M and .� W
B !M; �/ the Cartan geometry associated to Œr�. Then in a neighbourhood Up
of every point p 2 M , there exists a coordinate section �x W Up ! B which is
an integral manifold of .I; �/. Conversely, let .M; Œr�/ be an oriented projective
surface with Cartan geometry .� W B ! M; �/. Then every coordinate section
�x W U � M ! B which is an integral manifold of .I; �/ gives rise to a Weyl
connection on U which is projectively equivalent to r.

Proof. Let r be a Weyl connection for Œg� and .� W B ! M; �/ the Cartan
geometry associated to Œr�. For a given point p 2M let x D .x1; x2/ W Up ! R2
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be local p-centred coordinates which are orientation preserving and isothermal for
Œg�. Then there exist smooth functions ri W U ! R such that

r.x�gE / D 2.r1dx1 C r2dx2/˝ x�gE ;

where gE denotes the Euclidean standard metric on R2. Now a simple computation
shows that the projective invariants �i W U ! R of the projective structure Œr�,
defined with respect to x, satisfy the relations

(2.10) �0 D 3�2 D r2; 3�1 D �3 D �r1:

It follows with (2.6) that the associated coordinate section �x satisfies

��x
�
�10 ^ .3 �

2
1 C �

1
2 /
�
D .3�1 � �3/ dx1 ^ dx2 D 0;

��x
�
�20 ^ .�

2
1 C 3 �

1
2 /
�
D .3�2 � �0/ dx1 ^ dx2 D 0;

thus showing that �x is an integral manifold of .I; �/. Conversely, let .M; Œr�/ be
an oriented projective surface with Cartan geometry .� W B ! M; �/. Suppose
�x W U ! B is a coordinate section and an integral manifold of .I; �/. Then the
projective invariants �i W U ! R with respect to x satisfy (2.10) and thus the Weyl
connection Dg;ˇ defined on U by the pair

g D x�gE ; ˇ D ��3dx1 C �0dx2;

is projectively equivalent to r. □

Lemma 2.2 translates the Weyl metrisability problem into finding integral man-
ifolds of the EDS .I; �/. For the application of the theory of exterior differential
systems it is more convenient to work with a linear Pfaffian system. LetA D B�R2

and denote by ai W A ! R the projection onto the i-th coordinate of R2 and by
� W A! B the canonical projection. On A define

!1 D ���10 ; !2 D ���20 ;

and
#1 D ���11 C a1!

1
C a2!

2;

#2 D ���22 � a1!
1
� a2!

2;

#3 D ���12 C a2!
1
C 3a1!

2;

#4 D ���21 � 3a2!
1
� a1!

2:

Then it is straightforward to check that the integral manifolds of the EDS

I0 D
˝
#1; #2; #3; #4

˛
; �0 D !1 ^ !2;

are in one-to-one correspondence with the integral manifolds of .I; �/. We follow
the strategy explained in [2, Chapter IV, §2] to prove:

Theorem 2.3. The EDS .I0; �0/ is locally equivalent to a determined first order
elliptic PDE system for 4 real-valued functions of 2 variables. In particular locally
every projective surface is Weyl metrisable.

Proof. Let
I D span

˚
#1; #2; #3; #4

	
� T �A;

J D span
˚
#1; #2; #3; #4; !1; !2

	
� T �A;

L D J=I ' span
˚
!1; !2

	
� T �A;
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where span means linear combinations with coefficients in C1.A;R/. It is easily
verified that J is a Frobenius system, in particular .I0; �0/ is locally equivalent to a
first order PDE system

(2.11) F b.yi ; za; @za=@yi / D 0

for 4 D rank I real-valued functions za of 2 D rankL variables yi [2, Prop. 5.10,
Chapter IV]. Let � W P D P .L/ ! A denote the bundle which is obtained by
projectivisation of the (quotient) vector-bundle L ! A. We have the structure
equations

d# i D
2X
kD1

'ik ^ !
k; mod #l ; l D 1; : : : ; 4

with

(2.12) 'ik D

0BB@
'1 '2
'3 '4
�3'2 2'3 C '1

2'2 C '4 �3'3

1CCA
for 4 linearly independent 1-forms 'l on A. Therefore we have 4 non-trivial
(symbol) relations for the 8 entries of 'i

k
and since s0 D rank I D 4, the linear

Pfaffian system .I0; �0/ and the corresponding PDE system (2.11) are determined.
Moreover straightforward computations using (2.12) show that the characteristic
variety „ � P of .I0; �0/ at a 2 A is given by

„a D
n�
�1!

1.a/C �2!
2.a/

�
2 ��1.a/

ˇ̌̌ �
.�1/

2
C .�2/

2
�2
D 0

o
;

thus „ is empty. This shows that .I0; �0/ and the corresponding PDE system (2.11)
are elliptic. It follows with standard results in elliptic PDE theory (see [22, p. 15])
that (2.11) has smooth local solutions. Using Lemma 2.2 we conclude that locally
every smooth projective surface is Weyl metrisable. □

3. A complex geometry solution for Weyl metrisability

In this section we will show that the Weyl metrisability problem for an oriented pro-
jective surface is globally equivalent to finding a section of the bundle of conformal
inner products with holomorphic image.

3.1. The bundle of conformal inner products

Recall that a conformal inner product on a real vector space V is an equivalence
class Œb� of inner products on V , where two inner products are called equivalent if
one is a positive multiple of the other.

Let N be a manifold of even dimension 2n and let F .N / ! N be the right
principal GL.2n;R/-bundle of 1-frames over N . We embed GL.n;C/ as a closed
subgroup of GL.2n;R/. Let F .N /=GL.n;C/! N be the bundle whose fibre at
p 2 N consists of the complex structures on TpN . It was observed in [7, 24] that
the choice of an affine connection r onN induces an almost complex structure J on
F .N /=GL.n;C/. If r is torsion-free, then J is integrable if and only if the Weyl
projective curvature tensor of r vanishes. In fact, J only depends on the projective
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equivalence class of r. In the case where N is oriented, this almost complex
structure J restricts to become an almost complex structure on the subbundle
F C.N /=GL.n;C/ where F C.N / ! N denotes bundle of positively oriented
frames.

For the case of an oriented surface M , the fibre of the bundle � W C.M/ D

F C.M/=GL.1;C/!M at p 2M may be identified with the space of conformal
inner products on TpM . Consequently, a conformal structure on M may also be
thought of as a section of the bundle of conformal inner products � W C.M/ !

M . Note that in two dimensions the Weyl projective curvature tensors vanishes
identically for every projective structure Œr�. It follows that the almost complex
structure J is always integrable.

3.2. The complex surface C.M/ and Cartan’s connection

In this subsection we will characterise the complex structure on C.M/ in terms of
the Cartan geometry .� W B !M; �/ associated to Œr�. To this end let C � H be
the closed Lie subgroup consisting of elements ha;b with a 2 GL.1;C/ where we
identify GL.1;C/ with the non-zero 2-by-2 matrices of the form�

x �y

y x

�
:

Consider the smooth map

� W B ! C.M/; j 20 ' 7!
�
.'�gE /'.0/

�
:

Lemma 3.1. The map � W B ! C.M/ makes B into a right principal C -bundle
over C.M/.

Proof. Since C is a closed Lie subgroup of H , it is sufficient to show that � is a
smooth surjection whose fibres are the C -orbits. Clearly � is smooth and surjective.
Suppose �.j 20 '/ D �.j 20 Q'/ for some elements j 20 '; j

2
0 Q' 2 B . Then these two

elements are in the same fibre of � W B ! M , hence there exists ha;b 2 H such
that j 20 Q' D j

2
0 ' � ha;b and

(3.1) c .'�gE /'.0/ D
��
' ı fa;b

�
�
gE
�
'.0/

which is equivalent to
c.gE /0 D . Qa�gE /0;

where Qa 2 GLC.2;R/ is the linear map x 7! .det a/ a � x and c 2 RC. This is
equivalent to Qa being in GL.1;C/ or ha;b 2 C . In other words, the � fibres are the
C -orbits. □

We will now use the forms ˛1 D �10 C i�20 and ˛2 D .�12 C �
2
1 /C i.�22 � �

1
1 /

to define an almost complex structure on C.M/. Note that the forms ˛1; ˛2 are
�-semibasic, i.e. ˛i .X/ vanishes for every vector field X 2 X.B/ which is tangent
to the fibres of �.

Proposition 3.2. There exists a unique complex structure J on C.M/ such that a
complex valued 1-form � 2 A1.C.M/;C/ is of type .1;0/ if and only if ��� is a
linear combination of f˛1; ˛2g with coefficients in C1.B;C/.
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Proof. Let T ij denote the vector fields dual to the coframing � ij . For � 2 TC.M/

define

J.�/ D �0
�
��20 .

Q�/T 10 C �
1
0 .
Q�/T 20 �

1

2
.�22 � �

1
1 /.
Q�/.T 12 C T

2
1 /C

C
1

2
.�12 C �

2
1 /.
Q�/.T 22 � T

1
1 /

�
;

where Q� 2 TB satisfies �0. Q�/ D �. Any other vector in TB which is mapped to �
under �0 is of the form .Rc/

0. Q�/ C � for some c 2 C and � 2 ker �0. Using the
identities

.Rc/
�� D c�1 � c; � ıRc D �; c 2 C

and the fact that ˛1; ˛2 are �-semibasic, it follows from straightforward computa-
tions that J is a well defined almost complex structure on C.M/ which has all the
desired properties. Moreover the structure equations (2.2) imply

(3.2)
d˛1 D

�
�3�22 C i

�
2�12 C �

2
1

��
^ ˛1 C

�
��20 C 2i�

1
0

�
^ ˛2;

d˛2 D
�
�02 � i�

0
1

�
^ ˛1 C i

�
�12 � �

2
1

�
^ ˛2;

and hence, by Newlander-Nirenberg [21], J is integrable. Clearly such a complex
structure is unique. □

In fact it is not hard to show that every �-fibre admits the structure of a Riemann
surface biholomorphic to the unit disk D2 such that the canonical inclusion into
C.M/ is a holomorphic embedding.

3.3. The compatibility problem and holomorphic curves

In this subsection we will relate holomorphic curves in C.M/ to the Weyl metrisab-
ility problem. We will use the following lemma whose prove is elementary and thus
omitted.

Lemma 3.3. Let .X;J / be a complex surface, �1; �2 2 A1.X;C/ a basis for the
.1;0/-forms of J and f W †! X a 2-submanifold with

f �.Re.�1/ ^ Im.�1// ¤ 0:

Then f W †! X is a holomorphic curve if and only if f �.�1^�2/ D 0. Moreover
through every point p 2 X passes such a holomorphic curve.

Remark 3.4. Here a 2-submanifold f W †! X is called a holomorphic curve if
.J ı f 0/.Tp†/ D f

0.Tp†/ for every p 2 †.

Let Œg� be a conformal structure on .M; Œr�/ and x W U ! R2 local orientation
preserving coordinates which are isothermal for Œg�. Then it is easy to check that
the coordinate section �x W U ! B satisfies � ı �x D Œg�jU .

We will now relate conformal structures Œg� W M ! C.M/, which are holo-
morphic curves in C.M/ to the EDS with independence condition .I; �/ on B
given by

I D
˝
�00 ; d�

1
0 ; d�

2
0 ;Re.˛1 ^ ˛2/; Im.˛1 ^ ˛2/

˛
; � D Re.˛1/ ^ Im.˛1/:
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Note that we may write�
�10 ^ .3�

2
1 C �

1
2 /
�
C i

�
�20 ^ .�

2
1 C 3�

1
2 /
�
D ˛1 ^ ˛2 C 3i N̨1 ^ �00 C 2id N̨1

where N̨1 D �10 � i�
2
0 . It follows that the EDS .I; �/ equals the EDS (2.9).

Lemma 3.5. Let Œg� be a conformal structure on .M; Œr�/ and x D .x1; x2/ W U !
R2 local orientation preserving Œg�-isothermal coordinates. Then the coordinate
section �x W U ! B is an integral manifold of .I; �/ if and only if Œg�jU W U !
C.M/ is a holomorphic curve.

Proof. Let s W ��1.U /! B be a local section of the bundle � W B ! C.M/ and
let �1 D s�˛1; �2 D s�˛2 be a local basis for the .1;0/-forms on ��1.U /. Note
that such sections exist, since the principal bundle H ! H=C is trivial. Now

���k D .s ı �/
�˛k D R

�
t ˛k;

for some smooth function t W ��1.U /! C . Write the elements of C � H in the
form

cz;w D

0@ jzj�2 Re.w/ Im.w/
0 Re.z/ � Im.z/
0 Im.z/ Re.z/

1A ;
for some complex numbers z ¤ 0 and w. Since � is a Cartan connection, we have
R�
h
� D h�1�h; for every h 2 H which yields together with a short computation

(3.3) R�cz;w

�
˛1
˛2

�
D

�
Nz=jzj4 0

i Nw= Nz Nz=z

��
˛1
˛2

�
:

Using (3.3) it follows

���1 D �1˛1; ���2 D �2˛1 C �3˛2;

for some smooth functions �k W ��1.U /! C with �1�3 ¤ 0. Then (2.6) and the
identity Œg�jU D � ı �x yield

��x .Re.˛1/ ^ Im.˛1// D dx1 ^ dx2 ¤ 0;

��x d˛1 D d.dx1 C idx2/ D 0;

��x �
0
0 D 0;

and

(3.4) .Œg�jU /
��1 D .� ı �x/

��1 D �
�
x .�1˛1/ D .�1 ı �x/.dx

1
C idx2/ ¤ 0;

which shows that .Œg�jU /�.Re.�1/ ^ Im.�1// ¤ 0. Therefore according to
Lemma 3.3, Œg�jU W U ! C.M/ is a holomorphic curve if and only if

.Œg�jU /
�.�1 ^ �2/ D .� ı �x/

�.�1 ^ �2/ D .�1�3 ı �x/ �
�
x .˛1 ^ ˛2/ D 0;

which finishes the proof. □

The EDS .I; �/ precisely governs the Weyl metrisability problem for an oriented
projective surface.

Proposition 3.6. Let Œg� be a conformal structure on .M; Œr�/. Then the following
two statements are equivalent:

(i) There exists a Weyl connection for Œg� onM which is projectively equivalent
to r.
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(ii) The coordinate section �x W U ! B associated to any local orientation
preserving Œg�-isothermal coordinate chart x D .x1; x2/ W U ! R2 is an
integral manifold of .I; �/.

Proof. (i)) (ii): This direction is an immediate consequence of Lemma 2.2.
(ii)) (i): Let x W U ! R2, be local orientation preserving isothermal coordinates
for Œg� and �x W U ! B the corresponding coordinate section which is an integral
manifold of .I; �/. Fix a Œg��representative g, then

gjU D e
2f x�gE

for some smooth f W U ! R. Since �x is an integral manifold, the projective
invariants �i W U ! R with respect to x satisfy 3�1 D �3 and 3�2 D �0. On U
define the 1-form

ˇ D ��3dx1 C �0dx2 C df;

then the Weyl connection Dg;ˇ on U associated to the pair .gjU ; ˇ/ is projectively
equivalent to r. Let Qx W QU ! R2 be another local orientation preserving isothermal
coordinate chart for Œg� overlapping with U . Writing gj QU D e2

Qf Qx�gE for some
smooth Qf W QU ! R and Q�i W QU ! R for the projective invariants of Œr� with
respect to Qx, then again the Weyl connection Dg; Q̌ on QU associated to the pair
.gj QU ;

Q̌/ with
Q̌ D �Q�3d Qx1 C Q�0d Qx2 C d Qf

is projectively equivalent to r. On U \ QU we haveh
Dg C g ˝ ˇ]

i
D Œr� D

h
Dg C g ˝ Q̌]

i
;

using Weyl’s result (2.1), this is equivalent to the existence of a 1-form " on U \ QU
such that

DgXY C g.X; Y /ˇ
#
D DgXY C g.X; Y /

Q̌# C ".X/Y C ".Y /X

for every pair of vector fields X; Y on U \ QU . In particular the choice of a basis of
g-orthonormal vector fields implies " D 0. Thus ˇ D Q̌ on U \ QU and therefore,
using a coordinate cover, ˇ extends to a well defined global 1-form which proves
the existence of a smooth Weyl connection on M which is projectively equivalent
to r. □

Summarising the results found so far we have the main

Theorem 3.7. A conformal structure Œg� on an oriented projective surface .M; Œr�/
is preserved by a Œr�-representative if and only if Œg� W M ! C.M/ is a holo-
morphic curve.

Proof. This follows immediately from Lemma 3.5 and Proposition 3.6. □

Remark 3.8. It is easy to check that for a given projective structure Œr� on M
every holomorphic curve Œg� WM ! C.M/ determines a unique Weyl connection
which is projectively equivalent to r. Theorem 3.7 therefore gives a one-to-one
correspondence between the Weyl connections on an oriented surface whose un-
parametrised geodesics are prescribed by a projective structure Œr� and sections
of the fibre bundle � W C.M/ ! M which are holomorphic curves. Note also
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that a conformal structure Œg� on an oriented surface determines a unique com-
plex structure whose holomorphic coordinates are given by orientation preserving
isothermal coordinates for Œg�. It follows that a conformal structure Œg� on an ori-
ented projective surface .M; Œr�/ is preserved by a Œr�-representative if and only if
Œg� WM ! C.M/ is holomorphic with respect to the complex structure on C.M/

and the complex structure on M induced by Œg� and the orientation.

Corollary 3.9. An affine torsion-free connection r on a surface M is locally
projectively equivalent to a Weyl connection.

Proof. Since the statement is local we may assume that M is oriented. Let .� W
B ! M; �/ be the Cartan geometry associated to Œr�. For a given point p 2 M ,
choose q 2 C.M/ with �.q/ D p and a coordinate neighbourhood Up . Let �1; �2
be a basis for the .1;0/-forms on ��1.Up/ as constructed in Lemma 3.5. Using
Lemma 3.3 there exists a complex 2-submanifold f W † ! ��1.Up/ passing
through q for which f �.Re.�1/ ^ Im.�1// ¤ 0. Since the � W B !M pullback
of a volume form on M is a nowhere vanishing multiple of �10 ^ �

2
0 , the � pullback

of a volume form on Up is a nowhere vanishing multiple of Re.�1/ ^ Im.�1/ and
hence � ı f W †! Up is a local diffeomorphism. Composing f with the locally
available inverse of this local diffeomorphism one gets a local section of the bundle
of conformal inner products which is defined in a neighbourhood of p and which is
a holomorphic curve. Using Theorem 3.7 it follows that r is locally projectively
equivalent to a Weyl connection. □

4. The flat case

In this section we use Theorem 3.7 and results from algebraic geometry to globally
identify the set of Weyl connections on the 2-sphere whose geodesics are the great
circles.

4.1. Cartan’s connection in the flat case

Consider the projective 2-sphere S2 D
�
R3 n f0g

�
=RC equipped with its “out-

wards” orientation and projective structure Œr0� whose geodesics are the “great
circles” S1 � S2, i.e. subspaces of the form E \ S2 for some 2-plane E � R3.
Let .� W B ! S2; �/ denote Cartan’s structure bundle of .S2; Œr0�/. Note that
SL.3;R/ is a right principal H -bundle over S2 with base-point projection

Q� W SL.3;R/! S2; g D .g0; g1; g2/ 7! Œg0�;

where an element g 2 SL.3;R/ is written as three column vectors .g0; g1; g2/.
Now let  W SL.3;R/ ! B be the map which associates to g 2 SL.3; R/ the
2-frame generated by the map fg where

fg W R
2
! S2; x 7!

�
g �

�
x

1

��
:

It turns out that  is an H -bundle isomorphism which pulls-back � to the Maurer
Cartan form ! of SL.3;R/. In particular since d! C ! ^ ! D 0, the functions
Li W SL.3;R/ ! R vanish. Oriented projective surfaces for which the functions
Li vanish are called projectively flat or simply flat.
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4.2. The bundle of conformal inner products in the flat case

In the canonical flat case .S2; Œr0�/ the bundle of conformal inner products � W
C.S2/ ! S2 can be identified explicitly. Let Œb� 2 C.S2/ be a conformal inner
product at Œx� D �.Œb�/. Identify TŒx�S2 with x? � R3 where ? denotes the
orthogonal complement of x in R3 with respect to the Euclidean standard metric.
Let .v1; v2/ 2 R3 �R3 be a positively oriented conformal basis for Œb�. The pair
.v1; v2/ is unique up to a transformation of the form

.r .v1 cos' � v2 sin'/ ; r .v1 sin' C v2 cos'//

for some r 2 RC and ' 2 Œ0; 2��. Thus we may uniquely identify Œb� with an
element rei' .v1 C iv2/ in CP2. Note that the image of the standard embedding
� W RP2 ! CP2 precisely consists of those elements Œz� 2 CP2 for which Re.z/
and Im.z/ are linearly dependent. It is easy to verify that the just described map
is a diffeomorphism C.S2/ ! CP2 n RP2 which will be denoted by  . Thus
�0 D � ı  

�1 W CP2 nRP2 ! S2 makes CP2 nRP2 into a D2-bundle over S2

whose projection map is explicitly given by

�0 W CP2 nRP2 ! S2; Œz� 7! ŒRe.z/ ^ Im.z/�:

Proposition 4.1. For .M; Œr�/ D .S2; Œr0�/ there exists a biholomorphic fibre
bundle isomorphism ' W C.M/! CP2 nRP2 covering the identity on S2.

Proof. Suppose there exists a smooth surjection � W SL.3;R/! CP2nRP2 whose
fibres are the C -orbits and which pulls back the .1;0/-forms of CP2 nRP2 to linear
combinations of ˛1 and ˛2. Then it is easy to check that the map ' D � ı ��1 W

C.S2/! CP2 nRP2 is well defined and has all the desired properties. Consider
the smooth map Q� W B D SL.3;R/! C3 given by

.g0 g1 g2/ 7! g0 ^ .g1 C ig2/ :

We have

(4.1) Q� ıRha;b
D det a�1 .1; i/ � at �

�
Re. Q�/
Im. Q�/

�
and

(4.2) d Q� D ig1^g2
�
�10 C i�20

�
C Im. Q�/�21 �Re. Q�/�22 C i Re. Q�/�12 � i Im. Q�/�11 :

Denote by q W C3 n f0g ! CP2 the quotient projection, then (4.1) implies that
� D q ı Q� is a smooth surjection onto CP2 n RP2 whose fibres are the C -orbits.
Moreover it follows with (4.2) and straightforward computations that � pulls back
the .1;0/-forms of CP2 nRP2 to linear combinations of ˛1; ˛2. □

4.3. Weyl connections on S2 and smooth quadrics C � CP2

Theorem 3.7 and Proposition 4.1 now allow to prove:

Corollary 4.2. The Weyl connections on the 2-sphere whose unparametrised geo-
desics are the great circles are in one-to-one correspondence with the smooth
quadrics (i.e. smooth algebraic curves of degree 2) C � CP2 without real points.
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Remark 4.3. The proof can be adapted from [3, Theorem 9].1 The proof given here
relies on Theorem 3.7 and Proposition 4.1. Another proof could be given by using
results from [16, 17].

Proof of Corollary 4.2. Suppose r is a Weyl connection for some conformal struc-
ture Œg� on S2 whose geodesics are the great circles. Then by Theorem 3.7 and
Proposition 4.1 Œg� W S2 ! CP2 n RP2 is a holomorphic curve and hence by
Chow’s Theorem C D Œg�.S2/ � CP2 nRP2 is a smooth algebraic curve whose
genus is 0, since its the image of the 2-sphere under a section of a fibre bundle.
Note that by standard results of algebraic geometry, the genus g and degree d of a
smooth plane algebraic curve satisfy the relation g D .d � 1/.d � 2/=2. It follows
that C is either a line or a quadric. Since every line in CP2 has a real point, C must
be a quadric.

Conversely let C � CP2 be a smooth quadric without real points. In order to
show that C is the image of a smooth section of � W CP2 nRP2 ! S2, which is a
holomorphic curve, it is sufficient to show that �0jC W C ! S2 is a diffeomorphism.
The fibre of � W CP2 n RP2 ! S2 at u D Œ.u1; u2; u3/

t � 2 S2 is an open subset
of the real line u1z1 C u2z2 C u3z3 D 0. Smoothness of C implies that C cannot
contain that line as a component and since a quadric in CP2 without real points
does not have any real tangent lines, it follows from Bezout’s theorem that C

intersects that line transversely in two distinct points. Clearly the line intersects
C in CP1 nRP1 which has two connected components: ��1.u/ [ ��1.�u/. The
intersection of the quadric with the line consists of one point in each of these
components. It follows that �jC W C ! S2 is a submersion and hence by the
compactness of C and S2 a covering map which is at most 2-to-1. But since C is
diffeomorphic to S2, � must restrict to C to be a diffeomorphism onto S2. Hence
.�jC /

�1 W S2 ! CP2 n RP2 is a smooth section and holomorphic curve whose
image is C . According to Theorem 3.7 this section determines a unique Weyl
connection on S2 whose geodesics are the great circles. □
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