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Reduction of ˇ-integrable 2-Segre structures

THOMAS METTLER

ABSTRACT. We show that locally every ˇ-integrable .2; n/-Segre structure can
be reduced to a torsion-free S1 � GL.n;R/-structure. This is done by observing
that such reductions correspond to sections with holomorphic image of a certain
‘twistor bundle’. For the homogeneous .2; n/-Segre structure on the oriented 2-
plane Grassmannian, the reductions are shown to be in one-to-one correspondence
with the smooth quadrics Q � CPnC1 without real points.

1. Introduction

We study the problem of reducing the G-structure associated to a certain type of
Segre structure to a torsion-free substructure.

Segre - or closely related structures and their counterparts in the category of
complex manifolds were studied under various names, including tensor product
structure [13], generalised conformal structure [11], complex paraconformal struc-
ture [3], (almost) Grassmann structure [1, 9, 14, 16], Segre structure [6, 12], and
in [4] as an example of a class of structures called almost symmetric hermitian
manifolds.

Here, by an .m; n/-Segre structure on a manifoldM we mean a smoothly varying
family of cones Sp � TpM in the tangent spaces of M , each linearly isomorphic
to the Segre cone of linear maps Rm ! Rn of rank one. The tangent planes to
M which are contained in some Segre cone Sp come in two types, called ˛- and
ˇ-planes. An immersed submanifold † �M whose tangent planes are all ˇ-planes
and which is maximal in the sense of inclusion is called a ˇ-surface. A Segre
structure is called ˇ-integrable, if every ˇ-plane is tangent to a unique ˇ-surface.

In [12] Grossman showed that the space of paths of a certain class of geodesically
simple path geometries, which he calls torsion-free, inherits a Segre structure.
Bryant observed in [8] that the space of oriented geodesics ƒ of a geodesically
simple Finsler structure of constant flag curvature (CFC) 1 inherits a Kähler structure
and a torsion-free S1 � GL.n;R/-structure satisfying a certain positivity condition.
Conversely, he shows that every torsion-free S1 � GL.n;R/-structure satisfying
the positivity condition (and an integrability condition for n D 2) arises via a
(generalised) CFC 1 Finsler structure.

The main result of the article is that locally every ˇ-integrable .2; n/-Segre
structure S can be reduced to a torsion-free S1 � GL.n;R/-structure. It follows
with Bryant’s result, that locally every ˇ-integrable .2; n/-Segre structure admitting
a S1 � GL.n;R/-reduction satisfying the positivity condition of [8] arises via a
(generalised) CFC 1 Finsler structure.
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2 T. METTLER

Note that an S1 � GL.n;R/-reduction of a ˇ-integrable .2; n/-Segre structure S

equips the underlying manifold with an integrable almost complex structure which
preserves S and for which the ˇ-surfaces are totally real.

This article is organised as follows. In Section 2 we review the construction
of a ‘twistor bundle’ � W XS ! M over a manifold M which is equipped with a
ˇ-integrable .2; n/-Segre structure and show in Section 3 that �-sections having
holomorphic image are in one-to-one correspondence with reductions of S to torsion-
free S1 � GL.n;R/-structures onM . It follows that locally every ˇ-integrable .2; n/-
Segre structure can be reduced to a torsion-free S1 � GL.n;R/ structure. In Section 4
we show that for the homogeneous .2; n/-Segre structure on the oriented 2-plane
Grassmannian M D GC2 .R

nC2/, the reductions are in one-to-one correspondence
with the smooth quadrics Q � CPnC1 without real points.

Remark 1.1. Before this work begun Robert Bryant informed the author about
his private notes regarding the generality of positive constant flag curvature (CFC)
Finsler structures on the n-sphere. He shows that a positive CFC Finsler structure
on the n-sphere all of whose geodesics are closed and of the same length gives rise
to a D2-bundle � W X ! ƒ, fibering over the space of oriented geodesics ƒ, whose
total space is a complex manifold. This bundle is isomorphic to �0 W CPnC1 n

RPnC1 ! GC2 .R
nC2/ in the case of a rectilinear Finsler structure. In addition,

the Finsler structure induces a �-section having holomorphic image (isomorphic
to a quadric in the rectilinear case) and conversely every such section satisfying a
certain convexity condition gives rise to a Finsler structure on Sn sharing the same
geodesics. Using Kodaira deformation theory this allows Bryant to determine the
generality of such Finsler structures sharing the same unparametrised geodesics.
Although being related, the results in this article were arrived at independently.

2. 2-Segre structures

2.1. Definitions and examples

Let m; n � 2 be integers. A vector v 2 Rm ˝Rn is called decomposable or simple
if there exists x 2 Rm and y 2 Rn such that v D x ˝ y. Let X D .X˛/ be linear
coordinates on Rm and Y D .Y k/ on Rn. Writing Zk˛ D X˛ ˝ Y

k , the set of
simple vectors in Rm ˝ Rn is the zero locus of the the homogeneous quadratic
equations

(2.1) Zi˛Z
k
ˇ �Z

i
ˇZ

k
˛ D 0

and thus is a cone. A subset S in a real vector space V is called an .m; n/-Segre
cone, if there exists an isomorphism V ' Rm ˝ Rn which yields a bijection
between S and the cone of simple vectors in Rm ˝Rn.

Let S � V be a Segre cone. Clearly, the isomorphism V ' Rm ˝ Rn is
unique up to composition with an element of the group G.m; n/, the subgroup
of GL.Rm ˝ Rn/ consisting of maps preserving the cone of simple vectors. Let
H.m; n/ D GL.m;R/˝ GL.n;R/ and Z2 � G.n; n/ be the subgroup generated
by the involution x ˝ y 7! y ˝ x for x; y 2 Rn. Then we have an isomorphism of



REDUCTION OF SEGRE STRUCTURES 3

Lie groups1

(2.2) G.m; n/ '

�
H.m; n/ n ¤ m;

H.n; n/ Ì Z2 n D m:

Definition 2.1. An .m; n/-Segre structure S on a smooth mn-manifold M is a
choice of an .m; n/-Segre cone Sp � TpM in each tangent space of M which
varies smoothly from point to point.

An isomorphism f W TpM ! Rm ˝Rn will be called a Segre coframe at p if it
maps Sp to the cone of simple vectors in Rm ˝Rn.

The set of Segre coframes at p will be denoted by .FS /p and is the fibre of a
principal right G.m; n/-bundle � W FS !M , with right action given by Rg.f / D
g�1 ı f for g 2 G.m; n/. The tautological 1-form � is defined by requiring that
�f D f ı � 0

f
W Tf FS ! Rm ˝ Rn for f 2 FS . It satisfies R�g� D g�1 ı � for

g 2 G.m; n/.
A linear subspace … � Sp is called simple. The simple linear subspaces which

are of the form … ' Rm ˝ y for some y 2 Rn are called ˛-planes and the simple
linear subspaces which are of the form … ' x ˝Rn for some x 2 Rm are called
ˇ-planes.2 Note that ˛- and ˇ-planes are not well defined for n D m unless the
Segre structure has been reduced to an H.n; n/-structure. An immersed connected
manifold † ! M for which Tp† is a ˇ-plane for every point p 2 † is called
a proto ˇ-surface. If, in addition, † ! M is maximal in the sense of inclusion,
then † is called a ˇ-surface. A Segre structure S is called ˇ-integrable if every ˇ-
plane… is tangent to a unique ˇ-surface†!M . The notion of a (proto) ˛-surface
and ˛-integrability are defined analogously. The necessary and sufficient conditions
for a Segre structure of type .m; n/ to be ˛- or ˇ-integrable were given in [2, 16]
(see also [3] for the complex case).

Example 2.2. Recall that a pseudo-Riemannian metric g on a smooth 4-manifold
M with signature .C;C;�;�/ is said to have split-signature. Locally g may be
written as

(2.3) g D "11 ˇ "
2
2 � "

1
2 ˇ "

2
1

for some linearly independent 1-forms "ij . A vector v 2 TM is called null
if g.v; v/ D 0. It follows with (2.3) that the g-null vectors give rise to a .2;2/-Segre
structure on M and conversely it can be shown that every .2;2/-Segre structure on
a 4-manifold M gives rise to a unique conformal structure of split-signature on M .

Closely related to Segre structures is the notion of an almost Grassmann structure.

Definition 2.3. A smooth mn-manifold M is said to carry an almost Grassmann
structure if there exist smooth vector bundles Em !M and En !M of rankm; n
respectively together with an isomorphism TM ' Em ˝En.

Remark 2.4. Clearly, an almost Grassmann structure on M induces a unique Segre
structure on M , but the existence of a Segre structure S on M is in general not

1For a proof, see the appendix.
2The reader is warned that often the opposite convention regarding ˛- and ˇ-planes is used. The

convention used here is chosen to be consistent with [15].
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sufficient for the existence of an almost Grassmann structure inducing S . The two
definitions are however equivalent when mC n is odd (see the appendix).

Example 2.5. The prototypical example of a manifold carrying an almost Grass-
mann structure is the Grassmannian ofm-planes in RmCn (see for instance [16] for
details). We will construct the associated Segre structure in §4 for the case m D 2.

2.2. The structure equations of a 2-Segre structure

We will henceforth restrict our attention to H.2; n/-structures � W FS ! M

and simply speak of 2-Segre structures, thus implicitly assuming that .2; 2/-Segre
structures have been reduced to H.2; 2/-structures. We think of H.2; n/ as a
subgroup of GL.2n;R/ via the Kronecker product and consequently of � W FS !

M as a reduction with structure group H.2; n/ of the full coframe bundle F !M

whose fibre at p 2M consists of all isomorphisms TpM ! R2n.
A linear connection � on F !M is said to be adapted to the 2-Segre structure

� W FS !M if � pulls-back to FS to become a principal H.2; n/-connection. A
2-Segre structure is called torsion-free, if it admits an adapted connection � with
vanishing torsion � D d� C � ^ �.

Write H D H.2; n/ and h � gl.2;R/˝ gl.n;R/ for the Lie algebra of H . For
computational purposes it is convenient to introduce the matrices

a D

�
0 �1

1 0

�
; b1 D

�
0 1

0 0

�
; b2 D

�
0 0

0 1

�
;

and write ei
k

for the .n � n/-matrix whose entry is 1 at the position .k; i/ and 0
otherwise. Using this notation an h-basis is given by

a˝ In; b1 ˝ In; b2 ˝ In; I2 ˝ eik;

and a principal H -connection � on FS may be written as

(2.4) � D �˝ In C I2 ˝ �

with � D !a C 2�1b1 C 2�2b2 and � D �i
k
eki for some linearly independent 1-

forms !; �1; �2; �ik on FS . Let � D �1 C i�2. Straightforward computations show
that we may linearly identify R2n with Cn in such a way that we can write the first
structure equation in complex form:

Proposition 2.6. The connection form .!; �; �/ of an FS -adapted connection �
satisfies

(2.5) d� D �
�
i .! � �/ In C �

�
^ � � i � In ^ N� C �:

Proof. Omitted. □

Here the forms � and � are thought to be Cn-valued and N� denotes the Cn-
valued 1-form on FS which is obtained by complex conjugation of the entries
of �.

We have the curvature forms

(2.6)

� D d! C ! ^ i .� � N�/;

„ D d� C � ^ i
�
N� � 2!

�
;

ˆ D d� C � ^ � � ! ^
�
� C N�

�
In:
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Differentiating the structure equation (2.5) gives the Bianchi-identity

(2.7) d� D
�
i .� �„/ In Cˆ

�
^ � C i„ In ^ N�:

2.3. A quasiholomorphic fibre bundle

Let P D S1 � GL.n;R/ � H.2; n/ be the closed subgroup consisting of elements
of the form

ei'
� b D

�
cos' � sin'
sin' cos'

�
˝ b

for some real number ' and b 2 GL.n;R/. Equip the quotient XS D FS=P with
its canonical smooth structure so that the quotient projection � W FS ! XS is a
smooth surjective submersion. Note that the 1-forms �k are �-semibasic since they
are �-semibasic. Moreover since � D .!; �; �/ is a principal H -connection, it
follows with (2.4) that � is �-semibasic as well. Therefore the forms �k together
with �1 and �2 span the �-semibasic 1-forms on FS .

Lemma 2.7. Let � W FS ! M 2n be a 2-Segre structure and � D .!; �; �/ an
adapted connection. Then there exists a unique almost complex structure J on XS

such that a complex-valued 1-form on XS is a .1;0/-form for J if and only if its �-
pullback is a linear combination of

˚
�1; : : : ; �n; �

	
with coefficients in C1.FS ;C/.

Proof. Denote by @
@�l
; @
@�1
; @
@�2
; @
@!
; @

@�i
k

; the vector fields dual to the cofram-

ing .�l ; �1; �2; !; �ik/. Define the map QJ W TFS ! TXS by

QJ.v/ D �0
�
��2k.v/

@

@�2k�1
C �2k�1.v/

@

@�2k
� �2.v/

@

@�1
C �1.v/

@

@�2

�
:

The 1-forms �l ; �1; �2 are �-semibasic and thus we have QJ.v C w/ D QJ.v/ for
every v 2 TFS and w 2 TFS tangent to the �-fibres. Since � is a principal H -
connection, the equivariance .Rh/�� D h�1�h for h 2 H together with a short
computation gives

(2.8) .Rei' �b/
� � D e�2i'�;

for ei' � b 2 S1 � GL.n;R/. Moreover we have

(2.9) .Rh/
�� D h�1�

for every h 2 H . Identifying GL.n;C/with the subgroup of GL.2n;R/ commuting
with a˝ In and using the fact that S1 � GL.n;R/ � GL.n;C/ together with (2.8),
(2.9) implies QJ ı .Rei˛ �b/

0
D QJ: In other words there exists an almost complex

structure J W TXS ! TXS such that QJ D J ı �0. Clearly J has the desired
properties and these properties uniquely characterise J. □

It is natural to ask when two FS -adapted connections induce the same almost
complex structure. We have:

Lemma 2.8. The FS -adapted connections � D .�; !; �/ and � 0 D .�0; !0; � 0/

induce the same almost complex structure on XS if and only if � � � 0 D �k�
k

for some smooth functions �k W FS ! C. In particular any two FS -adapted
connections with the same torsion induce the same almost complex structure.
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Proof. Let J� , J� 0 denote the almost complex structures with respect to the connec-
tions � , � 0 and suppose � 0 D � C �k�k for some smooth functions �k W FS ! C.
Let ˛ be a .1;0/-form for J� . Then we may write

��˛ D ak�
k
C a� D ak�

k
C a

�
� 0 � �k�

k
�
D .ak � �k/ �

k
C a� 0

for some smooth functions a; ak W FS ! C, thus showing that ˛ is a .1;0/-form
for J� 0 . Conversely suppose J� D J� 0 . Note that � � � 0 is �-semibasic and may
thus be written as

� � � 0 D �k�
k
C �0k

N�k

for some smooth functions �k; �0k W FS ! C. Let ˛ be a .1;0/-form for J� . Then
we may write

��˛ D ak�
k
C a� D a0k�

k
C a0� 0 D a0k�

k
C a0

�
� � �k�

k
� �0k

N�k
�

for some smooth functions a; a0; ak; a0k W FS ! C. Thus it follows

.a � a0/� C
�
ak � a

0
k C a

0�k
�
�k C a0�0k

N�k D 0

which can hold for an arbitrary .1;0/-form ˛ if and only if �0
k
D 0. Finally it is easy

to check that if .!; �; �/ and .!0; � 0; �0/ are two FS -adapted connections with the
same torsion, then there exist n smooth complex-valued functions ak on FS such
that

(2.10)

!0 � ! D Re.ak/ Im.�k/;

� 0 � � D
1

2i
Nak�

k;�
�0
�i
k
� �ik D Re.ak�

i /C ıik Re.al/Re.�l/:

□

Denote by A
1;0
S

and A
0;1
S

the complex-valued �-semibasic 1-forms on FS which
can be written as ak�k and ak N�k respectively. Here ak are smooth complex-valued
functions on FS . Furthermore set

A
p;q
S
D ƒp

�
A
1;0
S

�
˝ƒq

�
A
0;1
S

�
;

so that the complex-valued �-semibasic k-forms Ak
S

on FS decompose as

Ak
S D

M
pCqDk

A
p;q
S
:

Proposition 2.9. The almost complex structure J is integrable if and only if „
and the torsion components � i lie in A

2;0
S
˚A

1;1
S

. In particular for n � 3 every
torsion-free FS -adapted connection gives rise to an integrable J.

Remark 2.10. The integrability conditions for the almost complex structure J can
also be obtained by applying [18, Theorem 4]. We we will instead use Theorem 2.6.

Proof of Theorem 2.9. Using the characterisation of J provided in Theorem 2.7,
the first statement is an immediate consequence of the structure equation (2.5),
the definition of the curvature form „ in (2.6), and the Newlander-Nirenberg
theorem. In order to prove the second statement we need to show that for n � 3
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the condition � D 0 implies „ 2 A
2;0
S
˚ A

1;1
S

. Since the curvature form „ is
a �-semibasic 2-form we may write

(2.11) „ D xkl�
k
^ �l C Qxkl N�

k
^ �l C Oxkl N�

k
^ N�l

for some smooth complex-valued functions xkl ; Qxkl ; Oxkl on FS . Writing out the
Bianchi-identity (2.7) in components for � D 0 gives

0 D .i.� �„/ıik Cˆ
i
k/ ^ �

k
C i„ ^ N�i ;

replacing „ with the expansion (2.11) we get

0 D � � � C i Oxkl N�
k
^ N�l ^ N�i

where the unwritten summands do not contain forms in A
0;3
S

. If n � 3 there is for
every choice of indices k; l an index i ¤ k, i ¤ l so that the Bianchi-identity can
hold if and only if Oxkl D 0 which is equivalent to „ lying in A

2;0
S
˚A

1;1
S

. □

Remark 2.11. Recall that H.2; 2/-structures � W FS !M correspond to oriented
conformal structures of split-signature and thus are always torsion-free. In fact, the
logical value of the curvature condition „ 2 A

2;0
S
˚A

1;1
S

does not depend on the
choice of a particular adapted torsion-free connection, but only on FS . We leave it
to the reader to check that this curvature condition corresponds to self-duality3 of
the associated oriented conformal 4-manifold of split-signature.

In fact, it can be shown that for n D 2 the almost complex structure J is integrable
if and only if � is torsion-free and the associated split-signature conformal structure
is self-dual. For n � 3, the almost complex structure J is integrable if and only if �
is torsion-free.

Suppose J is integrable, so that the total space of the bundle � W XS ! M is a
complex .nC 1/-manifold. By construction the �-fibres are smoothly embedded
submanifolds of XS diffeomorphic to GL.2;R/=GL.1;C/. We will argue next,
that .XS ; J/ is a quasiholomorphic fibre bundle with fibre CP1 nRP1.

Definition 2.12. Let � W B !M be a fibre bundle with fibre F and J an almost
complex structure on B . Then .B; J/ is called quasiholomorphic if

(i) the almost complex structure J is integrable,
(ii) there exists a complex structure I on F ,

(iii) each �-fibre Bp D ��1.p/ admits a complex structure with respect to
which it is biholomorphic to .F; I / and with respect to which the inclusion
Bp ,! B is a holomorphic embedding.

Pulling back � with a local section s of � W FS ! XS gives a complex-valued
1-form which pulls back to the �-fibres to be non-vanishing and which depends
on s only up to complex multiples. It follows that the fibres of � W XS ! M are
holomorphically embedded Riemann surfaces with respect to the complex structure
induced by �. Using the Maurer-Cartan form of GL.2;R/, it is easy to see that
fibres are biholomorphic to CP1 n RP1. In [2, 16] it was shown that for n � 3
a 2-Segre structure is ˇ-integrable if and only if it is torsion-free and for n D 2 if
and only if it is self-dual. Summarising we have:

3As in the case of .4; 0/-signature, a split-signature metric is called self-dual if its Weyl curvature
tensor, considered as a bundle-valued 2-form, is its own Hodge-star.
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Theorem 2.13. Let � W FS ! M be a ˇ-integrable 2-Segre structure. Then
there exists a canonical almost complex structure J on XS so that .XS ; J/ is a
quasiholomorphic fibre bundle with fibre CP1 nRP1.

Proof. We pick anFS -adapted connection without torsion and let J be the associated
almost complex structure on XS whose existence is guaranteed by Theorem 2.7.
Then by Theorem 2.9 and the above remarks, the almost complex structure J is
integrable and .XS ; J/ is a quasiholomorphic fibre bundle with fibre CP1 nRP1.
Finally, by Theorem 2.8, any other FS -adapted torsion-free connection gives rise to
the same almost complex structure J. □

3. Reductions of ˇ-integrable 2-Segre structures

We will henceforth consider the ˇ-integrable case and assume � W XS !M to be
equipped with its canonical integrable almost complex structure J with respect to
which .XS ; J/ is a quasiholomorphic fibre bundle. By construction the sections of
the bundle � W XS ! M correspond to reductions of the principal H -bundle � W
FS !M with structure group S1 � GL.n;R/. Note that an S1 � GL.n;R/-reduction
of a ˇ-integrable .2; n/-Segre structure � W FS ! M equips M with an almost
complex structure preserving the Segre cones Sp and for which the ˇ-planes are
totally real. In this section we will show that the torsion-free S1 � GL.n;R/-
reductions of FS are in one-to-one correspondence with the sections � WM ! XS

having holomorphic image �.M/ � XS . This will done using exterior differential
systems (EDS). The notation and terminology for EDS are chosen to be consistent
with [5].

A basis for the Lie algebra of S1 � GL.n;R/ is given by

a˝ In; I2 ˝ eik :

Suppose R ! M is a torsion-free S1 � GL.n;R/-structure with adapted connec-
tion � . Write

� D a˛ ˝ In C I2 ˝ ˇ;

for some 1-form ˛ and some gl.n;R/-valued 1-form ˇ on R. Let � denote the
pullback of the canonical Cn-valued 1-form to R, then � satisfies

(3.1) d� D � .i˛ In C ˇ/ ^ �;

as was already observed in [8].
We will need the following Lemma whose proof is straightforward and thus

omitted:

Lemma 3.1. Let .X; J / be a complex .nC1/-manifold, .�1; : : : ; �n; �/ 2 A1.X;C/

a basis for the .1;0/-forms of J and f W †! X a 2n-submanifold with

(3.2) f �
�
i�1 ^ N�1 ^ � � � ^ i�n ^ N�n

�
¤ 0:

Then .f;†/ is a complex submanifold if and only if

f �
�
� ^ �1 ^ � � � ^ �n

�
D 0:

Moreover through every point p 2 X passes such a complex submanifold.
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On FS define the exterior differential system

I D h� ^ �1 ^ � � � ^ �ni

together with the independence condition

Z D i�1 ^ N�1 ^ � � � ^ i�n ^ N�n:

The EDS .I; Z/ is of interest because of the following:

Lemma 3.2. Let � WM ! XS be an S1 � GL.n;R/-reduction of FS and Q� W U !
FS a local coframing covering � . Then Q� is an integral manifold of .I; Z/ if and
only if � jU W U ! XS is a complex submanifold.

Proof. Let s W ��1.U / ! FS be a local section of the bundle � W FS ! XS and
let �i D s��i for i D 1; : : : ; n and � D s�� be a local basis for the .1;0/-forms
on ��1.U /. Then

���i D .s ı �/��i D .Rt /
��i ;

��� D .s ı �/�� D .Rt /
��;

for some smooth function t W ��1.U /! S1 � GL.n;R/. Recall that for ei' � b 2
S1 � GL.n;R/ we have �

Rei' �b

��
� D e�2i'�;�

Rei' �b

��
� D

�
e�i'
� b�1

�
�:

This yields

��
�
i�1 ^ N�1 ^ � � � ^ i�n ^ N�n

�
D .det b/�2Z ¤ 0

for some smooth map b W ��1.U /! GL.n;R/ and

��� D e�2i'�

for some smooth function ' W ��1.U /! R. Hence we get

.� jU /
�
�
i�1 ^ N�1 ^ � � � ^ i�n ^ N�n

�
D
�
.det b/�2 ı Q�

�
Q��Z

which vanishes nowhere since Q� is a �-section. Therefore according to The-
orem 3.1, � jU W U ! XS is a complex submanifold if and only if

.� jU /
�
�
� ^ �1 ^ � � � ^ �n

�
D

  
e�.nC2/i'

det b

!
ı Q�

!
Q��
�
� ^ �1 ^ � � � ^ �n

�
D 0:

□

Recall that S1 � GL.n;R/ � GL.n;C/ and we can thus look for reductions � W
M ! XS whose associated almost complex structure J� is integrable.

Proposition 3.3. Let � WM ! XS be an S1 � GL.n;R/-reduction of � W FS !M .
Then the following two statements are equivalent:

(i) The almost complex structure J� is integrable.
(ii) Any local coframing Q� W U ! FS covering � is an integral manifold

of .I; Z/.
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Proof. Since Q� is a �-section we have Q��Z ¤ 0. Write �i D Q���i . The local
coframing Q� is adapted to the S1 � GL.n;R/-reduction � and thus the forms �i are
a local basis of the .1;0/-forms of J� . By Newlander-Nirenberg J� is integrable if
and only if there exist complex-valued 1-forms � i

k
such that

d�i D � ik ^ �
k :

Using the structure equation (2.5) we get

(3.3) d�i D Q��d�i D Q� ik ^ �
k
� i Q��� ^ N�i

for some complex-valued 1-forms Q� i
k

. Write

Q��� D xk�
k
C yk N�

k

for some smooth complex-valued functions xk; yk on U . Then (3.3) implies that J�
is integrable on U if and only if the functions yk all vanish. This condition is
equivalent to Q� being an integral manifold of .I; Z/. □

We are now ready to prove:

Theorem 3.4. Let � W FS ! M be a ˇ-integrable 2-Segre structure. Then
an S1 � GL.n;R/-reduction R � FS is torsion-free if and only if �.R/ � XS is a
complex submanifold.

Proof. Let �.R/ D �.M/ for some �-section � WM ! XS which has holomorphic
image, then by Theorem 3.2 and Theorem 3.3, the almost complex structure J� is
integrable. This is equivalent to � satisfying � D xk�k for some smooth complex-
valued functions xk on R. Pulling back the structure equation (2.5) to R � FS

gives

(3.4) d� D �
�
i
�
! � xk�

k
�

In C �
�
^ � � i xk�

k In ^ N�:

Define
˛ D ! � Im.xk/ Im.�k/;

ˇ
j

l
D �

j

l
� Re.i Nxl�

j / � ı
j

l
Im.xk/Re.�k/;

then the 1-form � D a˛ ˝ In C I2 ˝ ˇ is a linear connection on R which satisfies

(3.5) d� D � .i˛In C ˇ/ ^ �;

thus R is torsion-free. Conversely suppose the reduction � WM ! XS is torsion-
free, so that on R D .��1 ı �/.M/ there exists a linear connection � D a˛˝ In C
I2 ˝ ˇ satisfying (3.5). Pulling back .!; �; �/ to R gives

(3.6)

! D ˛ C ak

�
�k C N�k

�
C i Qak

�
�k � N�k

�
� D xk�

k
C Qxk N�

k

�ik D ˇ
i
k C f

i
kl

�
�k C N�k

�
C i Nf ikl

�
�k � N�k

�
for some smooth complex-valued functions ak; Qak; xk; Qxk; f ikl ;

Qf i
kl

on R. Subtract-
ing (3.4) from (3.5) and using (3.6) gives in components

(3.7) 0 D � � � C i
�
xk�

k
C Qxk N�

k
�
^ N�i
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where the unwritten summands are not of the form N�k ^ N�i . It follows that (3.7) can
hold for every i D 1; : : : ; n if and only if Qxk D 0. □

Corollary 3.5. Locally every ˇ-integrable 2-Segre structure � W FS !M can be
reduced to a torsion-free S1 � GL.n;R/-structure.

Proof. For a given point p 2M , choose q 2 XS with �.q/ D p and a coordinate
neighbourhood Up. Let �i , i D 1; : : : ; n and � be a basis for the .1;0/-forms
on ��1.Up/ as constructed in Theorem 3.2. Using Theorem 3.1 there exists a
complex 2n-submanifold f W †! ��1.Up/ passing through q for which

f �
�
i�1 ^ N�1 ^ � � � ^ i�n ^ N�n

�
¤ 0:

Since the � W FS ! M pullback of a volume form on M is a nowhere vanishing
multiple of Z D i�1 ^ N�1 ^ � � � ^ i�n ^ N�n, the � pullback of a volume form
on Up is a nowhere vanishing multiple of Z and hence � ı f W † ! Up is a
local diffeomorphism. Composing f with the locally available inverse of this local
diffeomorphism one gets a local �-section which is defined in a neighbourhood of p
and which is a complex submanifold. Applying Theorem 3.4 it follows that � W
FS !M locally has an underlying torsion-free S1 � GL.n;R/-structure. □

4. The flat case

In this section we apply the obtained results to the Grassmannian of oriented 2-
planes in RnC2 which carries a 2-oriented torsion-free 2-Segre together with an
adapted connection of vanishing curvature.

Here a 2-Segre structure � W FS !M is called 2-oriented if the structure group
H.2; n/ has been reduced to HC.2; n/ D GLC.2;R/˝ GL.n;R/.

Using Theorem 2.13 we also get: If FS ! M is a ˇ-integrable 2-oriented 2-
Segre structure, then � W XS D FS=.S

1 � GL.n;R// ! M together with its
canonical almost complex structure J is a quasiholomorphic fibre bundle with
fibre GLC.2;R/=GL.1;C/ ' D2, the open unit disk in C.

4.1. The Grassmannian of oriented 2-planes

The projective linear group PL.n C 2;R/ D GL.n C 2;R/=Z acts transitively
from the left on the Grassmannian GC2 .R

nC2/ of oriented 2-planes in RnC2 and
the stabiliser subgroup of any element … 2 GC2 .R

nC2/ may be identified with the
subgroup S consisting of elements of the form�

a b

0 c

�
where a 2 GLC.2;R/; c 2 GL.n;R/ and b 2 MR.2; n/ is a real .2 � n/-matrix.
Let � W PL.nC 2;R/! GC2 .R

nC2/ ' PL.nC 2;R/=S be the quotient projection
and write

Q� D

�
˛ ˇ

� 

�
for the Maurer-Cartan form of PL.nC2;R/. The real matrix-valued 1-forms ˛; ˇ; ; �
have sizes according to the block decomposition of the Lie group S and sat-
isfy Tr.˛/ C Tr./ D 0. Let H i

k
denote the vector fields dual to the forms �
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with respect to the coframing Q� . Let N � PL.n C 2;R/ be the closed normal
subgroup given by

N D

��
I2 b

0 In

� ˇ̌̌̌
b 2MR.2; n/

�
whose elements will be denoted by Œb�. The quotient Lie group S=N is iso-
morphic to HC.2; n/ and thus PL.nC 2;R/=N is the total space of a right prin-
cipal HC.2; n/-bundle over GC2 .R

nC2/. Consider the smooth map

'ik W PL.nC 2;R/! TGC2 .R
nC2/; p 7! �0p.H

i
k.p//

The Maurer-Cartan equation d Q� C Q� ^ Q� D 0 implies that the form � is basic for
the quotient projection PL.nC 2;R/! PL.nC 2;R/=N . Therefore the maps 'i

k
are invariant under the right action of N and thus descend to smooth maps PL.nC
2;R/=N ! TGC2 .R

nC2/. The images 'i
k
.p/ for a given point p 2 PL.n C

2;R/ are linearly independent and thus induce a map ' into the coframe bundle
ofGC2 .R

nC2/. The maps 'i
k

can be arranged so that the induced map ' from PL.nC
2;R/=N into the coframe bundle of GC2 .R

nC2/ pulls back the components of the
canonical Cn-valued 1-form to i.�k1C i�k2/. It follows again with the Maurer-Cartan
equation that ' embeds PL.n C 2;R/=N as a smooth right principal HC.2; n/-
subbundle of the coframe bundle of GC2 .R

nC2/. This subbundle will be denoted
by �0 W F0 ! GC2 .R

nC2/ and the projection PL.nC 2;R/! F0 by � . Write

Q! D ˛21 ;

2 Q� D
�
˛12 C ˛

2
1

�
C i

�
˛22 � ˛

1
1

�
;

Q� D  � In˛22 ;

�i D i.�i1 C i�i2/:

Then straightforward computations show that the forms . Q!; Q�; Q�/ transform under
the right action of HC.2; n/ as the connection forms of an S0-adapted connection
do. Moreover we have

d� D �
�

i
�
Q! � Q�

�
In C Q�

�
^ � � i Q�In ^ N�;

This implies that there exists an adapted torsion-free connection .!; �; �/ on F0
such that

(4.1) ��.!; �; �/ D . Q!; Q�; Q�/; mod �;

i.e. (4.1) holds up to linear combinations of the elements of �. Furthermore the
Maurer-Cartan equation implies that the curvature forms of this connection all
vanish. Summarising we have proved:

Proposition 4.1. The Grassmannian of oriented 2-planes in RnC2 admits a 2-
oriented 2-Segre structure S0 together with an adapted, torsion-free, flat connection
.!; �; �/ such that ��.!; �; �/ D . Q!; Q�; Q�/; mod �; holds.

Let � W X0 ! GC2 .R
nC2/ be the D2-bundle associated to the 2-oriented torsion-

free 2-Segre structure �0 W F0 ! GC2 .R
nC2/ and J0 its canonical almost complex

structure which makes .X0; J0/ into a quasiholomorphic fibre bundle with fibre D2.
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Its total space X0 can be identified with the quotient PL.nC 2;R/= QP where QP is
the closed Lie subgroup

QP D

��
a b

0 c

� ˇ̌̌̌
a 2 GL.1;C/; b 2MR.2; n/; c 2 GL.n;R/

�
:

Write an element Œg� 2 PL.nC 2;R/ as Œg1; : : : ; gnC2� where the elements gk are
column-vectors well defined up to a common non-zero factor. Consider the smooth
map

� W PL.nC 2;R/! CPnC1 nRPnC1; Œg1; g2; : : : ; gnC2� 7! Œg1 C ig2�:

Clearly � is a surjective submersion whose fibres are the QP -orbits and thus induces
a diffeomorphism ' W X0 ! CPnC1 n RPnC1. Therefore �0 D � ı '�1 W

CPnC1 n RPnC1 ! GC2 .R
nC2/ is a bundle with fibre D2. Explicitly �0 is

given by Œz� 7! RfRe.z/; Im.z/g and the 2-plane RfRe.z/; Im.z/g is oriented by
declaring Re.z/; Im.z/ to be a positively oriented basis.

Proposition 4.2. There exists a biholomorphic fibre bundle isomorphism ' W

.X0; J0/! CPnC1 nRPnC1 covering the identity on GC2 .R
nC2/.

Proof. Using Theorem 2.7 and Theorem 4.1 it sufficient to show that � pulls-
back the .1;0/-forms of CPnC1 n RPnC1 to linear combinations of the forms
�1; : : : ; �n; Q�. This is a computation which causes no difficulties and so we omit
it. □

4.2. Smooth quadrics without real points

If V is a real vector space, VC D V˝C will denote its complexification and P .VC/ D

.VC n f0g/ =C
� its complex projectivisation. An element Œz� 2 P .VC/ for which z

is a simple vector is called a real point.
The aim of this subsection is to show that the smooth quadrics Q � CPnC1 D

P .RnC2C / without real points are in one-to-one correspondence with the sections
of the bundle �0 W CPnC1 n RPnC1 ! GC2 .R

nC2/ having holomorphic image.
This is done by reducing the problem to the case n D 1 which was shown to be true
in [17, Corollary 2] (see also [7, Theorem 9]).

Let … � RnC2 be a 3-dimensional linear subspace. Choosing an isomorph-
ism R3 ' … induces an embedding of the 2-sphere S2 ' GC2 .R

3/ ,! GC2 .R
nC2/.

Clearly the image of this embedding and its induced smooth structure do not depend
on the chosen isomorphism and thus … determines a smoothly embedded 2-sphere
in GC2 .R

nC2/ which will be denoted by S…. Moreover the isomorphism R3 ' …

induces a holomorphic embedding CP2 ' P .…C/ ,! CPnC1 and thus an embed-
ding CP2 nRP2 ,! CPnC1 nRPnC1. Again the image of this embedding and its
induced complex structure do not depend on the chosen isomorphism and thus …
determines a holomorphically embedded submanifold Y… � CPnC1 nRPnC1. Re-
stricting the base point projection �0 W CPnC1nRPnC1 ! GC2 .R

nC2/ to Y… gives
aD2-bundle �… W Y… ! S… which is isomorphic to the bundle �20 W CP2nRP2 !

GC2 .R
3/, Œz� 7! R fRe.z/; Im.z/g.

Recall that for a smooth algebraic hypersurfaceX � P .VC/, the Gauss map GX W

X ! Gn�1.VC/ sends a point x 2 X to the tangent hyperplane ofX at x. The dual
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variety X� is now defined to be the image of X under the Gauss map. Usually GX
is assumed to take values in P .V �C/ D P ..VC/

�/ ' Gn�1.VC/. Note that if Q �
P .VC/ a smooth quadric without real points. Then the dual of Q is a smooth
quadric without real points in P .V �C/. It follows that the intersection of a smooth
quadric without real points with a real k-plane… of dimension at least 2 gives again
a smooth quadric without real points in P .…C/.

Theorem 4.3. The sections of the disk bundle �0 W CPnC1nRPnC1 ! GC2 .R
nC2/

having holomorphic image are in one-to-one correspondence with the smooth quad-
ric Q � CPnC1 without real points.

Proof. Let � W GC2 .R
nC2/! CPnC1 nRPnC1 be a �0-section with holomorphic

image Q D im � . Let … � RnC2 be a 3-dimensional linear subspace and �… W
S… ! GC2 .R

nC2/, Q�… W Y… ! CPnC1 n RPnC1 the corresponding embedded
submanifolds. Then the map � ı �… W S… ! CPnC1 n RPnC1 is smooth and
takes values in Y…. Consequently the induced map �… W S… ! Y… is an injective
immersion and thus, since S… is compact, a smooth embedding. Set Q… D
Q \ Y… D �….S…/; then Q… � Y… is a smoothly embedded submanifold. Now
Chow’s theorem implies that Q is a smooth algebraic hypersurface. Suppose P W
CnC2 ! C is a homogeneous polynomial defining Q and let P… W C3 ! C

denote the homogeneous polynomial obtained by pulling back P to…C ' C3. The
map P… is a homogeneous polynomial of the same degree as P which has no real
points, since P has no real points. Under the identification Y… ' CP2 nRP2, Q…
becomes a smoothly embedded submanifold of CP2 n RP2 defined by the zero
locus of the homogeneous polynomial P…. Since Q… is diffeomorphic to the 2-
sphere, the genus of Q… is 0 and thus by the degree-genus formula for smooth
plane algebraic curves g D .d � 1/.d � 2/=2; the degree of P… must be 1 or 2.
However since Q… has no real points the degree of P… and thus the degree of P
must be 2.

Conversely letQ � CPnC1 be a smooth quadric without real points. Let f…�g�2I
be a family of 3-dimensional linear subspaces of RnC2 so that the submanifolds S…�
cover GC2 .R

nC2/. Let Q…� denote the intersection of Q with P .…�C/ which is a
smooth quadric without real points. According to [17, Corollary 2] each such quad-
ric is the image of a unique section �� W S…� ! X…� . Now for any two …�1 ;…�2
the spheres S…�1 and S…�2 are either disjoint or intersect in exactly two points.
Since for a given Q…� the section �� is unique, it follows that Q…� intersects
each �…�-fibre in exactly one point. This implies that the sections ��1 and ��2 agree
on intersection points and thus the family f��g�2I gives rise to a unique global
section � W GC2 .R

nC2/! CPnC1 nRPnC1 with image Q. □

Corollary 4.4. The torsion-free S1 � GL.n;R/-reductionsR � F0 are in one-to-one
correspondence with the smooth quadrics Q � CPnC1 without real points.

Proof. This follows immediately from Theorem 3.4 and Theorem 4.3. □

Remark 4.5. For n D 2, the case of conformal 4-manifolds of split-signature,
Theorem 4.4 can also be deduced by applying results from [15]. One could also
look for S1 � GL.2;R/-reductions whose associated almost complex structure is
not only integrable, but for which the corresponding conformal structure Œg� also



REDUCTION OF SEGRE STRUCTURES 15

contains a Kähler-metric. This, and the related problem in .4;0/-signature has been
studied in [10] (see also [15, Theorem D]). Moreover for n D 2, Theorem 3.4 has
an analogue in .4;0/-signature due to Salamon [19].

Appendix A. Appendix

A.1. The structure group

We provide a proof for the existence of the isomorphism claimed in (2.2).

Lemma A.1. Let g 2 G.m; n/ and v 2 V . Then precisely one of the two statements
holds:

(i) There exists v0 2 V and bv 2 Isom.W;W / such that for all w 2 W

g.v ˝ w/ D v0 ˝ bv.w/:

(ii) There exists w0 2 W and av 2 Isom.W; V / such that for all w 2 W .

g.v ˝ w/ D av.w/˝ w0:

Moreover if (i) (or (ii)) is true for some v 2 V , then for all v 2 V .

Proof. For v D 0 the statement is obvious so let’s assume v ¤ 0. Let w1; w2 2 W
be linearly independent, write g.v˝w1/ D v1˝u1 and g.v˝w2/ D v2˝u2 for
some vectors v1; v2 2 V and u1; u2 2 W all nonzero. Then g 2 G.m; n/ implies
that one of the two following cases occurs:

(I) v1 ^ v2 D 0 and u1 ^ u2 ¤ 0;
(II) v1 ^ v2 ¤ 0 and u1 ^ u2 D 0.

Assume (I) holds and fix v0 ¤ 0 with v0 ^ v1 D 0. It follows again with g 2
G.m; n/, that for every w 2 W , there exists a unique element bv.w/ 2 W such that
g.v˝w/ D v0˝ bv.w/. The assignment w 7! bv.w/ is invertible and linear, thus
(i) follows. Assuming (II) holds we conclude similarly that (ii) follows.

Suppose case (i) occurs for some v 2 V and case (ii) for some v0 2 V . Let bv
and av0 be the associated isomorphisms. Since g 2 G.m; n/ either bv or av0 must
have rank 1, thus contradicting the fact that both maps are isomorphisms. □

We can now show:

Proposition A.2. We have an isomorphism

G.m; n/ '

�
H.m; n/ n ¤ m;

H.n; n/ Ì Z2 n D m:

Proof. Let g 2 G.m; n/. Assume case (i) of Theorem A.1 holds for some and
hence all v 2 V . Let Ov; Qv 2 V , then by Theorem A.1 there exists Ov0; Qv0 2 V and
b Ov; bQv 2 Isom.W;W / such that for all w 2 W we have

g. Ov ˝ w/ D Ov0 ˝ b Ov.w/; '. Qv ˝ w/ D Qv0 ˝ bQv.w/:

On the other hand for some Qw 2 W there must exist Qw0 2 W and a Qw 2 Isom.V; V /
such that for all v 2 V

g.v ˝ Qw/ D a Qw.v/˝ Qw0:

We thus get
g. Ov ˝ Qw/ D a Qw. Ov/˝ Qw0 D Ov0 ˝ b Ov. Qw/
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and
g. Qv ˝ Qw/ D a Qw. Qv/˝ Qw0 D Qv0 ˝ bQv. Qw/

Since this holds for any Qw 2 W , the map bQv must be a (nonzero) constant multiple
of the map b Ov. It follows that there exists a 2 Isom.V; V / and b 2 Isom.W;W /
such that g.v ˝ w/ D a.v/˝ b.w/ for all v 2 V and w 2 W . If the case (ii) of
Theorem A.1 holds, we can conclude similarly that there exists a 2 Isom.W; V /
and b 2 Isom.V;W / and such that g.v ˝ w/ D a.w/ ˝ b.v/ for all v 2 V and
w 2 W . From this the claim follows easily. □

A.2. Segre and almost Grassmann structures

Finally, we show that for nC m odd, an .m; n/-Segre structure � W FS ! M is
the same as an almost Grassmann structure. Let S.m; n/ denote the subgroup of
GL.m;R/ � GL.n;R/ consisting of pairs .am; an/ satisfying det am det an D 1.
Clearly for nCm odd, the map

� W S.m; n/! GL.m;R/˝ GL.n;R/; .am; an/ 7! am ˝ an

is a Lie group isomorphism. For k D m; n let �k W S.m; n/ ! Aut.Rk/ be the
representation defined by

�k ..am; an// .v/ D akv:

for v 2 Rk . The reader will recall that any (real or complex) representation
� W H.m; n/ ' S.m; n/! Aut.V / defines a vector bundle .FS /� D FS��V over
M . Let Ek !M denote the rank k vector bundle obtained via the representation
�k . By construction, the vector bundle associated to the representation �m ˝ �n is
the tangent bundle of M and we thus obtain an isomorphism

TM ' Em ˝En

inducing the Segre structure � W FS !M .
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