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Local Embeddability of Real Analytic Path
Geometries

THOMAS METTLER

ABSTRACT. An almost complex structure J on a 4-manifoldX may be described
in terms of a rank 2 vector bundle ƒJ � ƒ2TX�: We call a pair of line sub-
bundles L1; L2 of ƒ2TX� a splitting of J if ƒJ D L1 ˚ L2: A hypersurface
M � X satisfying a nondegeneracy condition inherits a CR-structure from J and
a path geometry from the splitting .L1; L2/: Using the Cartan-Kähler theorem we
show that locally every real analytic path geometry is induced by an embedding
into C2 equipped with the splitting generated by the real and imaginary part of
dz1^dz2: As a corollary we obtain the well-known fact that every 3-dimensional
nondegenerate real analytic CR-structure is locally induced by an embedding into
C2:

1. Introduction

Motivated by the well-known fact (see for instance [6]) that an almost complex
structure J on a 4-manifoldX admits a description in terms of a rank 2 vector bundle
ƒJ � ƒ

2TX�, we introduce the notion of a splitting of an almost complex structure:
A pair of line subbundles L1; L2 of ƒ2TX� is called a splitting of J if ƒJ D

L1 ˚ L2: A hypersurface M � X satisfying a nondegeneracy condition inherits a
CR-structure from J and a path geometry from the splitting .L1; L2/: The purpose
of this Note is to show that locally every real analytic path geometry is induced by
an embedding into R4 ' C2 equipped with the splitting generated by the real and
imaginary part of dz1^dz2: This will be done using the Cartan-Kähler theorem. As
a corollary we obtain the well-known fact that every 3-dimensional nondegenerate
real analytic CR-structure is locally induced by an embedding into C2: It follows
with Nirenberg’s example of a smooth non-embeddable 3-dimensional CR-manifold
that the real analyticity in our main statement is necessary.

The notation and terminology for the Cartan-Kähler theorem and exterior differ-
ential systems are chosen to be consistent with [2, 7]. Moreover we adhere to the
convention of summing over repeated indices.
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2. Preliminaries

2.1. Pairs of 2-forms

Throughout this section, let V denote an oriented 4-dimensional real vector space.
Fix a volume form " 2 ƒ4V � which induces the given orientation. Given two 2-
forms !; � 2 ƒ2V �, we may write ! ^ � D h!; �i" for some unique real number
h!; �i: Clearly the map .!; �/ 7! h!; �i defines a symmetric bilinear form on the
6-dimensional real vector spaceƒ2V � which is easily seen to be nondegenerate and
of signature .3; 3/: Replacing " with another orientation compatible volume form
gives a bilinear form which is a positive multiple of h� ; �i: Consequently, the wedge
product may be thought of as a conformal structure of split signature on ƒ2V �:

Definition 2.1. A pair of 2-forms !; � 2 ƒ2V � is called elliptic if

h!;!ih�; �i > h!; �i2:

It is a natural problem to classify the pairs of elliptic 2-forms on V: This is
a special case of a more general problem: Let ! 2 ƒ2V � be a symplectic 2-
form whose stabiliser subgroup will be denoted by Sp.!/ � GL.V /: The natural
representation of Sp.!/ on ƒ2V � decomposes as ƒ2V � D f!g ˚ !? where both
summands are irreducible Sp.!/-modules.Here !? is the 5-dimensional linear
subspace of ƒ2V � consisting of 2-forms orthogonal to !: One can ask to classify
the orbits of Sp.!/ on !?: This has been carried out in [8] and in the elliptic case
one obtains:

Lemma 2.2. Let !; � 2 ƒ2V � be a pair of elliptic orthogonal 2-forms, then there
exists a positive real number � and a basis ei of V � such that

! D e1 ^ e3 � e2 ^ e4; � D �
�
e1 ^ e4 C e2 ^ e3

�
:

The constant � is an Sp.!/-invariant and thus parametrises the set of elliptic
Sp.!/-orbits. Ellipticity will be useful because of the following:

Lemma 2.3. Let W be 3-dimensional real vector space. Then the pullback of an
elliptic pair of 2-forms !; � 2 ƒ2V � with any injective linear map A W W ! V

gives two linearly independent 2-forms on W:

Proof. The ellipticity condition is equivalent to every nonzero linear combination
of .!; �/ being symplectic. Suppose .!; �/ is an elliptic pair of 2-forms. Then
for every choice of real numbers .�1; �2/ ¤ 0, the 2-form � D �1! C �2� is
symplectic. Since there are no isotropic subspaces of dimension greater than 2 in
the symplectic vector space .V; �/, it follows that A�� D �1A

�! C �2A
�� ¤ 0

for every linear injective map A W W ! V: □

2.2. Splittings of complex structures

Let CC.V / denote space of complex structures on V which are compatible with
the orientation, i.e. its points J 2 End.V / satisfy ".v1; J v1; v2; J v2/ � 0 for all
vectors v1; v2 2 V: Moreover let GC2 .ƒ

2V �;^C/ denote the submanifold of the
Grassmannian of oriented 2-planes in ƒ2V � to whose elements the wedge product
restricts to be positive definite. Given a .2;0/-form ˛ 2 ƒ2;0V � with respect to
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some J 2 CC.V /, let ƒJ 2 GC2 .ƒ
2V �;^C/ denote the 2-dimensional linear

subspace spanned by Re.˛/, Im.˛/ and orient ƒJ by declaring Re.˛/; Im.˛/ to be
positively oriented. Clearly ƒJ and its orientation are independent of the chosen
.2;0/-form ˛ and one thus obtains a map  W CC.V / ! GC2 .ƒ

2V �;^C/ given
by J 7! ƒJ : Note that G D GLC.V / acts smoothly and transitively from the
left on CC.V / via .A; J / 7! A�1JA: Every element of GC2 .ƒ

2V �;^C/ admits a
positively oriented elliptic conformal basis. It follows with Lemma 2.2 that via push-
forward, GLC.V / acts smoothly and transitively from the left on GC2 .ƒ

2V �;^C/

as well.

Proposition 2.4. The map  W CC.V / ! GC2 .ƒ
2V �;^C/, J 7! ƒJ is a G-

equivariant diffeomorphism.

Proof. Clearly the map  is G-equivariant. To prove that  is a diffeomorphism it
is sufficient to show that GJ D G .J / for all J 2 CC.V / where GJ and G .J /
denote the stabiliser subgroups of G with respect to J and  .J / respectively.
Choose J 2 CC.V /, then we have GJ � G .J /: Write

J.v/ D �e2.v/e1 C e
1.v/e2 � e

4.v/e3 C e
3.v/e4

for some basis .ei / of V and dual basis .ei / of V �: Then

! D e1 ^ e3 � e2 ^ e4 D
1

2
wkle

k
^ el ; � D e1 ^ e4C e2 ^ e3 D

1

2
fkle

k
^ el

is a positively oriented conformal basis of ƒJ : Consequently every A 2 G .J /
satisfies A�! D x!Cy� and A�� D �y!Cx�; for some real numbers .x; y/ ¤
0: The matrix representation a of A with respect to the basis .ei / thus satisfies

atwa D xw C yf; atfa D �yw C xf:

From this one easily concludes awf D wfa which is equivalent to A commuting
with J: □

Proposition 2.4 motivates the following:

Definition 2.5. A splitting of a complex structure J on V is a pair of lines L1; L2 2
P .ƒ2V �/ such that ƒJ D L1 ˚ L2:

Call two 4-dimensional real vector spaces V , V 0 equipped with complex struc-
tures J , J 0 and splittings .L1; L2/, .L01; L

0
2/ equivalent, if there exists a complex

linear map A W V ! V 0 such that A�.L0i / D Li for i D 1; 2:
On V D R4 let !0 D e1 ^ e3 � e2 ^ e4 and �0 D e1 ^ e4 C e2 ^ e3

where e1; : : : ; e4 denotes the standard basis of .R4/�: Define L1 D f!0g and
L2 D f˛!0 C �0g for some nonnegative real number ˛: Orient L1 ˚ L2 by
declaring !0; �0 to be a positively oriented basis and let J0 be the associated
complex structure. Then S˛ D .L1; L2/ is a splitting of J0:

Proposition 2.6. Every pair .V; J / equipped with a splitting .L1; L2/ is equivalent
to .R4; J0/ equipped with the splitting S˛ for some unique ˛ 2 RC0 :

Proof. Let L1 D f!g and L2 D f!0g for some 2-forms !;!0 2 ƒ2V �: Since the
wedge product restricts to be positive definite on L1 ˚ L2 we have ! ^ ! > 0

and there exists a real number ˛, such that !0 D ˛! C � for some 2-form �

satisfying !^� D 0 and �^� > 0: After possibly rescaling !0 we can assume that
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�^� D !^! and that ˛ is nonnegative. It follows with Lemma 2.2 that there exists
a linear map A W V ! R4 which identifies ! with !0 and � with �0, in particular
A is complex linear. To prove uniqueness of ˛ suppose A W R4 ! R4 satisfies
A�!0 D x!0 and A�.˛!0C�0/ D y .ˇ!0 C �0/ for some real numbers x; y ¤ 0
and some nonnegative real numbers ˛; ˇ: Then A� .!0 ^ !0/ D x2!0 ^ !0 and
consequently

A� .!0 ^ .˛!0 C �0// D ˛x
2!0 ^ !0 D xyˇ!0 ^ !0;

which is equivalent to ˛x D ˇy: We also have

A� ..˛!0 C �0/ ^ .˛!0 C �0// D x
2.˛2 C 1/!0 ^ !0 D y

2.ˇ2 C 1/!0 ^ !0;

which implies x2 D y2 and thus ˛2 D ˇ2: Since ˛; ˇ � 0, the claim follows. □

For a splitting .L1; L2/, the unique nonnegative real number ˛ provided by
Proposition 2.6 will be called the degree of the splitting. A splitting of degree 0 will
be called orthogonal.

3. Local embeddability of real analytic path geometries

3.1. Splittings of almost complex structures

LetX be a smooth 4-manifold and J be an almost complex structure with associated
rank 2 vector bundle ƒJ � ƒ

2TX� whose fibre at p 2 X is the linear subspace
ƒJp
� ƒ2TpX

� associated to Jp W TpX ! TpX: A splitting of J consists of a pair
of smooth line bundles L1; L2 � ƒ2TX� so that ƒJ D L1 ˚ L2:

3.2. Induced structure on hypersurfaces

A CR-structure on a 3-manifold M consists of a rank 2 subbundle D � TM and
a vector bundle endomorphism I W D ! D which satisfies I 2 D �IdD: A CR-
structure .D; I / is called nondegenerate if D is nowhere integrable, i.e. a contact
plane field. A closely related notion is that of a path geometry (see for instance [7]
for a motivation of the following definition). A path geometry on a 3-manifold M
consists of a pair of line subbundles .P1; P2/ of TM which span a contact plane
field. A CR-structure .D; I / and a path geometry .P1; P2/ on M will be called
compatible if D D P1 ˚ P2 and I.P1/ D P2:

Let .L1; L2/ be a splitting of the almost complex structure J on X and .!; �/ a
pair of 2-forms defined on some open subset QU � X which span .L1; L2/: Then
the pair .!; �/ is elliptic, i.e. .!p; �p/ is elliptic for every point p 2 QU : Suppose
M � X is a hypersurface. Then Lemma 2.3 implies that the 2-forms .!; �/ remain
linearly independent when pulled back to M \ QU : This is useful because of the
following:

Lemma 3.1. Let ˇ1; ˇ2 be smooth linearly independent 2-forms on a 3-manifoldM:
Then there exists a local coframing � D .�1; �2; �3/t of M such that ˇ1 D �2 ^ �1
and ˇ2 D �2 ^ �3:

Recall that a (local) coframing on M consists of three smooth linearly independ-
ent 1-forms defined on (some proper open subset of) M:
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Proof of Lemma 3.1. Let x W U ! E3 be local coordinates on M with respect to
which ˇ1jU D b1 �?dx and ˇ2jU D b2 �?dx for some smooth bi W U ! R3 where
? denotes the Hodge-star of Euclidean space E3: Define e D .b1 � b2/ =jb1 � b2j W
U ! R3 and

�1 D .b1 � e/ � dx; �2 D e � dx; �3 D .b2 � e/ � dx;

then .�1; �2; �3/ have the desired properties. □

A local coframing of M obtained via Lemma 3.1 and some (local) choice of
2-forms .!; �/ spanning .L1; L2/ will be called adapted to the structure induced
by the splitting .L1; L2/: Independent of the particular adapted local coframings
are the line subbundles P1 and P2 of TM , locally defined by

P1 D f�1; �2g
? ; P2 D f�2; �3g

? :

Call a hypersurfaceM � X nondegenerate ifD D P1˚P2 is a contact plane field.
Summarising, we have shown:

Proposition 3.2. A nondegenerate hypersurface M � X inherits a path geometry
from the splitting .L1; L2/:

Remark 3.3. Fixing a .2;0/-form on X allows to define a coframing on a hypersur-
face M � X: For the construction of the coframing and its properties, see [4].

3.3. Local embeddability

We conclude by using the Cartan-Kähler theorem to show that locally every real
analytic path geometry is induced by an embedding into C2 equipped with the
splitting .f!0g ; f�0g/: Here !0 D Re.dz1 ^ dz2/ and �0 D Im.dz1 ^ dz2/ where
z D .z1; z2/ are standard coordinates on C2: Writing z1 D x1 C ix2 and z2 D
x3 C ix4 for standard coordinates x D .xi / on R4, we have

!0 D dx1 ^ dx3 � dx2 ^ dx4; �0 D dx1 ^ dx4 C dx2 ^ dx3:

In [5], as an application of his method of equivalence, Cartan has shown how to
associate a Cartan geometry to every path geometry.

Definition 3.4. Let G be a Lie group and H � G a Lie subgroup with Lie algebras
h � g: A Cartan geometry of type .G;H/ on a manifold M consists of a right
principal H -bundle � W B ! M together with a 1-form � 2 A1.B; g/ which
satisfies the following conditions:

(i) �b W TbB ! g is an isomorphism for every b 2 B ,
(ii) �.Xv/ D v for every fundamental vector field Xv, v 2 h,

(iii) .Rh/�� D Adg.h�1/ ı �:

Here Adg denotes the adjoint representation of G: The 1-form � is called the Cartan
connection of the Cartan geometry .� W B !M; �/:

Denote by H � SL.3;R/ the Lie subgroup of upper triangular matrices. In
modern language Cartan’s result is as follows (for a proof see [3, 7]):



6 T. METTLER

Theorem 3.5 (Cartan). Given a path geometry .M;P1; P2/, then there exists a
Cartan geometry .� W B ! M; �/ of type .SL.3;R/;H/ which has the following
properties: Writing

� D

0@ �00 �01 �02
�10 �11 �12
�20 �21 �22

1A ;
(i) for any section � WM ! B , the 1-form � D ��� satisfiesP1 D

˚
�21 ; �

2
0

	?
and P2 D

˚
�10 ; �

2
0

	?
: Moreover �10 ^ �

2
0 ^ �

2
1 is a volume form on M:

(ii) The curvature 2-form ‚ D d� C � ^ � satisfies

(3.1) ‚ D

0@ 0 W1 �
1
0 ^ �

2
0 .W2�

1
0 C F2�

2
1 / ^ �

2
0

0 0 F1 �
2
1 ^ �

2
0

0 0 0

1A
for some smooth functions W1;W2;F1;F2 W B ! R:

Using this result and the Cartan-Kähler theorem we obtain local embeddability
in the real analytic category:

Theorem 3.6. Let .M;P1; P2/ be a real analytic path geometry. Then for every
point p 2M there exists a p-neighbourhood Up �M and a real analytic embed-
ding ' W Up ! C2 such that the path geometry induced by the splitting .f!0g ; f�0g/
is .P1; P2/ on Up:

Proof. Let .� W B ! M; �/ denote the Cartan geometry of the path geometry
.M;P1; P2/: On N D B � R4 consider the exterior differential system with
independence condition .I; �/ where � D �1 ^ �2 ^ �3 with �1 D �10 ; �

2 D

�20 ; �
3 D �21 and the differential ideal I is generated by the two 2-forms

�1 D �
2
0 ^ �

1
0 � !0; �2 D �

2
0 ^ �

2
1 � �0:

The dual vector fields to the coframing (� i
k
; dxl/ of N will be denoted by .T i

k
; @xl /:

Let Gk.TN /! N be the Grassmann bundle of k-planes on N and G3.TN; �/ D
fE 2 G3.TN / j�E ¤ 0g where �E denotes the restriction of � to the 3-plane E:
Let V k.I/ denote the set of k-dimensional integral elements of I, i.e. those E 2
Gk.TN / for which ˇE D 0 for every form ˇ 2 Ik D I \ Ak.N /: The flag
of integral elements F D

�
E0; E1; E2; E3

�
of I given by E0 D f0g; E1 D

fv1g; E
2 D fv1; v2g; E

3 D fv1; v2; v3g where

v1 D T
1
0 C T

2
0 C T

2
1 C @x4 ;

v2 D T
0
0 C T

1
0 � T

2
1 C @x1 C @x2 ;

v3 D T
1
1 � T

2
1 C @x1 ;

has Cartan characters .s0; s1; s2; s3/ D .0; 2; 4; 3/: Therefore, by Cartan’s test,
V 3.I/ has codimension at least 8 at E3: However the forms of I3 which impose
independent conditions on the elements ofG3.TN; �/ are the eight 3-forms d�i ; �i^
�k; i D 1; 2, k D 1; 2; 3: It follows that V 3.I/ \ G3.TN; �/ has codimension 8
in G3.TN /: Moreover computations show that V 3.I/ \ G3.TN; �/ is a smooth
submanifold near E3, thus the flag F is Kähler regular and therefore the ideal
I is involutive. Pick points p 2 M and q D .b; 0/ 2 N with �.b/ D p: By
the Cartan-Kähler theorem there exists a 3-dimensional integral manifold N D
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.Ns; N'/ W †! B �R4 of .I; �/ passing through q and having tangent space E3 at
q: Every volume form on M pulls back under � to a nowhere vanishing multiple
of �: Since N��� D Ns�� ¤ 0, � ı Ns W †!M is a local diffeomorphism. Therefore
p 2 M has a neighbourhood Up on which there exists a real analytic immersion
 D .s; '/ W Up ! B � R4 such that the pair . ; Up/ is an integral manifold of
the EDS .N; I; �/ and s a local section of � W B ! M: After possibly shrinking
Up we can assume that ' is an embedding. Since by construction '�.!0 C i�0/ D
s�.�20 ^ .�

1
0 C i�

2
1 //; it follows that the path geometry induced by ' is .P1; P2/ on

Up: □

Remark 3.7. Every nondegenerate hypersurface M � C2 also inherits a CR-
structure .D; I / from the complex structure J on C2: For every p 2M define Dp
to be the largest Jp-invariant subspace of TpM and Ip to be the restriction of Jp to
Dp: Then .D; I / is easily seen to be compatible with the path geometry induced on
M by .f!0g ; f�0g/:

Using this remark and Theorem 3.6 we get the well-known:

Corollary 3.8. Let .D; I / be a nondegenerate real analytic CR-structure on a
3-manifold M: Then for every point p 2M there exists a p-neighbourhood Up and
a real analytic embedding ' W Up ! C2, such that .D; I / is the CR-structure on
Up induced by the embedding ':

Proof. Pick a line bundle P2 � D, define P1 D I.P2/ and apply Theorem 3.6. □

Remark 3.9. Corollary 3.8 also holds without the nondegeneracy assumption and
in higher dimensions [1]. In [9], Nirenberg has constructed a smooth nondegenerate
3-dimensional CR-structure which is not induced by an embedding into C2: It
follows that the real analyticity assumption in Theorem 3.6 is necessary.
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