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Soliton solutions of the mean curvature
flow and minimal hypersurfaces

norbert hungerbühler and thomas mettler

Abstract. Let (M, g) be an oriented Riemannian manifold of dimension
at least 3 and X ∈ X(M) a vector field. We show that the Monge-Ampère
differential system (M.A.S.) for X-pseudosoliton hypersurfaces on (M, g)
is equivalent to the minimal hypersurface M.A.S. on (M, ḡ) for some
Riemannian metric ḡ, if and only if X is the gradient of a function u, in
which case ḡ = e−2ug. Counterexamples to this equivalence for surfaces
are also given.

1. Introduction

Recall that a smooth family of hypersurfaces Ft : Σn → Mn+1, t ⩾ 0, in a
Riemannian manifold (M, g) is called a solution of the mean curvature flow
(M.C.F.) on (0, T ), T > 0, if

d

dt
Ft = −H, on Σ× (0, T ),

F0 = f, on Σ,

where f : Σ → M is a given initial hypersurface and H denotes the mean
curvature vector of Ft(Σ). Suppose there exists a conformal Killing vector
field X on M with flow ϕ : M × R → M . A family of hypersurfaces Ft is
said to be a soliton solution of the M.C.F. with respect to the conformal
Killing vector field X if F̃t = ϕ−1(Ft, t) is stationary in normal direction,
i.e. F̃t(Σ) is the fixed hypersurface f(Σ). In [8] it was shown that for a given
initial hypersurface f : Σ →M to give rise to a soliton solution of the mean
curvature flow it is necessary that

(1.1) H+X⊥ = 0,

where ⊥ denotes the g-orthogonal projection onto the normal bundle of the
hypersurface f : Σ →M . If X is Killing, then (1.1) is also sufficient.

Soliton solutions have played an important rôle in the development of the
theory of the M.C.F. Such solutions served, e.g., as tailor-made comparison
solutions to investigate the development of singularities (e.g. Angenent’s
self-similarly shrinking doughnut, see [3]). Actually, soliton solutions appear
as blow-up of so called type II singularities of the flow of plane curves (see [2]).
Moreover, soliton solutions turn out to enjoy certain stability properties and
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allow some insight into the behaviour of the mean curvature flow viewed as
a dynamical system (see [8], [13] and [6]).

In [8] the boundary value problem for rotating soliton solutions has been
discussed. The corresponding local existence result has been generalised to
arbitrary Killing fields in [9]. For rotating solitons in the euclidean plane,
so called yin-yang curves, a quantity was identified that remains invariant
along the curve (see [9]). This invariant allowed to show that yin-yang curves
share fundamental geometric properties with geodesic curves. In [9] the
corresponding results have been generalised to arbitrary soliton curves on
surfaces (see Figure 1). In addition, it was observed in [9], that translating

Figure 1. If the Gaussian curvature of the simply connected
ambient surface is less than or equal to 0, then two soliton
curves intersect in at most one point. This fact is illustrated
here by two yin-yang curves rotating about the origin.

solitons in the euclidean plane, the so called grim reaper curves, actually
are geodesics with respect to a conformally deformed Riemannian metric.
Therefore the natural question arose whether soliton curves are (at least
locally) always geodesic curves with respect to a modified Riemannian metric.
This is not the case. On a surface (M, g), the solutions of (1.1) are immersed
curves on M which may be reparametrised to become geodesics of the Weyl
connection ∇g,X given by

(Y1,Y2) 7→ (Dg)Y1Y2 − g(Y1,Y2)X+ g(X,Y1)Y2 + g(X,Y2)Y1,

where we have written Dg for the Levi-Civita connection of g. The equa-
tion (1.1) is parametrisation invariant and thus its solutions are naturally
interpreted as the geodesics of a projective structure on M . Recall that a
projective structure is an equivalence class of affine torsion-free connections,
where two such connections are said to be equivalent if they have the same
geodesics up to parametrisation. Recently in [4], Bryant, Dunajski and
Eastwood determined the necessary and sufficient local conditions for an
affine torsion-free connection to be projectively equivalent to a Levi-Civita
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connection. Applying their results1 it follows that the Weyl connection
whose geodesics are the yin-yang curves is not projectively equivalent to a
Levi-Civita connection. However Jürgen Moser conjectured2 that soliton
curves can at least locally be interpreted as geodesics of a Finsler metric.
Recent results about Finsler metrisability of path geometries by Álvarez
Paiva and Berck [1] show that this is indeed the case. Of course, one can
ask analogue questions also for higher dimensional solitons. Before we do
that, we generalise the notion of soliton solutions slightly.
Definition 1.1. A hypersurface f : Σ → M solving (1.1) for some vector
field X ∈ X(M) will be called a X-pseudosoliton hypersurface of (M, g).

Note that the 0-pseudosoliton hypersurfaces are the minimal hypersurfaces
of (M, g). It was observed in [13] (see also [7]) that solitons with respect
to gradient vector fields correspond to minimal hypersurfaces. However it
was left open if such a correspondence holds when the vector field is not the
gradient of a smooth function. In this short article we provide an answer
using the framework of Monge-Ampère differential systems.

In §2 we will associate to the X-pseudosoliton hypersurface equation on
(M, g) a Monge-Ampère system on the unit tangent bundle of M whose
Legendre integral manifolds, which satisfy a natural transversality condition,
locally correspond to X-pseudosoliton hypersurfaces on M . We then show
that for a gradient vector field X = ∇gu on M , the X-pseudosoliton M.A.S.
is equivalent to the minimal hypersurface M.A.S. on (M, e−2ug). This was
already shown in [13], albeit expressed in different language. We complete
the picture by proving the
Theorem 1.2. The X-pseudosoliton M.A.S. on an oriented Riemannian
manifold (M, g) of dimension n+1 ⩾ 3 is equivalent to a minimal hypersurface
M.A.S. if and only if X is a gradient vector field.

Theorem 2.3 is wrong for n = 1, i.e. the case of curves on surfaces.
We provide counterexamples and comment on the necessary and sufficient
conditions for X in the surface case. Theorem 2.3 provides an answer to the
equivalence problem for specific M.A.S. in arbitrary dimension n+1 ⩾ 3. The
equivalence problem for general M.A.S. has been studied for 5-dimensional
contact manifolds in [5] and in various low dimensions in [11].

Throughout the article manifolds are assumed to be connected and smooth-
ness, i.e. infinite differentiability is assumed.
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2. Equivalence of the soliton and minimal hypersurface equa-
tion

2.1. Monge-Ampère systems

Let N be a (2n + 1)-dimensional manifold carrying a contact structure,
meaning a maximally nonintegrable codimension 1 subbundle D ⊂ TN
which we assume to be given by the kernel of a globally defined contact form
θ. Recall that a n-dimensional submanifold f : Σ → N which satisfies f∗θ = 0
is called a Legendre submanifold of (N,D). A Monge-Ampère differential
system on (N,D) is a differential ideal M ⊂ A∗(N) in the exterior algebra
of differential forms on N given by

M = {θ, dθ, ϕ} ,

where ϕ ∈ An(N) is a n-form.3 The brackets { } denote the algebraic span
of the elements within, i.e. the elements of M may be written as

α ∧ θ + β ∧ dθ + γ ∧ ϕ,

where α, β, γ are differential forms on N . Note that M is indeed a differential
ideal since dϕ lies in the contact ideal C = {θ,dθ}, cf. [5]. A Legendre
submanifold of (N,D) which pulls-back to 0 the n-form ϕ as well will be
called a Legendre integral manifold of M. Two Monge-Ampère systems
(N,M) and (N̄ , M̄) are called equivalent if there exists a diffeomorphism
ψ : N → N̄ identifying the two ideals. Note that this implies that ψ is a
contact diffeomorphism.

2.2. Minimal hypersurfaces via frames

In order to fix notation we review the description of minimal hypersurfaces
using moving frames. For n ⩾ 1, let (M, g) be an oriented Riemannian
(n+1)-manifold, π : F →M its right principal SO(n+1)-bundle of positively
oriented orthonormal frames and τ : U → M its (sphere) bundle of unit
tangent vectors. Write the elements of F as (p, e0, . . . , en) where p ∈ M
and e0, . . . , en is a positively oriented g-orthonormal basis of TpM . The Lie
group SO(n+ 1) acts smoothly from the right by

(p, e0, . . . , en) · r =
(
p,

n∑
i=0

eiri0, . . . ,
n∑

i=0
eirin

)
,

where rik for i, k = 0, . . . , n denote the entries of the matrix r. The map
ν : F → U , given by (p, e0, . . . , en) 7→ (p, e0) is a smooth surjection whose
fibres are the SO(n)-orbits and thus makes F together with its right action
into a SO(n)-bundle over U . Here we embed SO(n) as the Lie subgroup of

3More generally one can define a M.A.S. to be a differential ideal which is only locally
generated by a contact ideal and an n-form. However for our purposes the above definition
is sufficient.
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SO(n+ 1) given by{(
1 0
0 r

)
∈ SO(n+ 1), r ∈ SO(n)

}
.

Let ωi ∈ A1(F ) denote the tautological forms of F given by

(ωi)(p,e0,...,en) (ξ) = gp
(
ei, π

′(ξ)
)
,

and ωik ∈ A1(F ) the Levi-Civita connection forms which satisfy ωik+ωki = 0.
The dual vector fields to the coframing (ωi, ωik) , i < k, will be denoted by
(Wi,Wik). Recall that we have the structure equations

(2.1)
dωi +

n∑
k=0

ωik ∧ ωk = 0,

dωik +
n∑

l=0
ωil ∧ ωlk = Ωik,

where Ωik ∈ A2(F ) are the curvature forms. Denote by ω̂i the wedge product
of the forms ω1, . . . ωn, with the i-th form omitted

ω̂i = ω1 ∧ · · · ∧ ωi−1 ∧ ωi+1 ∧ · · · ∧ ωn.

For n = 1 set ω̂1 ≡ 1. Note that the forms
θ = ω0,

ω = ω1 ∧ · · · ∧ ωn,

µ = − 1
n

n∑
i=1

(−1)i−1ω0i ∧ ω̂i,

are ν-basic, i.e. pullbacks of forms on U which, by abuse of language, will
also be denoted by θ, ω, µ. Since

(2.2) dω0 = −
n∑

k=1
ω0k ∧ ωk

the 1-form θ is a contact form. Note also that

(2.3) dω + (−1)n−1 nµ ∧ θ = 0.

The geometric significance of these forms is the following: Suppose f : Σ →M
is an oriented hypersurface and Gf : Σ → U its orientation compatible Gauss
lift. In other words the value of Gf at p ∈ Σ is the unique unit vector at
f(p) which is g-orthogonal to f ′(TpΣ) and together with a positively oriented
basis of TpΣ induces the positive orientation of Tf(p)M . By construction we
have

(2.4) G∗
fθ = 0

and simple computations show that

(2.5) G∗
fω = ωf∗g,
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where ωf∗g denotes the Riemannian volume form on Σ induced by f∗g.
Suppose f̃ : V ⊂ Σ → F is a local framing covering Gf and f . Then pulling
back (2.4) and using (2.2) gives

n∑
k=1

f̃∗ω0k ∧ f̃∗ωk = 0.

The independence (2.5) implies that the forms εi = f̃∗ωi are linearly independ-
ent and thus Cartan’s lemma yields the existence of functions hik : V → R,
symmetric in the indices i, k, such that

f̃∗ω0i =
n∑

k=1
hikεk.

In particular we have

(2.6) G∗
fµ = −Hε1 ∧ · · · ∧ εn,

where H = 1
n

∑n
i=1 hii is the mean curvature of the hypersurface f : Σ →M .

Conversely if G : N → U is an orientable n-submanifold with G∗θ = 0 and
G∗ω ≠ 0, then τ ◦G : N →M is an immersion. Shrinking N if necessary we
can assume that f = τ ◦G : N →M is a hypersurface which can be oriented
in such a way that its Gauss lift agrees with G. Thus the Legendre integral
manifolds G : Σ → U of the M.A.S. Mg on U given by

Mg = {θ,dθ, µ}

which satisfy the transversality conditions G∗ω ̸= 0 locally correspond to
minimal hypersurfaces on (M, g).

2.3. X-pseudosoliton hypersurfaces via frames

Given a vector field X on M define the functions Xi : F → R by

(2.7) (p, e0, . . . , en) 7→ gp(X(p), ei).

Of course X0 is the ν-pullback of a function on U which will be denoted by
X. Using (1.1) and (2.6) it follows that an oriented hypersurface f : Σ →M
is a X-pseudosoliton hypersurface if and only if

G∗
f (µ−Xω) = 0.

Thus the Legendre integral manifolds G : Σ → U of the M.A.S. Mg,X on U
given by

Mg,X = {θ,dθ, µ−Xω}
which satisfy the transversality conditions G∗ω ̸= 0 locally correspond to
X-pseudosoliton hypersurfaces on (M, g). Now suppose X is a gradient
vector field X = ∇gu for some smooth function u :M → R. Let ḡ = e−2ug,
π̄ : F̄ →M denote the bundle of positively oriented ḡ-orthonormal frames
with canonical coframing ω̄i, ω̄ik and ψ̃ : F → F̄ the map which scales a
ḡ-orthonormal frame by eu. Then by definition

(2.8) ψ̃∗ω̄i = e−uωi,



SOLITONS AND MINIMAL HYPERSURFACES 7

and the structure equations (2.1) yield
(2.9) ψ̃∗ω̄ik = ωik + ukωi − uiωk,

where we expand π∗du =
∑n

k=0 ukωk for some smooth functions uk : F → R.
Note that u0 is the ν-pullback of the function X. Let τ̄ : Ū →M denote the
ḡ-unit tangent bundle with canonical forms µ̄, ω̄ and ψ : U → Ū the map
which scales a g-unit vector by eu. Then (2.8) implies

ψ∗ω̄ = e−nuω,

thus ψ is a contact diffeomorphism. Moreover (2.8) and (2.9) yield

(2.10)
ψ∗µ̄ = −e

−(n−1)u

n

n∑
k=1

(−1)k−1 (ω0k + ukθ − u0ωk) ∧ ω̂k

= −e−(n−1)u
(
µ−Xω + 1

n
θ ∧

(
i∇guω

))
which can be written as α ∧ θ + γ ∧ (µ−Xω) for some (n− 1)-form α and
some smooth real-valued function γ on U . This yields

ψ∗Me−2ug = Mg,∇gu.

Summarising we have proved the

Proposition 2.1. Let (M, g) be an oriented Riemannian manifold and
X = ∇gu a gradient vector field. Then the X-pseudosoliton M.A.S. on (M, g)
is equivalent to the minimal hypersurface M.A.S. on (M, e−2ug).

2.4. The non-gradient case

Theorem 2.1 raises the question if there still exists a contact equivalence
between minimal hypersurfaces and solitons if X is not a gradient vector
field. We will argue next that this is not possible for n ⩾ 2, so assume in
this subsection that n ⩾ 2. Before providing the arguments we recall a result
from symplectic linear algebra. Suppose (V,Θ) is a symplectic vector space
of dimension 2n, i.e. Θ ∈ Λ2(V ∗) is non-degenerate. If a form β of degree
s ⩽ p satisfies
(2.11) β ∧Θ(n−p) = 0,
then β = 0. This is a corollary of the Lepage decomposition theorem for
p-forms on symplectic vector spaces. (cf. [10, Corollary 15.15]). Of course
in our setting the symplectic vector spaces are the fibres of the contact
subbundle D and Θ is obtained by restricting dθ to D.

Lemma 2.2. A necessary condition for the X-pseudosoliton M.A.S. to be
equivalent to the minimal hypersurface M.A.S. is the existence of an exact
1-form ρ such that

d ((µ−Xω) ∧ θ) = ρ ∧ (µ−Xω) ∧ θ

Proof. Write ϕ = µ−Xω and suppose there exists a Riemannian metric ḡ
and a diffeomorphism ψ : U → Ū such that ψ∗Mḡ = Mg,X. Then
(2.12) ψ∗µ̄ = α ∧ θ + β ∧ dθ + γ ∧ ϕ,



8 N. HUNGERBÜHLER AND T. METTLER

where α is a (n − 1)-form, β a (n − 2)-form and γ a smooth real-valued
function on U . Note that we have

(2.13)
0 = ϕ ∧ dθ,
0 = µ̄ ∧ dθ̄.

Wedging (2.12) with ψ∗dθ̄, using (2.13) and that ψ is a contact diffeomorphism
gives
(2.14) (β ∧ dθ ∧ dθ) |D = 0,
where |D denotes the restriction to the contact subbundle D ⊂ TU . For
n = 2 equation (2.14) implies β = 0. For n ⩾ 3 it follows with (2.11) and
(2.14) that β|D = 0, thus there exists a (n− 3)-form β′ such that

β = β′ ∧ θ.

We can therefore assume that there exists a (n− 1)-form α′ such that
(2.15) ψ∗µ̄ = α′ ∧ θ + γ ∧ ϕ.

Wedging both sides of (2.15) with ψ∗θ̄ gives

ψ∗
(
µ̄ ∧ θ̄

)
=
(
α′ ∧ θ + γ ∧ ϕ

)
∧ ψ∗θ̄.

this is equivalent to
ψ∗
(
µ̄ ∧ θ̄

)
= γ̃ ∧ ϕ ∧ θ

for some smooth non-vanishing real-valued function γ̃. Since µ̄∧ θ̄ is an exact
form, see (2.3), we must have

dξ = df ∧ ξ,

where we have written ξ = ϕ ∧ θ and f = − ln |γ̃|. □

Using this Lemma we can proof the

Theorem 2.3. The X-pseudosoliton M.A.S. on an oriented Riemannian
manifold (M, g) of dimension n+1 ⩾ 3 is equivalent to a minimal hypersurface
M.A.S. if and only if X is a gradient vector field.

Remark 2.4. Before giving the proof we point out identities which hold
for the functions Xi (recall (2.7) for their definition). Since the 1-form
O = (ωik) ∈ A1(F, so(n + 1)) is a connection we have O(Wv) = v, where
Wv is the vector field obtained by differentiating the flow

((p, e0, . . . , en), t) 7→ (p, e0, . . . , en) · exp(tv)
and v ∈ so(n+ 1), the Lie algebra of SO(n+ 1). In particular this implies
that the time t flow of the vector field Wik for i < k maps the frame

(p, e0, . . . , ei, . . . , ek, . . . , en)
to the frame

(p, e0, . . . , cos(t)ei − sin(t)ek, . . . , sin(t)ei + cos(t)ek, . . . , en)
and thus
(2.16) LWik

Xj = δjkXi − δijXk,
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where L stands for the Lie-derivative.

Proof of Theorem 2.3. We have

dX0 =
n∑

i=0
Piωi −

n∑
k=1

Xkω0k

for some smooth functions Pi : F → R. From this it follows with straight-
forward computations that the 1-forms ρ on U which satisfy dξ = ρ ∧ ξ
pull-back to F to become

(2.17) ν∗ρ = λω0 + n
n∑

k=1
Xkωk

for a smooth function λ : F → R. Differentiating (2.17) gives

ν∗dρ = dλ ∧ ω0 − λ
n∑

k=1
ω0k ∧ ωk + n

n∑
k=1

dXk ∧ ωk − n
n∑

i=0

n∑
k=1

Xkωki ∧ ωi.

Wedging with ω0 ∧ ω̂1 yields

ν∗dρ ∧ ω0 ∧ ω̂1 =
(
λω01 − n dX1 − n

n∑
k=1

Xk ω1k

)
∧ ω0 ∧ ω.

Using (2.16) we can expand

dX1 ∧ ω0 ∧ ω =
(
(LW01X1)ω01 +

n∑
k=1

(LW1kX1)ω1k

)
∧ ω0 ∧ ω

=
(
X0 ω01 −

n∑
k=1

Xk ω1k

)
∧ ω0 ∧ ω.

Concluding we get

ν∗dρ ∧ ω0 ∧ ω̂1 = (λ− nX0)ω01 ∧ ω0 ∧ ω.

Suppose the X-pseudosoliton M.A.S. on (M, g) is equivalent to a minimal
hypersurface M.A.S. Then, by Theorem 2.2, ρ has to be exact, this implies

λ = nX0

and thus

ν∗ρ = n
n∑

i=0
Xiωi.

Note that if χ ∈ TF is a vector tangent to the frame (p, e0, . . . , en) we have
n∑

i=0
(Xiωi) (χ) =

n∑
i=0

gp
(
gp(X(p), ei)ei, π′(χ)

)
= gp

(
X(p), π′(χ)

)
,

hence
ρ = n τ∗

(
X♭
)
,

where X♭ denotes the g-dual 1-form to X. The 1-form ρ is exact and thus
ρ = df for some real-valued function f on U which is locally constant on
the fibres of τ : U →M . Since the τ -fibres are connected, it follows that f
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is constant on the τ -fibres and thus equals the pullback of a smooth function
u on M for which

du = nX♭.

In other words X is a gradient vector field. Conversely if X is a gradient
vector field, then the X-pseudosoliton M.A.S. on (M, g) is equivalent to the
minimal hypersurface M.A.S. on (M, e−2ug) by Theorem 2.1. □

Remark 2.5. In [5], Bryant, Griffiths and Grossman study the calculus
of variations on contact manifolds in the setting of differential systems. In
particular they give necessary and sufficient conditions for a M.A.S. to be
locally of Euler-Lagrange type, i.e. locally equivalent to a M.A.S. whose
Legendre integral manifolds correspond to the solutions of a variational
problem. In fact, if one replaces Theorem 2.2 with [5, Theorem 1.2] a proof
along the lines of Theorem 2.3 shows that for n ⩾ 2 the X-pseudosoliton
M.A.S. is locally equivalent to a M.A.S. of Euler-Lagrange type if and only
if X is a gradient vector field.

2.5. The surface case

Recall that in the case n = 1 of a surface (M, g), the solutions of the X-
pseudosoliton equation (1.1) are immersed curves on M which may be repa-
rametrised to become geodesics of a Weyl connection. In his Ph.D. thesis [12],
the second author has constructed a 10-parameter family of Weyl connections
on the 2-sphere whose geodesics are the great circles, and thus in partic-
ular projectively equivalent to the Levi-Civita connection of the standard
spherical metric. Inspection shows that there are Weyl connections in this
10-parameter family whose vector field is not a gradient and thus they provide
counterexamples to Theorem 2.3 in the surface case.

This raises the question what the necessary and sufficient conditions for
the X-pseudosolitons curves are, in order to be the geodesics of a Riemannian
metric. In [12] it was also shown that on a surface locally every affine torsion-
free connection is projectively equivalent to a Weyl connection. Finding the
necessary and sufficient conditions thus comes down to finding the necessary
and sufficient conditions for an affine torsion-free connection to be projectively
equivalent to a Levi-Civita connection. Therefore the conditions follow by
applying the results in [4] and we refer the reader to this source for further
details.
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