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Soliton solutions of the mean curvature flow and
minimal hypersurfaces

NORBERT HUNGERBÜHLER AND THOMAS METTLER

ABSTRACT. Let .M; g/ be an oriented Riemannian manifold of dimension at
least 3 and X 2 X.M/ a vector field. We show that the Monge-Ampère differential
system (M.A.S.) for X-pseudosoliton hypersurfaces on .M; g/ is equivalent to
the minimal hypersurface M.A.S. on .M; Ng/ for some Riemannian metric Ng,
if and only if X is the gradient of a function u, in which case Ng D e�2ug.
Counterexamples to this equivalence for surfaces are also given.

1. Introduction

Recall that a smooth family of hypersurfaces Ft W †
n ! M nC1, t > 0, in

a Riemannian manifold .M; g/ is called a solution of the mean curvature flow
(M.C.F.) on .0; T /, T > 0, if

d

dt
Ft D �H; on † � .0; T /;

F0 D f; on †;

where f W †!M is a given initial hypersurface and H denotes the mean curvature
vector of Ft .†/. Suppose there exists a conformal Killing vector field X onM with
flow ' WM �R!M . A family of hypersurfaces Ft is said to be a soliton solution
of the M.C.F. with respect to the conformal Killing vector field X if QFt D '

�1.Ft ; t /

is stationary in normal direction, i.e. QFt .†/ is the fixed hypersurface f .†/. In [8] it
was shown that for a given initial hypersurface f W †!M to give rise to a soliton
solution of the mean curvature flow it is necessary that

(1.1) HC X? D 0;

where ? denotes the g-orthogonal projection onto the normal bundle of the hyper-
surface f W †!M . If X is Killing, then (1.1) is also sufficient.

Soliton solutions have played an important rôle in the development of the theory
of the M.C.F. Such solutions served, e.g., as tailor-made comparison solutions to
investigate the development of singularities (e.g. Angenent’s self-similarly shrinking
doughnut, see [3]). Actually, soliton solutions appear as blow-up of so called type II
singularities of the flow of plane curves (see [2]). Moreover, soliton solutions turn
out to enjoy certain stability properties and allow some insight into the behaviour of
the mean curvature flow viewed as a dynamical system (see [8], [13] and [6]).

In [8] the boundary value problem for rotating soliton solutions has been dis-
cussed. The corresponding local existence result has been generalised to arbitrary
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Killing fields in [9]. For rotating solitons in the euclidean plane, so called yin-yang
curves, a quantity was identified that remains invariant along the curve (see [9]).
This invariant allowed to show that yin-yang curves share fundamental geomet-
ric properties with geodesic curves. In [9] the corresponding results have been
generalised to arbitrary soliton curves on surfaces (see Figure 1). In addition, it

FIGURE 1. If the Gaussian curvature of the simply connected
ambient surface is less than or equal to 0, then two soliton curves
intersect in at most one point. This fact is illustrated here by two
yin-yang curves rotating about the origin.

was observed in [9], that translating solitons in the euclidean plane, the so called
grim reaper curves, actually are geodesics with respect to a conformally deformed
Riemannian metric. Therefore the natural question arose whether soliton curves
are (at least locally) always geodesic curves with respect to a modified Rieman-
nian metric. This is not the case. On a surface .M; g/, the solutions of (1.1) are
immersed curves on M which may be reparametrised to become geodesics of the
Weyl connection rg;X given by

.Y1;Y2/ 7! .Dg/Y1
Y2 � g.Y1;Y2/XC g.X;Y1/Y2 C g.X;Y2/Y1;

where we have written Dg for the Levi-Civita connection of g. The equation (1.1)
is parametrisation invariant and thus its solutions are naturally interpreted as the
geodesics of a projective structure on M . Recall that a projective structure is an
equivalence class of affine torsion-free connections, where two such connections are
said to be equivalent if they have the same geodesics up to parametrisation. Recently
in [4], Bryant, Dunajski and Eastwood determined the necessary and sufficient local
conditions for an affine torsion-free connection to be projectively equivalent to a
Levi-Civita connection. Applying their results1 it follows that the Weyl connection
whose geodesics are the yin-yang curves is not projectively equivalent to a Levi-
Civita connection. However Jürgen Moser conjectured2 that soliton curves can

1Since the computations are somewhat complex, they have been carried out using maple. The
maple file can be obtained from the authors upon request.

2Stated on the occasion of a seminar talk of the first author at the Institute for Mathematical
Research (FIM) at ETH Zürich, March 1999.
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at least locally be interpreted as geodesics of a Finsler metric. Recent results
about Finsler metrisability of path geometries by Álvarez Paiva and Berck [1] show
that this is indeed the case. Of course, one can ask analogue questions also for
higher dimensional solitons. Before we do that, we generalise the notion of soliton
solutions slightly.

Definition 1.1. A hypersurface f W † ! M solving (1.1) for some vector field
X 2 X.M/ will be called a X-pseudosoliton hypersurface of .M; g/.

Note that the 0-pseudosoliton hypersurfaces are the minimal hypersurfaces of
.M; g/. It was observed in [13] (see also [7]) that solitons with respect to gradient
vector fields correspond to minimal hypersurfaces. However it was left open if such
a correspondence holds when the vector field is not the gradient of a smooth function.
In this short article we provide an answer using the framework of Monge-Ampère
differential systems.

In §2 we will associate to the X-pseudosoliton hypersurface equation on .M; g/
a Monge-Ampère system on the unit tangent bundle of M whose Legendre integral
manifolds, which satisfy a natural transversality condition, locally correspond to
X-pseudosoliton hypersurfaces on M . We then show that for a gradient vector field
X D rgu on M , the X-pseudosoliton M.A.S. is equivalent to the minimal hyper-
surface M.A.S. on .M; e�2ug/. This was already shown in [13], albeit expressed in
different language. We complete the picture by proving the

Theorem 1.2. The X-pseudosoliton M.A.S. on an oriented Riemannian manifold
.M; g/ of dimension nC 1 > 3 is equivalent to a minimal hypersurface M.A.S. if
and only if X is a gradient vector field.

Theorem 2.3 is wrong for n D 1, i.e. the case of curves on surfaces. We provide
counterexamples and comment on the necessary and sufficient conditions for X in
the surface case. Theorem 2.3 provides an answer to the equivalence problem for
specific M.A.S. in arbitrary dimension nC 1 > 3. The equivalence problem for
general M.A.S. has been studied for 5-dimensional contact manifolds in [5] and in
various low dimensions in [11].

Throughout the article manifolds are assumed to be connected and smoothness,
i.e. infinite differentiability is assumed.
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2. Equivalence of the soliton and minimal hypersurface equation

2.1. Monge-Ampère systems

Let N be a .2nC 1/-dimensional manifold carrying a contact structure, meaning
a maximally nonintegrable codimension 1 subbundle D � TN which we assume
to be given by the kernel of a globally defined contact form � . Recall that a
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n-dimensional submanifold f W † ! N which satisfies f �� D 0 is called a
Legendre submanifold of .N;D/. A Monge-Ampère differential system on .N;D/
is a differential ideal M � A�.N / in the exterior algebra of differential forms on
N given by

M D f�; d�; 'g ;

where ' 2 An.N / is a n-form.3 The brackets f g denote the algebraic span of the
elements within, i.e. the elements of M may be written as

˛ ^ � C ˇ ^ d� C 
 ^ ';

where ˛; ˇ; 
 are differential forms on N . Note that M is indeed a differential ideal
since d' lies in the contact ideal C D f�; d�g, cf. [5]. A Legendre submanifold
of .N;D/ which pulls-back to 0 the n-form ' as well will be called a Legendre
integral manifold of M. Two Monge-Ampère systems .N;M/ and . NN; NM/ are
called equivalent if there exists a diffeomorphism  W N ! NN identifying the two
ideals. Note that this implies that  is a contact diffeomorphism.

2.2. Minimal hypersurfaces via frames

In order to fix notation we review the description of minimal hypersurfaces using
moving frames. For n > 1, let .M; g/ be an oriented Riemannian .nC 1/-manifold,
� W F !M its right principal SO.nC1/-bundle of positively oriented orthonormal
frames and � W U ! M its (sphere) bundle of unit tangent vectors. Write the
elements of F as .p; e0; : : : ; en/ where p 2 M and e0; : : : ; en is a positively
oriented g-orthonormal basis of TpM . The Lie group SO.nC 1/ acts smoothly
from the right by

.p; e0; : : : ; en/ � r D

 
p;

nX
iD0

eiri0; : : : ;

nX
iD0

eirin

!
;

where rik for i; k D 0; : : : ; n denote the entries of the matrix r . The map � W F !
U , given by .p; e0; : : : ; en/ 7! .p; e0/ is a smooth surjection whose fibres are the
SO.n/-orbits and thus makes F together with its right action into a SO.n/-bundle
over U . Here we embed SO.n/ as the Lie subgroup of SO.nC 1/ given by��

1 0

0 r

�
2 SO.nC 1/; r 2 SO.n/

�
:

Let !i 2 A1.F / denote the tautological forms of F given by

.!i /.p;e0;:::;en/ .�/ D gp

�
ei ; �

0.�/
�
;

and !ik 2 A1.F / the Levi-Civita connection forms which satisfy !ik C !ki D 0.
The dual vector fields to the coframing .!i ; !ik/ ; i < k, will be denoted by

3More generally one can define a M.A.S. to be a differential ideal which is only locally generated
by a contact ideal and an n-form. However for our purposes the above definition is sufficient.
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.Wi ;Wik/. Recall that we have the structure equations

(2.1)

d!i C

nX
kD0

!ik ^ !k D 0;

d!ik C

nX
lD0

!il ^ !lk D �ik;

where �ik 2 A2.F / are the curvature forms. Denote by O!i the wedge product of
the forms !1; : : : !n, with the i -th form omitted

O!i D !1 ^ � � � ^ !i�1 ^ !iC1 ^ � � � ^ !n:

For n D 1 set O!1 � 1: Note that the forms
� D !0;

! D !1 ^ � � � ^ !n;

� D �
1

n

nX
iD1

.�1/i�1!0i ^ O!i ;

are �-basic, i.e. pullbacks of forms on U which, by abuse of language, will also be
denoted by �; !; �. Since

(2.2) d!0 D �

nX
kD1

!0k ^ !k

the 1-form � is a contact form. Note also that

(2.3) d! C .�1/n�1 n� ^ � D 0:

The geometric significance of these forms is the following: Suppose f W †!M

is an oriented hypersurface and Gf W †! U its orientation compatible Gauss lift.
In other words the value of Gf at p 2 † is the unique unit vector at f .p/ which
is g-orthogonal to f 0.Tp†/ and together with a positively oriented basis of Tp†

induces the positive orientation of Tf .p/M . By construction we have

(2.4) G �f � D 0

and simple computations show that

(2.5) G �f ! D !f �g ;

where !f �g denotes the Riemannian volume form on † induced by f �g. Suppose
Qf W V � † ! F is a local framing covering Gf and f . Then pulling back (2.4)

and using (2.2) gives
nX

kD1

Qf �!0k ^
Qf �!k D 0:

The independence (2.5) implies that the forms "i D
Qf �!i are linearly independent

and thus Cartan’s lemma yields the existence of functions hik W V ! R, symmetric
in the indices i; k, such that

Qf �!0i D

nX
kD1

hik"k :
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In particular we have

(2.6) G �f � D �H"1 ^ � � � ^ "n;

where H D 1
n

Pn
iD1 hi i is the mean curvature of the hypersurface f W † ! M .

Conversely if G W N ! U is an orientable n-submanifold with G �� D 0 and
G �! ¤ 0, then � ı G W N ! M is an immersion. Shrinking N if necessary we
can assume that f D � ı G W N !M is a hypersurface which can be oriented in
such a way that its Gauss lift agrees with G . Thus the Legendre integral manifolds
G W †! U of the M.A.S. Mg on U given by

Mg D f�; d�; �g

which satisfy the transversality conditions G �! ¤ 0 locally correspond to minimal
hypersurfaces on .M; g/.

2.3. X-pseudosoliton hypersurfaces via frames

Given a vector field X on M define the functions Xi W F ! R by

(2.7) .p; e0; : : : ; en/ 7! gp.X.p/; ei /:

Of course X0 is the �-pullback of a function on U which will be denoted by X .
Using (1.1) and (2.6) it follows that an oriented hypersurface f W † ! M is a
X-pseudosoliton hypersurface if and only if

G �f .� �X!/ D 0:

Thus the Legendre integral manifolds G W †! U of the M.A.S. Mg;X on U given
by

Mg;X D f�; d�; � �X!g

which satisfy the transversality conditions G �! ¤ 0 locally correspond to X-pseudo-
soliton hypersurfaces on .M; g/. Now suppose X is a gradient vector field X D rgu

for some smooth function u W M ! R. Let Ng D e�2ug, N� W NF ! M denote
the bundle of positively oriented Ng-orthonormal frames with canonical coframing
N!i ; N!ik and Q W F ! NF the map which scales a Ng-orthonormal frame by eu. Then
by definition

(2.8) Q � N!i D e
�u!i ;

and the structure equations (2.1) yield

(2.9) Q � N!ik D !ik C uk!i � ui!k;

where we expand ��du D
Pn

kD0 uk!k for some smooth functions uk W F ! R.
Note that u0 is the �-pullback of the function X . Let N� W NU !M denote the Ng-unit
tangent bundle with canonical forms N�; N! and  W U ! NU the map which scales a
g-unit vector by eu. Then (2.8) implies

 � N! D e�nu!;
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thus  is a contact diffeomorphism. Moreover (2.8) and (2.9) yield

(2.10)
 � N� D �

e�.n�1/u

n

nX
kD1

.�1/k�1 .!0k C uk� � u0!k/ ^ O!k

D �e�.n�1/u

�
� �X! C

1

n
� ^

�
irgu!

��
which can be written as ˛ ^ � C 
 ^ .��X!/ for some .n� 1/-form ˛ and some
smooth real-valued function 
 on U . This yields

 �Me�2ug DMg;rgu:

Summarising we have proved the

Proposition 2.1. Let .M; g/ be an oriented Riemannian manifold and X D rgu a
gradient vector field. Then the X-pseudosoliton M.A.S. on .M; g/ is equivalent to
the minimal hypersurface M.A.S. on .M; e�2ug/.

2.4. The non-gradient case

Theorem 2.1 raises the question if there still exists a contact equivalence between
minimal hypersurfaces and solitons if X is not a gradient vector field. We will argue
next that this is not possible for n > 2, so assume in this subsection that n > 2.
Before providing the arguments we recall a result from symplectic linear algebra.
Suppose .V;‚/ is a symplectic vector space of dimension 2n, i.e. ‚ 2 ƒ2.V �/ is
non-degenerate. If a form ˇ of degree s 6 p satisfies

(2.11) ˇ ^‚.n�p/
D 0;

then ˇ D 0. This is a corollary of the Lepage decomposition theorem for p-forms
on symplectic vector spaces. (cf. [10, Corollary 15.15]). Of course in our setting
the symplectic vector spaces are the fibres of the contact subbundle D and ‚ is
obtained by restricting d� to D.

Lemma 2.2. A necessary condition for the X-pseudosoliton M.A.S. to be equivalent
to the minimal hypersurface M.A.S. is the existence of an exact 1-form � such that

d ..� �X!/ ^ �/ D � ^ .� �X!/ ^ �

Proof. Write ' D � �X! and suppose there exists a Riemannian metric Ng and a
diffeomorphism  W U ! NU such that  �M Ng DMg;X. Then

(2.12)  � N� D ˛ ^ � C ˇ ^ d� C 
 ^ ';

where ˛ is a .n � 1/-form, ˇ a .n � 2/-form and 
 a smooth real-valued function
on U . Note that we have

(2.13)
0 D ' ^ d�;

0 D N� ^ d N�:

Wedging (2.12) with  �d N� , using (2.13) and that  is a contact diffeomorphism
gives

(2.14) .ˇ ^ d� ^ d�/ jD D 0;
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where jD denotes the restriction to the contact subbundle D � T U . For n D 2

equation (2.14) implies ˇ D 0. For n > 3 it follows with (2.11) and (2.14) that
ˇjD D 0, thus there exists a .n � 3/-form ˇ0 such that

ˇ D ˇ0 ^ �:

We can therefore assume that there exists a .n � 1/-form ˛0 such that

(2.15)  � N� D ˛0 ^ � C 
 ^ ':

Wedging both sides of (2.15) with  � N� gives

 �
�
N� ^ N�

�
D
�
˛0 ^ � C 
 ^ '

�
^  � N�:

this is equivalent to
 �

�
N� ^ N�

�
D Q
 ^ ' ^ �

for some smooth non-vanishing real-valued function Q
 . Since N� ^ N� is an exact
form, see (2.3), we must have

d� D df ^ �;

where we have written � D ' ^ � and f D � ln j Q
 j. □

Using this Lemma we can proof the

Theorem 2.3. The X-pseudosoliton M.A.S. on an oriented Riemannian manifold
.M; g/ of dimension nC 1 > 3 is equivalent to a minimal hypersurface M.A.S. if
and only if X is a gradient vector field.

Remark 2.4. Before giving the proof we point out identities which hold for the
functions Xi (recall (2.7) for their definition). Since the 1-form O D .!ik/ 2

A1.F; so.nC 1// is a connection we have O.Wv/ D v, where Wv is the vector
field obtained by differentiating the flow

..p; e0; : : : ; en/; t/ 7! .p; e0; : : : ; en/ � exp.tv/

and v 2 so.nC 1/, the Lie algebra of SO.nC 1/. In particular this implies that the
time t flow of the vector field Wik for i < k maps the frame

.p; e0; : : : ; ei ; : : : ; ek; : : : ; en/

to the frame

.p; e0; : : : ; cos.t/ei � sin.t/ek; : : : ; sin.t/ei C cos.t/ek; : : : ; en/

and thus

(2.16) LWik
Xj D ıjkXi � ıijXk;

where L stands for the Lie-derivative.

Proof of Theorem 2.3. We have

dX0 D

nX
iD0

Pi!i �

nX
kD1

Xk!0k
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for some smooth functions Pi W F ! R. From this it follows with straightforward
computations that the 1-forms � on U which satisfy d� D � ^ � pull-back to F to
become

(2.17) ��� D �!0 C n

nX
kD1

Xk!k

for a smooth function � W F ! R. Differentiating (2.17) gives

��d� D d� ^ !0 � �

nX
kD1

!0k ^ !k C n

nX
kD1

dXk ^ !k � n

nX
iD0

nX
kD1

Xk!ki ^ !i :

Wedging with !0 ^ O!1 yields

��d� ^ !0 ^ O!1 D

 
�!01 � n dX1 � n

nX
kD1

Xk !1k

!
^ !0 ^ !:

Using (2.16) we can expand

dX1 ^ !0 ^ ! D

 
.LW01

X1/ !01 C

nX
kD1

�
LW1k

X1

�
!1k

!
^ !0 ^ !

D

 
X0 !01 �

nX
kD1

Xk !1k

!
^ !0 ^ !:

Concluding we get

��d� ^ !0 ^ O!1 D .� � nX0/ !01 ^ !0 ^ !:

Suppose the X-pseudosoliton M.A.S. on .M; g/ is equivalent to a minimal hyper-
surface M.A.S. Then, by Theorem 2.2, � has to be exact, this implies

� D nX0

and thus

��� D n

nX
iD0

Xi!i :

Note that if � 2 TF is a vector tangent to the frame .p; e0; : : : ; en/ we have
nX

iD0

.Xi!i / .�/ D

nX
iD0

gp

�
gp.X.p/; ei /ei ; �

0.�/
�
D gp

�
X.p/; � 0.�/

�
;

hence
� D n ��

�
X[
�
;

where X[ denotes the g-dual 1-form to X. The 1-form � is exact and thus � D df
for some real-valued function f on U which is locally constant on the fibres of
� W U !M . Since the �-fibres are connected, it follows that f is constant on the
� -fibres and thus equals the pullback of a smooth function u on M for which

du D nX[:

In other words X is a gradient vector field. Conversely if X is a gradient vector
field, then the X-pseudosoliton M.A.S. on .M; g/ is equivalent to the minimal
hypersurface M.A.S. on .M; e�2ug/ by Theorem 2.1. □
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Remark 2.5. In [5], Bryant, Griffiths and Grossman study the calculus of variations
on contact manifolds in the setting of differential systems. In particular they give
necessary and sufficient conditions for a M.A.S. to be locally of Euler-Lagrange type,
i.e. locally equivalent to a M.A.S. whose Legendre integral manifolds correspond to
the solutions of a variational problem. In fact, if one replaces Theorem 2.2 with [5,
Theorem 1.2] a proof along the lines of Theorem 2.3 shows that for n > 2 the
X-pseudosoliton M.A.S. is locally equivalent to a M.A.S. of Euler-Lagrange type if
and only if X is a gradient vector field.

2.5. The surface case

Recall that in the case n D 1 of a surface .M; g/, the solutions of the X-pseudo-
soliton equation (1.1) are immersed curves on M which may be repa- rametrised
to become geodesics of a Weyl connection. In his Ph.D. thesis [12], the second
author has constructed a 10-parameter family of Weyl connections on the 2-sphere
whose geodesics are the great circles, and thus in particular projectively equivalent
to the Levi-Civita connection of the standard spherical metric. Inspection shows
that there are Weyl connections in this 10-parameter family whose vector field is
not a gradient and thus they provide counterexamples to Theorem 2.3 in the surface
case.

This raises the question what the necessary and sufficient conditions for the
X-pseudosolitons curves are, in order to be the geodesics of a Riemannian met-
ric. In [12] it was also shown that on a surface locally every affine torsion-free
connection is projectively equivalent to a Weyl connection. Finding the necessary
and sufficient conditions thus comes down to finding the necessary and sufficient
conditions for an affine torsion-free connection to be projectively equivalent to a
Levi-Civita connection. Therefore the conditions follow by applying the results
in [4] and we refer the reader to this source for further details.
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