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Charges of twisted branes: the exceptional
cases

stefan fredenhagen, matthias r. gaberdiel,
and thomas mettler

Abstract. The charges of the twisted D-branes for the two exceptional
cases (SO(8) with the triality automorphism and E6 with charge con-
jugation) are determined. To this end the corresponding NIM-reps are
expressed in terms of the fusion rules of the invariant subalgebras. As
expected the charge groups are found to agree with those characterising
the untwisted branes.

1. Introduction

A lot of information about the dynamics of D-branes is encoded in their
charges. In particular, the D-brane charges constrain possible decay processes,
and thus play an important role in stability considerations. There is evidence
that these charges take values in (twisted) K-theory [1, 2, 3]. For D-branes
on a simply connected group manifold G, the charge group is conjectured
to be the twisted K-theory k+h∨

K(G) [4, 5], where the twist involves an
element of the third cohomology group H3(G,Z), the Wess-Zumino form of
the underlying Wess-Zumino-Witten (WZW) model at level k.

For all simple, simply connected Lie groups G, the twisted K-theory has
been computed in [6] (see also [7, 8]) to be

(1) k+h∨
K(G) = ZM(G,k) ⊕ · · · ⊕ZM(G,k)︸ ︷︷ ︸

2rk(G)−1

,

where M(G, k) is the integer

(2) M(G, k) = k + h∨

gcd(k + h∨, L) .

Here h∨ is the dual Coxeter number of the finite dimensional Lie algebra ḡ,
and L only depends on G (but not on k). In fact, except for the case of Cn

that will not concern us in this paper, L is

(3) L = lcm{1, 2, . . . , h− 1} ,

where h is the Coxeter number of ḡ. For ḡ = An this formula was derived
in [9] (see also [10]), while the formulae in the other cases were checked
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numerically up to very high levels in [11]. For the classical Lie algebras and
G2 an alternative expression for M was also derived in [8].

These results should be compared with the charges that can be determined
directly in terms of the underlying conformal field theory. The idea behind
this approach is that brane configurations that are connected by RG flows
should carry the same charge. These constraints were used in [12] to deter-
mine the charge group of su(2). The constraint equations were generalised
in [9] to the branes a ∈ Bω

k of an arbitrary WZW model that preserve the
full affine symmetry algebra g up to some automorphism ω. There it was
argued that the charges qa satisfy

(4) dim(λ) qa =
∑
b∈Bω

k

Nλa
b qb ,

where λ ∈ P+
k (ḡ) is a dominant highest-weight representation of the affine

Lie algebra g at level k, dim(λ) is the Weyl-dimension of the corresponding
representation of the horizontal subalgebra ḡ, and Nλa

b are the NIM-rep
coefficients appearing in the Cardy analysis. In this paper we shall ignore
the low level (k = 1, 2) subtleties discussed in [11] and assume that k is
sufficiently big (k ≥ 3).

For the trivial automorphism (ω = id), the branes can be labelled by
dominant highest weights of g, Bid

k
∼= P+

k (ḡ). In this case, the constraints (4)
were evaluated in [9, 11]. The charges are given (up to rescalings) by the
Weyl-dimensions of the corresponding representations, qλ = dim(λ), and
the charge is conserved only modulo M(G, k). Thus, the untwisted branes
account for one summand ZM(G,k) of the K-group (1).

For nontrivial outer automorphisms, a similar analysis was carried through
in [13]. Here, the D-branes are parametrised by ω-twisted highest weight
representations a of gk [14, 15, 16], and the NIM-rep coefficients are given
by twisted fusion rules [16]. The twisted representations can be identified
with representations of the invariant subalgebra ḡω consisting of ω-invariant
elements of ḡ, and we can view Bω

k as a subset of P+
k′(ḡ

ω), where k′ =
k + h∨(ḡ) − h∨(ḡω). It was found that the charge qa of a ∈ Bω

k is again
(up to rescalings) given by the Weyl dimension1 of the representation of
ḡω, qa = dim(a), and that the charge identities are only satisfied modulo
M(G, k). Thus each such class of twisted D-branes accounts for another
summand ZM(G,k) of the charge group. Since the number of automorphisms
does not grow with the level, these constructions do not in general account
for all the charges of (1); for the case of the An series, a proposal for the
D-branes that may carry the remaining charges was made in [17, 18] (see
also [19]).

The analysis of [13] was only done for all order-2 automorphisms of the
classical Lie groups. There exist two ‘exceptional’ automorphisms, namely
the order-3 automorphism of D4 (triality), and the order-2 automorphism
of E6 (charge conjugation). These two cases are the subject of this paper.
We will find again that with the charge assignment qa = dim(a), the charge

1A similar proposal was made in [21] based on an analysis for large level.
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identities are satisfied modulo M(G, k). Thus each such class of D-branes
accounts for another summand of the charge group.2

The plan of the paper is as follows. In the remainder of this section we shall
explain the main steps in proving these results that are common to both cases.
The details of the analysis for the case of the triality automorphism of D4
(whose invariant subalgebra is G2) is given in section 2. The corresponding
analysis for the charge conjugation automorphism of E6 (whose invariant
subalgebra is F4) is given in section 3.

1.1. Some notation and a sketch of the proof

We begin by briefly introducing some notation. The ω-twisted D-branes are
characterised by the gluing conditions

(5)
(
Ja
n + ω(J̄a

−n)
)
||a⟩⟩ = 0 ,

where Ja
n are the generators of g. Every boundary state can be written in

terms of the ω-twisted Ishibashi states

(6) ||a⟩⟩ =
∑
µ∈Eω

k

ψaµ |µ⟩⟩ω ,

where |µ⟩⟩ω is the (up to normalisation) unique state satisfying (5) in the
sector Hµ ⊗ H̄µ∗ . The sum in (6) runs over the so-called exponents that
consist of the weights µ ∈ P+

k (ḡ) that are invariant under ω. The NIM-rep
coefficients are determined by the Verlinde-like formula

(7) Nλa
b =

∑
µ∈Eω

k

ψ∗
bµ Sλµ ψaµ

S0µ
;

they define a non-negative integer matrix representation (NIM-rep) of the
fusion rule algebra. (For a brief review of these matters see for example [13]
and [20].)

It is clear on general grounds (see [13]) that for any charge assignment qa
for a ∈ Bω

k , the charge identity (4) can at most be satisfied modulo M(G, k).
Our strategy will therefore be to construct a solution that solves (4) modulo
M(G, k). This solution is again given by qa = dim(a). Furthermore, we
can show that this solution of the charge equation is unique (up to trivial
rescalings).

Our arguments will depend on the particularities of the two cases, but the
general strategy is the same. The key observation of our analysis in both
cases is a relation of the form

(8) Nλa
b =

∑
γ,i

ϕλ
γ εiNγa

ρi(b)

2For the case of D4, there are in total five ‘twisted’ classes of branes that are associated
to ω, ω2, C, ωC and ω2C, where C denotes charge conjugation. The corresponding NIM-
reps are all closely related to the one discussed in this paper, or the charge conjugation
NIM-rep discussed in [13] (see [16]). The arguments given here, together with the results of
[13] therefore imply that these five twisted classes of D-branes account for five summands
in (1).
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that expresses the NIM-rep coefficients Nλa
b in terms of the fusion rules

Nγa
ρi(b) of the affine algebra corresponding to ḡω. Here ϕλ

γ is the branching
coefficient which denotes how often the representation γ of ḡω appears in the
restriction of the representation λ to ḡ. The ρi are maps ρi : Bω

k → P+
k′(ḡ

ω)
and εi is a sign attributed to the map ρi. Furthermore k′ is defined as before,
k′ = k + h∨(ḡ)− h∨(ḡω). In the cases studied in [13] analogous formulae for
the NIM-rep coefficients were used for which the ρi could be expressed in
terms of simple currents. In the current context where the invariant algebras
are G2 and F4, such simple currents do not exist. Nevertheless it is possible
to find such maps ρi (see (24) and (41) below for the specific formulae) that
’mimic’ the action of the simple currents.
The different maps ρi have disjoint images, and we can write

(9) P+
k′(ḡ

ω) =
⋃
i

ρi (Bω
k ) ∪ Rk ,

where Rk denotes the remainder. The second key ingredient in our proof are
the relations

(10)
dim(ρi(a)) = εi dim(a), a ∈ Bω

k

dim(b) = 0, b ∈ Rk .

Both of these identities hold modulo M(Gω, k′). Finally we observe by
explicit inspection of the above formulae for M(G, k) that in the two cases
of interest

(11) M(G, k) = M(Gω, k′) .

This then allows us to reduce the proof of the charge identities for the twisted
D-branes of G to that of the untwisted D-branes of Gω. In fact, the argument
is simply∑
b∈Bω

k

N b
λa dimGω(b) =

∑
b∈Bω

k

∑
i

∑
γ

εi ϕ
γ

λ N
ρi(b)

γa dimGω(b)

=
∑
b∈Bω

k

∑
i

∑
γ

ϕ γ
λ N

ρi(b)
γa dimGω(ρi(b)) mod M(G, k)

=
∑
γ

ϕ γ
λ

∑
b∈P+

k′
(ḡω)

N b
γa dimGω(b) mod M(G, k)

=
∑
γ

ϕ γ
λ dimGω(γ) dimGω(a) mod M(G, k)

= dimG(λ) dimGω(a) .

In the following two sections we shall give the details for how to define the
maps ρi, and prove the various statements above. We shall also be able to
show that our charge solution is unique up to trivial rescalings.

2. The D4 case with triality

In theD4 case the relevant automorphism ω is triality which maps the Dynkin
labels µ = (µ0;µ1, µ2, µ3, µ4) to (µ0;µ4, µ2, µ1, µ3). The set of exponents
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labelling the ω-twisted Ishibashi states is therefore
(12) Eω

k = {(µ0;µ1, µ2, µ1, µ1) ∈ N5
0 |µ0 + 3µ1 + 2µ2 = k} .

The ω-twisted boundary states are labelled by the level k integrable highest
weights of the twisted Lie algebra gω = D

(3)
4 , which are Bω

k = {(b0; b1, b2) ∈
N

3
0 | b0 + 2b1 + 3b2 = k}. The states of lowest conformal weight of these

representations form irreducible representations of the invariant subalgebra
ḡω = G2 with highest weights (b1, b2). For this reason we propose that the
corresponding D-brane charge is the Weyl dimension of these irreducible
representations, i.e.
(13) qb = dimG2(b1, b2) = dimG2(b) .
In this section we shall prove that (13) solves the charge constraint

(14) dimD4(λ) qa =
∑
b∈Bω

k

N b
λa qb

modulo M(G, k) and that this solution is unique (up to rescalings).

2.1. The solution

To show that (13) indeed solves the charge constraint (14) we trace the
problem back to the case of untwisted branes in G2. So we need to express
’twisted D4 data’ by ’untwisted G2 data’. We first note, as already mentioned
in section 1.1, that the integer M for G2 at level k + 2 equals the integer for
D4 at level k,

(15) M(D4, k) = M(G2, k + 2) = k + 6
gcd(k + 6, 60) .

As is also explained there, the key result (8) that we need to prove expresses
the NIM-rep N of D4 in terms of the fusion rules of G2. The first step in
providing such a relation is the identification of the D4 ψ-matrix at level k
with the (rescaled) S-matrix of G2 at level k + 2 (in the following we shall
denote the S-matrix of G2 by S′ in order to distinguish it from the S-matrix
of D4)3

(16) ψbµ =
√
3S′

bµ̃ ,

where µ̃ is defined by
(17) µ 7→ µ̃ = (µ0; 3µ1 + 2, µ2) .
Note that if µ ∈ Eω

k , then µ̃ ∈ P+
k+2(G2) ≡ Pk+2 = {(µ̃1, µ̃2) ∈ N2

0 | µ̃1+2µ̃2 ≤
k + 2}. The identity (16) can be proven as follows. Define κ = k + 6 and
c(x) = cos

(2πx
3κ

)
. The ψ-matrix is given by (see [16]),

(18)
ψbµ = 2

κ

(
c(pp′ + 2pq′ + 2qp′ + qq′) + c(2pp′ + pq′ + qp′ − qq′)

+c(−pp′ + pq′ + qp′ + 2qq′)− c(2pp′ + pq′ + qp′ + 2qq′)
−c(pp′ + 2pq′ − qp′ + qq′)− c(pp′ − pq′ + 2qp′ + qq′)

)
,

3This relation was already noted in [16].
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where p = b1 + b2 + 2, q = b2 + 1 and p′ = 3µ1 + µ2 + 4, q′ = µ2 + 1. On the
other hand, if we define m = λ1 + λ2 + 2, n = λ2 + 1, m′ = ν1 + ν2 + 2 and
n′ = ν2 + 1, then the S-matrix of G2 at level k + 2 is [22]
(19)
S′
λν = −2√

3κ
(
c(2mm′ +mn′ + nm′ + 2nn′) + c(−mm′ − 2mn′ − nn′ + nm′)

+c(−mm′ +mn′ − 2nm′ − nn′)− c(−mm′ − 2mn′ − 2nm′ − nn′)
−c(2mm′ +mn′ + nm′ − nn′)− c(−mm′ +mn′ + nm′ + 2nn′)

)
.

For (19) we also use the abbreviated notation

(20) S′
λν = −2√

3κ
{c(u1) + c(u2) + c(u3)− c(u4)− c(u5)− c(u6)} .

By comparing (18) and (19) one then easily proves (16).
Next we observe from (7) that in order to obtain fusion matrices of G2

we also need to express the quotient Sλµ

S0µ
in terms of G2 S-matrices. The

relevant relation is

(21)
Sλµ
S0µ

=
∑
γ

ϕ γ
λ

S′
γµ̃

S′
0µ̃

.

Here, ϕ γ
λ denotes the D4 ⊃ G2 branching rules; the most important ones

are

(22) (1, 0, 0, 0) → (1, 0)⊕(0, 0) and (0, 1, 0, 0) → (0, 1)⊕(1, 0)⊕(1, 0) .

The easiest way to prove (21) is to consider the explicit expressions for the
fundamental representations of D4.

Taking all of this together we can now write the D4 NIM-rep as

(23) N b
λa =

∑
µ∈Eω

k

ψaµ ψ
∗
bµ

Sλµ
S0µ

= 3
∑
γ

ϕλ
γ

∑
µ∈Eω

k

S′
aµ̃ S

′∗
bµ̃

S′
γµ̃

S′
0µ̃

.

Although this formula reminds one of the Verlinde formula, the last sum still
does not give the G2-fusion rules as the range of summation for µ̃ is only a
subset of Pk+2. To resolve this problem we introduce the affine mappings

(24)
ρ0(b) = (b1, b2)
ρ1(b) = (k − 2b1 − 3b2, 1 + b1 + b2)
ρ2(b) = (k + 1− b1 − 3b2, b2)

which map the set Bω
k of boundary states to disjoint subsets of Pk+2 =

P+
k+2(G2). They have the crucial property

(25) S′
ρ0(b) ν + S′

ρ1(b) ν − S′
ρ2(b) ν =

{
3S′

b ν if ν1 = 2 mod 3
0 otherwise,
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where b ∈ Bω
k and ν ∈ Pk+2. This follows from the fact that the left hand

side can be written as

(26)
−
√
3κ

2
(
S′
b ν + S′

ρ1(b) ν − S′
ρ2(b) ν

)
=

(
1 + cos(v1) + cos(v2)

)(
c(u1)− c(u4)

)
+
(
1+cos(v1)+cos(v3)

)(
c(u2)−c(u6)

)
+
(
1+cos(v2)+cos(v3)

)(
c(u3)−c(u5)

)
+

(
sin(v1) + sin(v2)

)(
s(u1) + s(u4)

)
−

(
sin(v1)− sin(v3)

)(
s(u2) + s(u6)

)
−

(
sin(v2) + sin(v3)

)(
s(u3) + s(u5)

)
,

where v1 = 2
3π(ν1 + 3ν2 + 4), v2 = 2

3π(2ν1 + 3ν2 + 5), v3 = 2
3π(ν1 + 1) and

s(x) = sin
(2πx

3κ
)
. (The ui are defined as in (20).) This is easily seen to agree

with the right hand side of (25).
Let ρ(Bω

k ) = ρ0(Bω
k ) ∪ ρ1(Bω

k ) ∪ ρ2(Bω
k ) and Rk = Pk+2 \ ρ(Bω

k ). The
special elements ν ∈ Pk+2 in (25) which satisfy ν1 = 2 mod 3 are precisely the
images ν = µ̃ under (17) of a suitable element µ of Eω

k . The key relation (25),
together with (23), therefore implies that the D4 NIM-rep can be written as
a sum of G2 fusion matrices,

N b
λa =

∑
γ

ϕ γ
λ

∑
µ∈Pk+2

S′
aµ

S′
γµ

S′
0µ

(
S′∗
ρ0(b)µ + S′∗

ρ1(b)µ − S′∗
ρ2(b)µ

)
=

∑
γ

ϕ γ
λ

(
N

ρ0(b)
γa +N

ρ1(b)
γa −N

ρ2(b)
γa

)

=
2∑

i=0

∑
γ

εi ϕ
γ

λ N
ρi(b)

γa ,

where Nγ denote G2 fusion matrices at level k + 2 and εi accounts for the
signs. [Explicitly ε0 = ε1 = +1 and ε2 = −1.] This is the relation (8) we
proposed in section 1.1. Note that (27) is valid for all highest weights λ of
D4, not only for the ones appearing in P+

k (D4). In fact we can continue Nλ

and Nγ outside of the usual domain by rewriting the ratios of S-matrices
appearing in (23) as characters of the finite Lie algebras.

According to the argument given in section 1.1, there is only one further
ingredient we need to show. This concerns the behaviour of the G2-Weyl
dimensions under the maps ρi, and is summarised in the relations (10). Thus
we need to prove that

(27) dimG2(ρi(b)) = εi dimG2(b) mod M(G2, k + 2)

and that any element r ∈ Rk satisfies

(28) dimG2(r) = 0, modM(G2, k + 2) .

The dimension of a G2 representation (b1, b2) is given by

(29) dimG2(b1, b2) = 1
120(b1 + 1)(b2 + 1)(b1 + b2 + 2)

· (b1 + 2b2 + 3)(b1 + 3b2 + 4)(2b1 + 3b2 + 5) .
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To prove (27) we find by explicit computation that

(30) dimG2(ρi(b)) = εi dimG2(b) +
M(G2, k + 2)

F
p5(b) ,

where p5(b) denotes a k and ρi-dependent polynomial of order 5 in the
variables b1, b2 with integer coefficients, and F = 120

gcd(k+6,60) . Thus it remains
to show that p5

F is an integer. If 8 does not divide k + 6, then M(G2, k + 2)
and F are coprime. Since M(G2,k+2)

F p5 is an integer, p5

F has to be an integer
as well and we are done. If 8 is a divisor of k + 6, then F and M(G2, k + 2)
have greatest common divisor 2. The result then follows provided that p5 is
even, which is easily verified.

To show (28) we first have to identify the elements of Rk. It is convenient
to write this set as the (disjoint) union of the two subsets R1

k and R2
k. The

first of them is defined by

(31) R1
k = {(b1, b2) ∈ Pk+2 | (b1, b2) = (k + 2− 3j, j), j ∈ N0} .

The set R2
k ≡ Rk \ R1

k depends in a more complicated manner on k. To
describe it explicitly we therefore distinguish the three cases:

• k = 0 mod 3
R2

k = {(2 + 3j, k/3− 1− 2j) ∈ Pk+2, j ∈ N0}
• k = 1 mod 3

R2
k = {(0, (k+2)/3)}∪{(1+3j, (k−1)/3−2j) ∈ Pk+2, j ∈ N0}

• k = 2 mod 3
R2

k = {(0, (k + 1)/3)} ∪ {(3 + 3j, (k + 1)/3 − 2(j + 1)) ∈
Pk+2, j ∈ N0} .

For any r ∈ Rk one then easily checks that

(32) dimG2(r) = M

F
p5(j)

with some polynomial p5 in j of order 5. One finds that the polynomials p5(j)
are even whenever 8 divides k + 6. Using the same arguments as above, this
then finishes the proof of (28). It remains to check that we have identified
the complete set Rk correctly. Because ρi(Bω

k ) ∩ ρj(Bω
k ) = ∅ for i ≠ j we

have |ρ(Bω
k )| = 3 |Bω

k |. In order to see that Pk+2 = ρ(Bω
k )∪Rk, it is therefore

sufficient to count the number of elements of the different sets. One easily
finds

|Pk+2| =


1
4(k + 4)2 k even

1
4(k + 3)(k + 5) k odd
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as well as

|Rk| =



1
2(k + 2) k = 0 mod 6

1
2(k + 4) k = 2, 4 mod 6

1
2(k + 3) k = 3 mod 6

1
2(k + 5) k = 1, 5 mod 6

and

|Bω
k | =



1
12k

2 + 1
2k + 1 k = 0 mod 6

1
12(k + 2)(k + 4) k = 2, 4 mod 6

1
12(k + 3)2 k = 3 mod 6

1
12(k + 1)(k + 5) k = 1, 5 mod 6

Using these formulae it is then easy to show that |Pk+2| = |ρ(Bω
k )| + |Rk|.

This completes the proof.

2.2. Uniqueness

It remains to prove that the solution we found is unique up to an overall
rescaling of the charge. To this end we show that any solution of the charge
constraint modulo some integer M ′ satisfies the relation

(33) qa = dim(a) q0 mod M ′ ,

and thus is obtained from our solution (13) by scaling with the factor q0.
To prove (33) we first want to show that any G2 representation a can be

obtained as restriction of a linear combination of D4 representations λj with
integer coefficients zj . We explicitly allow negative multiplicities and write
formally

a =
⊕
j

zjλj
∣∣
G2

.

Obviously it is sufficient to prove this for the fundamental representations.
Looking at the branching rules (22) we see that the representation (1, 0)
appears in the decomposition of (1, 0, 0, 0), so we can write

(1, 0) =
(
(1, 0, 0, 0)− (0, 0, 0, 0)

)∣∣
G2

.

Similarly, we can express (0, 1) as a restriction because it appears exactly
once in the decomposition of (0, 1, 0, 0) together only with (1, 0) (see (22)).
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Now consider a boundary state labelled by a. We can use (27) to write4

dimG2(a) q0 =
∑
j

zj dimD4(λj) q0

=
∑
j,b

zj Nλj0
bqb mod M ′

=
∑
i,j,γ,b

zj εi ϕλj
γ Nγ0

ρi(b) qb

=
∑
i,b

εiNa0
ρi(b) qb

= qa .

In the last step we used the fact that ρi(Bω
k ) and Bω

k are disjoint for i ≠ 0,
so that only i = 0 contributes. This concludes the proof of (33).

3. The E6 case with charge conjugation

The analysis for the case of E6 is fairly similar to the D4 case discussed in
the previous section, and we shall therefore be somewhat briefer. For E6 the
invariant subalgebra under charge conjugation is ḡω = F4. Again we have
the identity

(34) M(E6, k) = M(F4, k + 3) = k + 12
gcd(k + 12, 23 · 32 · 5 · 7 · 11) .

As before we therefore expect that

(35) dimE6(λ) qa =
∑
b∈Bω

k

N b
λa qb modM(F4, k + 3) ,

where

(36) qb = dimF4(b) .

The order 2 automorphism ω of E6 maps the Dynkin labels

(µ0;µ1, µ2, µ3, µ4, µ5, µ6)

to (µ0;µ5, µ4, µ3, µ2, µ1, µ6), and thus the set of exponents is
(37)
Eω
k = {(µ0;µ1, µ2, µ3, µ2, µ1, µ6) ∈ N7

0 |µ0 + 2µ1 + 4µ2 + 3µ3 + 2µ6 = k} .

The twisted algebra here is E(2)
6 . The set of boundary states at level k is

explicitly given by Bω
k = {(b0; b1, b2, b3, b4) ∈ N5

0 | b0+2b1+3b2+4b3+2b4 =
k}. As in the last section, it is possible to identify the ψ-matrix of E6 at
level k with the S-matrix of F4 at level k + 3 (see also [16]),

(38) ψbµ = 2S′
bµ̃ ,

where µ̃ is now defined by

(39) µ 7→ µ̃ = (µ0; 2µ1 + 1, 2µ2 + 1, µ3, µ6) .

4Note that the charge constraint (14) as well as the expression (27) for the NIM-rep is
valid also for highest weights λ which are not in P+

k (D4).
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As before we observe that if µ ∈ Eω
k , then µ̃ ∈ P+

k+3(F4) ≡ Pk+3, where the
latter is explicitly defined as Pk+3 = {(µ̃1, µ̃2, µ̃3, µ̃4) ∈ N4

0 | µ̃1 +2µ̃2 +3µ̃3 +
2µ̃4 ≤ k + 3}. Furthermore, we can express ratios of S-matrices of E6 by
those of F4,

Sλµ
S0µ

=
∑
γ

ϕ γ
λ

S′
γµ̃

S′
0µ̃

.

Here S denotes the E6 S-matrix at level k, S′ is the F4 S-matrix at level
k + 3, and ϕ γ

λ describes the branching E6 ⊃ F4; for the six fundamental
representations of E6 the branching rules are

(1, 0, 0, 0, 0, 0) ≃ (0, 0, 0, 0, 1, 0) → (1, 0, 0, 0)⊕ (0, 0, 0, 0)
(0, 1, 0, 0, 0, 0) ≃ (0, 0, 0, 1, 0, 0) → (0, 1, 0, 0)⊕ (0, 0, 0, 1)⊕ (1, 0, 0, 0)
(0, 0, 1, 0, 0, 0) → (0, 0, 1, 0)⊕ (1, 0, 0, 1)⊕ 2 · (0, 1, 0, 0)⊕ (0, 0, 0, 1)

and

(40) (0, 0, 0, 0, 0, 1) → (0, 0, 0, 1)⊕ (1, 0, 0, 0) .

The relevant affine mappings are in this case

(41)

ρ0(b) = (b1, b2, b3, b4)
ρ1(b) = (k − 2b1 − 3b2 − 4b3 − 2b4, 1 + b1 + b2, b3, b4)
ρ2(b) = (k + 1− b1 − 3b2 − 4b3 − 2b4, b2, b3, b4)
ρ3(b) = (k − 2b1 − 3b2 − 4b3 − 2b4, b1, b2 + b3 + 1, b4) ,

which map boundary states at level k to dominant weights of F4 at level
k + 3, i.e. to elements of Pk+3. There is a similar identity to (25) for the
S-matrices
(42)

S′
ρ0(b) ν + S′

ρ1(b) ν − S′
ρ2(b) ν − S′

ρ3(b) ν =
{

4S′
b ν if ν1 = ν2 = 1 mod 2

0 otherwise,

where b ∈ Bω
k and ν ∈ Pk+3. Again, the elements which satisfy ν1 = ν2 = 1

mod 2 are precisely the images ν = µ̃ of an element µ of Eω
k under the

mapping (39). By ρ(Bω
k ) we denote the union of the images of Bω

k under the
maps ρi, ρ(Bω

k ) =
⋃3

i=0 ρi(Bω
k ). The elements of Pk+3 which are not reached

by the maps form the set Rk = Pk+3 \ ρ(Bω
k ).

Using essentially the same arguments as for the case of D4 discussed in
the last section, we can then show that the E6 NIM-rep can be expressed in
terms of F4 fusion matrices as

(43)

N b
λa =

∑
γ

ϕ γ
λ

(
N

ρ0(b)
γa +N

ρ1(b)
γa −N

ρ2(b)
γa −N

ρ3(b)
γa

)

=
3∑

i=0

∑
γ

εi ϕ
γ

λ N
ρi(b)

γa ,

where the εi account for the signs. [Explicitly, ε1 = ε2 = +1 and ε3 = ε4 =
−1.] Following the argument of section 1.1, it thus only remains to show
that

(44) dimF4(ρi(b)) = εi dimF4(b) mod M(F4, k + 3)
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and for all r ∈ Rk

(45) dimF4(r) = 0 mod M(F4, k + 3).

To prove equation (44) we note that

(46) dimF4(ρi(b)) = εi dimF4(b) +
M(F4, k + 3)

F
p23(b)

where

(47) F = 215 · 37 · 54 · 72 · 11
gcd(k + 12, 23 · 32 · 5 · 7 · 11)

and p23 is a k and ρi-dependent polynomial (with integer coefficients) of
degree 23 in the labels bi. Now M(F4, k + 3) and F are coprime whenever
24, 33, 52 and 72 do not divide k + 12; in this case (44) is proven as before.
Otherwise the analysis is more involved and many cases would have to be
distinguished. We have not attempted to analyse all of them in detail, but
we have performed a numerical check up to fairly high levels. This seems
satisfactory, given that the identities for M(E6, k) and M(F4, k) have also
only be determined numerically.

Finally, we need to show the identity (45). This requires a good description
of the set Rk. Here it is convenient to write it as the union of four disjoint
subsets which are defined by

R1
k =

 {b ∈ Pk+3 | b = (1 + 2j1, j2, j3, (k + 2)/2− j1 − j2 − 2j3)}

{b ∈ Pk+3 | b = (2j1, j2, j3, (k + 3)/2− j1 − j2 − 2j3)}

R2
k =

 {b ∈ Pk+3 | b = (2j1, 2j2, j3, (k + 2)/2− j1 − 3j2 − 2j3)}

{b ∈ Pk+3 | b = (1 + 2j1, 2j2, j3, (k + 1)/2− j1 − 3j2 − 2j3)}

R3
k =

 {b ∈ Pk+3 | b = (1 + 2j1, 1 + 2j2, j3, (k − 2)/2− j1 − 3j2 − 2j3)}

{b ∈ Pk+3 | b = (2j1, 1 + 2j2, j3, (k − 1)/2− j1 − 3j2 − 2j3)}

R4
k =

 {b ∈ Pk+3 | b = (j1, 1 + 2j2, j3, (k − 2)/2− j1 − 3j2 − 2j3)}

{b ∈ Pk+3 | b = (j1, 2j2, j3, (k + 1)/2− j1 − 3j2 − 2j3)}

where the top line corresponds to the even case and the bottom line to the
odd case and where (j1, j2, j3) ∈ N3

0. The same arguments as before show
that the elements r in these sets satisfy dimF4(r) = 0 mod M(F4, k + 3).
Again, this is proven only if k + 12 is not divisible by 24, 33, 52 or 72; for the
other levels we have only performed numerical checks.

Finally, by counting the elements of the different sets we can confirm (as
before) that we have correctly identified the set Rk. This completes the
proof for the case of E6.
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3.1. Uniqueness

The proof of uniqueness is analogous to the D4 case. It only remains to show
that all fundamental representations of F4 can be obtained as restrictions of
E6 representations. From the branching rules (40) we see immediately that
this is true for (1, 0, 0, 0), (0, 0, 0, 1) and (0, 1, 0, 0). The remaining fundamen-
tal representation (0, 0, 1, 0) appears in the decomposition of (0, 0, 1, 0, 0, 0),
but it comes together with (1, 0, 0, 1). The latter representation can be
obtained from the other fundamentals by the F4 tensor product

(1, 0, 0, 0)⊗ (0, 0, 0, 1) → (1, 0, 0, 1)⊕ (1, 0, 0, 0)⊕ (0, 1, 0, 0) .

Hence, also (0, 0, 1, 0) can be written in terms of the restriction of D4-repre-
sentations.

Note added: While we were in the process of writing up this paper we became
aware of [23] which contains closely related work.
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