Extremal Conformal Structures on Projective Surfaces

References

[1] D. Baraglia, \({G}_2\) geometry and integrable systems, PhD thesis, 2010. arXiv:1002.1767

[2] Y. Benoist, D. Hulin, Cubic differentials and finite volume convex projective surfaces, Geom. Topol. 17 (2013), 595–620. MR zbM

[3] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10, Springer-Verlag, Berlin, 1987. MR zbM

[4] R. L. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), 23–53. MR zbM

[5] R. L. Bryant, Classical, exceptional, and exotic holonomies: a status report, in Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr. 1, Soc. Math. France, Paris, 1996, pp. 93–165. MR zbM

[6] R. L. Bryant, M. Dunajski, M. Eastwood, Metrisability of two-dimensional projective structures, J. Differential Geom. 83 (2009), 465–499. MR zbM

[7] A. Čap, A. R. Gover, H. R. Macbeth, Einstein metrics in projective geometry, Geom. Dedicata 168 (2014), 235–244. MR zbM

[8] A. Čap, J. Slovák, Parabolic geometries. I, Mathematical Surveys and Monographs 154, American Mathematical Society, Providence, RI, 2009, Background and general theory. MR zbM

[9] E. Cartan, Sur les variétés à connexion projective, Bull. Soc. Math. France 52 (1924), 205–241. MR zbM

[10] S. Choi, W. M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993), 657–661. MR zbM

[11] K. Corlette, Flat \(G\)-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361–382. MR zbM

[12] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), 127–131. MR zbM

[13] M. Dubois-Violette, Structures complexes au-dessus des variétés, applications, in Mathematics and physics (Paris, 1979/1982), Progr. Math. 37, Birkhäuser Boston, Boston, MA, 1983, pp. 1–42. MR

[14] D. Dumas, M. Wolf, Polynomial cubic differentials and convex polygons in the projective plane, Geom. Funct. Anal. 25 (2015), 1734–1798. MR zbM

[15] M. Dunajski, T. Mettler, Gauge theory on projective surfaces and anti-self-dual Einstein metrics in dimension four, J. Geom. Anal. 28 (2018), 2780–2811. MR zbM

[16] D. J. F. Fox, Einstein-like geometric structures on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), 499–585. MR zbM

[17] W. M. Goldman, R. A. Wentworth, Energy of twisted harmonic maps of Riemann surfaces, in In the tradition of Ahlfors-Bers. IV, Contemp. Math. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 45–61. MR zbM

[18] O. Guichard, A. Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012), 357–438. MR zbM

[19] N. Hitchin, Complex manifolds and Einstein’s equations, in Twistor geometry and nonlinear systems, Lecture Notes in Math. 970, Springer, Berlin, 1982, pp. 73–99. MR zbM

[20] N. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59–126. MR zbM

[21] N. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), 449–473. MR zbM

[22] N. Hitchin, Higgs bundles and diffeomorphism groups, in Surveys in differential geometry 2016. Advances in geometry and mathematical physics, Surv. Differ. Geom. 21, Int. Press, Somerville, MA, 2016, pp. 139–163. MR zbM

[23] I. Kim, A. Papadopoulos, Convex real projective structures and Hilbert metrics, in Handbook of Hilbert geometry, IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc., Zürich, 2014, pp. 307–338. MR

[24] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. MR zbM

[25] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan 15, Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987, Kanô Memorial Lectures, 5. MR zbM

[26] S. Kobayashi, T. Nagano, On projective connections, J. Math. Mech. 13 (1964), 215–235. MR zbM

[27] F. Labourie, Cross ratios, surface groups, \({\rm PSL}(n,{\bf R})\) and diffeomorphisms of the circle, Publ. Math. Inst. Hautes Études Sci. (2007), 139–213. DOI MR zbM

[28] F. Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007), 1057–1099. MR zbM

[29] F. Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 437–469. MR zbM

[30] F. Labourie, Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. (2) 185 (2017), 1–58. MR zbM

[31] C. Lebrun, L. J. Mason, Zoll manifolds and complex surfaces, J. Differential Geom. 61 (2002), 453–535. MR zbM

[32] R. Liouville, Sur une classe d’équations différentielles, parmi lesquelles, en particulier, toutes celles des lignes géodésiques se trouvent comprises., C. R. Acad. Sci., Paris 105 (1888), 1062–1064. zbM

[33] J. Loftin, Survey on affine spheres, in Handbook of geometric analysis, No. 2, Adv. Lect. Math. (ALM) 13, Int. Press, Somerville, MA, 2010, pp. 161–191. MR zbM

[34] J. C. Loftin, Affine spheres and convex \(\mathbb{RP}^n\)-manifolds, Amer. J. Math. 123 (2001), 255–274. MR zbM

[35] V. S. Matveev, A. Trautman, A Criterion for Compatibility of Conformal and Projective Structures, Comm. Math. Phys. 329 (2014), 821–825. MR zbM

[36] T. Mettler, Reduction of \(\beta\)-integrable 2-Segre structures, Comm. Anal. Geom. 21 (2013), 331–353. MR zbM

[37] T. Mettler, Weyl metrisability of two-dimensional projective structures, Math. Proc. Cambridge Philos. Soc. 156 (2014), 99–113. MR zbM

[38] T. Mettler, Geodesic rigidity of conformal connections on surfaces, Math. Z. 281 (2015), 379–393. MR

[39] T. Mettler, Minimal Lagrangian connections on compact surfaces, Adv. Math. 354 (2019), Article ID 106747, 36 p. MR zbM

[40] T. Mettler, G. Paternain, Holomorphic differentials, thermostats and Anosov flows, 2019, pp. 553–580. arXiv:1706.03554

[41] T. Mettler, G. P. Paternain, Convex projective surfaces with compatible Weyl connection are hyperbolic, 2018, to appear in Anal. PDE. arXiv:1804.04616

[42] N. R. O’Brian, J. H. Rawnsley, Twistor spaces, Ann. Global Anal. Geom. 3 (1985), 29–58. MR zbM

[43] C. P. Wang, Some examples of complete hyperbolic affine \(2\)-spheres in \({\bf R}^3\), in Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math. 1481, Springer, Berlin, 1991, pp. 271–280. MR zbM

[44] H. Weyl, Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung., Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1921 (1921), 99–112. zbM


  1. More generally, representation into a real split simple Lie group.

  2. Indices in round brackets are symmetrised over and indices in square brackets are anti-symmetrised over, for instance, we write \(S_{(ij)}=\frac{1}{2}\left(S_{ij}+S_{ji}\right)\) and \(S_{[ij]}=\frac{1}{2}\left(S_{ij}-S_{ji}\right)\) so that \(S_{ij}=S_{(ij)}+S_{[ij]}\).

  3. Recall that a differential form \(\alpha\) is said to be semibasic for the projection \(P\to \mathrm{C}(\Sigma)\) if the interior product \(X\hspace{3pt}\rule[0.5pt]{2mm}{0.5pt}\rule[0.5pt]{0.5pt}{4.5pt}\hspace{3pt}\alpha\) vanishes for every vector field \(X\) tangent to the fibres of \(P\to \mathrm{C}(\Sigma)\).