Minimal Lagrangian Connections on Compact Surfaces

References

[1] Y. Benoist, D. Hulin, Cubic differentials and finite volume convex projective surfaces, Geom. Topol. 17 (2013), 595–620. MR zbM

[2] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10, Springer-Verlag, Berlin, 1987. MR zbM

[3] S. B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1990), 1–17. MR zbM

[4] R. L. Bryant, Conformal and minimal immersions of compact surfaces into the \(4\)-sphere, J. Differential Geom. 17 (1982), 455–473. MR zbM

[5] D. M. J. Calderbank, Möbius structures and two-dimensional Einstein-Weyl geometry, J. Reine Angew. Math. 504 (1998), 37–53. MR zbM

[6] D. M. J. Calderbank, Selfdual 4-manifolds, projective surfaces, and the Dunajski-West construction, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 035, 18. MR zbM

[7] A. Čap, A. R. Gover, H. R. Macbeth, Einstein metrics in projective geometry, Geom. Dedicata 168 (2014), 235–244. MR zbM

[8] A. Čap, T. Mettler, Geometric theory of Weyl structures, Commun. Contemp. Math. (to appear) (2022). arXiv:1908.10325

[9] S. Y. Cheng, S. T. Yau, On the regularity of the Monge-Ampère equation \({\rm det}(\partial ^{2}u/\partial x_{i}\partial sx_{j})=F(x,u)\), Comm. Pure Appl. Math. 30 (1977), 41–68. MR zbM

[10] S. Y. Cheng, S.-T. Yau, Complete affine hypersurfaces I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986), 839–866. MR zbM

[11] S. S. Chern, J. G. Wolfson, Minimal surfaces by moving frames, Amer. J. Math. 105 (1983), 59–83. MR zbM

[12] S. Choi, W. M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993), 657–661. MR zbM

[13] K. Cieliebak, A. R. Gaio, I. Mundet i Riera, D. A. Salamon, The symplectic vortex equations and invariants of Hamiltonian group actions, J. Symplectic Geom. 1 (2002), 543–645. MR

[14] D. Dumas, M. Wolf, Polynomial cubic differentials and convex polygons in the projective plane, Geom. Funct. Anal. 25 (2015), 1734–1798. MR zbM

[15] M. Dunajski, T. Mettler, Gauge theory on projective surfaces and anti-self-dual Einstein metrics in dimension four, J. Geom. Anal. 28 (2018), 2780–2811. MR zbM

[16] D. J. F. Fox, Geometric structures modeled on affine hypersurfaces and generalizations of the Einstein–Weyl and affine hypersphere equations, 2009. arXiv:0909.1897

[17] D. J. F. Fox, Einstein-like geometric structures on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), 499–585. MR zbM

[18] D. J. F. Fox, Geometric structures modeled on affine hypersurfaces and generalizations of the Einstein–Weyl and affine sphere equations, in Extended abstracts Fall 2013—geometrical analysis, type theory, homotopy theory and univalent foundations, Trends Math. Res. Perspect. CRM Barc. 3, Birkhäuser/Springer, Cham, 2015, pp. 15–19. MR

[19] D. J. F. Fox, A Schwarz lemma for Kähler affine metrics and the canonical potential of a proper convex cone, Ann. Mat. Pura Appl. (4) 194 (2015), 1–42. MR

[20] W. M. Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), 791–845. MR zbM

[21] A. R. Gover, H. R. Macbeth, Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry, Differential Geom. Appl. 33 (2014), 44–69. MR zbM

[22] R. Hildebrand, The cross-ratio manifold: a model of centro-affine geometry, Int. Electron. J. Geom. 4 (2011), 32–62. MR zbM

[23] R. Hildebrand, Half-dimensional immersions in para-Kähler manifolds, Int. Electron. J. Geom. 4 (2011), 85–113. MR zbM

[24] N. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59–126. MR zbM

[25] N. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), 449–473. MR zbM

[26] F. Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007), 1057–1099. MR zbM

[27] F. Labourie, Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. (2) 185 (2017), 1–58. MR zbM

[28] P. Libermann, Sur le problème d’équivalence de certaines structures infinitésimales, Ann. Mat. Pura Appl. (4) 36 (1954), 27–120. MR zbM

[29] J. Loftin, Survey on affine spheres, in Handbook of geometric analysis, No. 2, Adv. Lect. Math. (ALM) 13, Int. Press, Somerville, MA, 2010, pp. 161–191. MR zbM

[30] J. C. Loftin, Affine spheres and convex \(\mathbb{RP}^n\)-manifolds, Amer. J. Math. 123 (2001), 255–274. MR zbM

[31] T. Mettler, Extremal conformal structures on projective surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) XX (2020), 1621–1663.

[32] T. Mettler, G. Paternain, Holomorphic differentials, thermostats and Anosov flows, 2019, pp. 553–580. arXiv:1706.03554

[33] K. Nomizu, T. Sasaki, Affine differential geometry, Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge, 1994, Geometry of affine immersions. MR zbM

[34] M. Struwe, Variational methods, fourth ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 34, Springer-Verlag, Berlin, 2008. MR zbM

[35] L. Vrancken, Centroaffine differential geometry and its relations to horizontal submanifolds, in PDEs, submanifolds and affine differential geometry (Warsaw, 2000), Banach Center Publ. 57, Polish Acad. Sci. Inst. Math., Warsaw, 2002, pp. 21–28. MR zbM

[36] C. P. Wang, Some examples of complete hyperbolic affine \(2\)-spheres in \({\bf R}^3\), in Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math. 1481, Springer, Berlin, 1991, pp. 271–280. MR zbM

[37] H. Weyl, Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung., Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1921 (1921), 99–112. zbM


  1. Recall that a \(1\)-form \(\alpha \in \Omega^1(M)\) is semibasic for the projection \(\pi : M \to N\) if \(\alpha\) vanishes on vector fields that are tangent to the \(\pi\)-fibres.

  2. For a matrix \(S=(S_{ij})\) we denote by \(S_{(ij)}\) its symmetric part and by \(S_{[ij]}\) its anti-symmetric part, so that \(S_{ij}=S_{(ij)}+S_{[ij]}\).

  3. We define \(\varepsilon=(\varepsilon_{ij})\) by \(\varepsilon_{ij}=-\varepsilon_{ji}\) with \(\varepsilon_{12}=1\) and \(\varepsilon^{ij}\) denote the components of the transpose inverse of \(\varepsilon\).