Reduction of \(\beta\)-integrable \(2\)-Segre structures

References

[1] M. A. Akivis, V. V. Goldberg, Conformal differential geometry and its generalizations, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1996, A Wiley-Interscience Publication. MR

[2] M. A. Akivis, V. V. Goldberg, Semiintegrable almost Grassmann structures, Differential Geom. Appl. 10 (1999), 257–294. MR

[3] T. N. Bailey, M. G. Eastwood, Complex paraconformal manifolds—their differential geometry and twistor theory, Forum Math. 3 (1991), 61–103. MR

[4] R. J. Baston, Almost Hermitian symmetric manifolds I: Local twistor theory, Duke Math. J. 63 (1991), 81–112. MR

[5] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior differential systems, Mathematical Sciences Research Institute Publications 18, Springer-Verlag, New York, 1991. MR

[6] R. L. Bryant, Classical, exceptional, and exotic holonomies: a status report, in Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr. 1, Soc. Math. France, Paris, 1996, pp. 93–165. MR zbM

[7] R. L. Bryant, Projectively flat Finsler \(2\)-spheres of constant curvature, Selecta Math. (N.S.) 3 (1997), 161–203. MR zbM

[8] R. L. Bryant, Some remarks on Finsler manifolds with constant flag curvature, Houston J. Math. 28 (2002), 221–262, Special issue for S. S. Chern. MR

[9] M. Crampin, D. J. Saunders, Path geometries and almost Grassmann structures, in Finsler geometry, Sapporo 2005—in memory of Makoto Matsumoto, Adv. Stud. Pure Math. 48, Math. Soc. Japan, Tokyo, 2007, pp. 225–261. MR

[10] M. Dunajski, P. Tod, Four-dimensional metrics conformal to Kähler, Math. Proc. Cambridge Philos. Soc. 148 (2010), 485–503. MR

[11] A. B. Goncharov, Generalized conformal structures on manifolds, Selecta Math. Soviet. 6 (1987), 307–340, Selected translations. MR

[12] D. A. Grossman, Torsion-free path geometries and integrable second order ODE systems, Selecta Math. (N.S.) 6 (2000), 399–442. MR

[13] T. Hangan, Géométrie différentielle grassmannienne, Rev. Roumaine Math. Pures Appl. 11 (1966), 519–531. MR

[14] T. Ishihara, On tensor-product structures and Grassmannian structures, J. Math. Tokushima Univ. 4 (1970), 1–17. MR

[15] C. Lebrun, L. J. Mason, Nonlinear gravitons, null geodesics, and holomorphic disks, Duke Math. J. 136 (2007), 205–273. MR

[16] Y. Machida, H. Sato, Twistor theory of manifolds with Grassmannian structures, Nagoya Math. J. 160 (2000), 17–102. MR

[17] T. Mettler, Weyl metrisability for projective surfaces, (2009). arXiv:0910.2618

[18] N. R. O’Brian, J. H. Rawnsley, Twistor spaces, Ann. Global Anal. Geom. 3 (1985), 29–58. MR zbM

[19] S. Salamon, Harmonic and holomorphic maps, in Geometry seminar “Luigi Bianchi” II—1984, Lecture Notes in Math. 1164, Springer, Berlin, 1985, pp. 161–224. MR


  1. For a proof, see the appendix.

  2. The reader is warned that often the opposite convention regarding \(\alpha\)- and \(\beta\)-planes is used. The convention used here is chosen to be consistent with [15].

  3. As in the case of \((4,0)\)-signature, a split-signature metric is called self-dual if its Weyl curvature tensor, considered as a bundle-valued 2-form, is its own Hodge-star.